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Sampling and Discrete Time 

  

Sampling is the acquisition of the values of a continuous-time signal 

at discrete points in time.  x t( )  is a continuous-time signal, x n⎡⎣ ⎤⎦  is a 

discrete-time signal.

            x n⎡⎣ ⎤⎦ = x nTs( )  where Ts  is the time between samples

Sampling Uniform Sampling

x t( ) x t( )x n[ ] x n[ ]

ω s  or  fs



Sampling and Discrete Time 
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Sinusoids 
Unlike a continuous-time sinusoid, a discrete-time sinusoid is 
not necessarily periodic.  If it is periodic, its period must be an 

integer.  If a sinusoid has the form g n[ ] = Acos 2πF0n +θ( )  then 

F0  must be a ratio of integers (a rational number) for g n[ ]  to be 

periodic.  If F0  is rational in the form q / N0  q and N0  integers( )in 
which all common factors in q and N0  have already been cancelled, 
then the fundamental period of the sinusoid is N0 , not N0 / q 
(unless q = 1).  Therefore, the general form of a periodic sinusoid 
with fundamental period N0  is g n[ ] = Acos 2πnq / N0 +θ( ).
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Sinusoids 
Periodic Periodic

Periodic Aperiodic
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Sinusoids 
An Aperiodic Sinusoid 
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Sinusoids 

 

Two sinusoids whose analytical expressions look different,
   g1 n[ ] = Acos 2πF01n +θ( )   and  g2 n[ ] = Acos 2πF02n +θ( )
may actually be the same.  If 
                F02 = F01 +m,  where m is an integer
then (because n is discrete time and therefore an integer), 

          Acos 2πF02n +θ( ) = Acos 2π F01 +m( )n +θ( )

 Acos 2πF02n +θ( ) = Acos 2πF01n + 2πmn
Integer 

Multiple 
of 2π

 +θ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= Acos 2πF01n +θ( )

                              (Example on next slide)
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Sinusoids 
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Sinusoids 
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Exponentials 

 

The form of the exponential is
x n[ ] = Azn

Preferred
! "# $#  or x n[ ] = Aeβn   where z = eβ

Real z Complex z

z > 1

0  <  z < 1
-1  <  z < 0

z < -1

n

n

n

n

n

n

n

n

|z| > 1

|z| < 1
Re(g[n]) Im(g[n])

Re(g[n]) Im(g[n])
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The Unit Impulse Function 

                                                               δ n[ ] = 1 , n = 0
0 , n ≠ 0

⎧
⎨
⎩

The discrete-time unit impulse (also known as the “Kronecker 
delta function”) is a function in the ordinary sense (in contrast 
with the continuous-time unit impulse).  It has a sampling property,

                        Aδ n − n0[ ]x n[ ]
n=−∞

∞

∑ = Ax n0[ ]
but no scaling property.  That is,
              δ n[ ] = δ an[ ]  for any non-zero, finite integer a.

n

δ[n]
1
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The Unit Sequence Function 

u n[ ] =
1 , n ≥ 0
0 , n < 0

⎧
⎨
⎩

n

u[n]
1 ......
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The Signum Function 

  

sgn n⎡⎣ ⎤⎦ =
1    ,  n > 0
0   ,  n = 0
−1 ,  n < 0

⎧

⎨
⎪

⎩
⎪

= 2u n⎡⎣ ⎤⎦ −δ n⎡⎣ ⎤⎦ −1

n

sgn[n]
1

-1

...
...
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The Unit Ramp Function 

ramp n[ ] = n , n ≥ 0
0 , n < 0

⎧
⎨
⎩

⎫
⎬
⎭
= nu n[ ] = u m −1[ ]

m=−∞

n

∑

n

ramp[n]

4

4

......
8

8
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The Periodic Impulse Function 

δ N n[ ] = δ n −mN[ ]
m=−∞

∞

∑

n

�  [n]

!

N-N 2N
......

N
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Scaling and Shifting Functions 
Let g n[ ]  be graphically defined by the graph below and 
g n[ ] = 0 , n >15
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Time shifting       n→ n + n0 , n0  an integer

Scaling and Shifting Functions 
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Time compression

        n→ Kn

K  an integer > 1

Scaling and Shifting Functions 
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Time expansion       n→ n / K , K >1

For all n such that n / K  is an integer, g n / K[ ]  is defined.

For all n such that n / K  is not an integer, g n / K[ ]  is not defined.

Scaling and Shifting Functions 



Scaling and Shifting Functions 
There is a form of time expansion that is useful.  Let

         y n[ ] = x n /m[ ]     ,    n /m an integer
0                ,    otherwise

⎧
⎨
⎩

All values of y are defined.  
This type of time expansion
is actually used in some 
digital signal processing 
operations.
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Differencing 
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Accumulation 

g n[ ] = h m[ ]
m=−∞

n

∑
n

-5 20

h[n]

-2

2

n
-5 20

g[n]

-2

2

n
-10 10

h[n]
2

n
-10 10

g[n]
8
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Even and Odd Signals 

ge n[ ] = g n[ ]+ g −n[ ]
2

               go n[ ] = g n[ ]− g −n[ ]
2

g n[ ] = g −n[ ]                        g n[ ] = −g −n[ ]

......
n

g[n]

......
n

g[n]
Even Function Odd Function
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Products of Even and Odd 
Functions 

Two Even Functions 
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Products of Even and Odd 
Functions 

An Even Function and an Odd Function 
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Products of Even and Odd 
Functions 

Two Odd Functions 
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Symmetric Finite Summation 

g n[ ]
n=−N

N

∑ = g 0[ ]+ 2 g n[ ]
n=1

N

∑                      g n[ ]
n=−N

N

∑ = 0

......
n

g[n]

......
n

g[n]
Even Function Odd Function

-N N

-N
N

Sum #1

Sum #1 = Sum #2

Sum #2
Sum #1

Sum #1 = - Sum #2
Sum #2
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Periodic Functions 

A periodic function is one that is invariant to the
change of variable n→ n + mN  where N  is a period of the
function and m is any integer.

The minimum positive integer value of N  for which
g n[ ] = g n + N[ ]  is called the fundamental period N0 .
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Periodic Functions 

 

Find the fundamental period of 
                  x n[ ] = cos πn /18( ) + sin 10πn / 24( )
                  x n[ ] = cos 2πn / 36( )

N0 =36
   + sin 2πn 5 / 24( )( )

N0 =24
  

                  N0 = LCM 36,24( ) = 72
Find the fundamental period of 
                  x n[ ] = cos 5πn /13( ) + sin 8πn / 39( )
                  x n[ ] = cos 2πn 5 / 26( )( )

N0 =26
  

+ sin 2πn 4 / 39( )( )
N0 =39

  

                  N0 = LCM 26,39( ) = 78
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Signal Energy and Power 

The signal energy of a signal x n[ ]  is

                 Ex = x n[ ] 2

n=−∞

∞

∑



9/10/16 M. J. Roberts - All Rights Reserved 31 

Signal Energy and Power 

x n[ ] = 0 , n > 31

n

x[n]

n

|x[n]|2

n

Σ|x[n]|2 Signal Energy
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Signal Energy and Power 
Find the signal energy of 

                         x n[ ] = 5 / 3( )2n   ,  0 ≤ n < 8
0             ,  otherwise

⎧
⎨
⎪

⎩⎪

          Ex = x n[ ] 2

n=−∞

∞

∑ = 5 / 3( )2n⎡⎣ ⎤⎦
2

n=0

7

∑ = 5 / 3( )4⎡⎣ ⎤⎦
n

n=0

7

∑

Using rn
n=0

N −1

∑ =
N          ,  r = 1
1− rN

1− r
  ,  r ≠ 1

⎧
⎨
⎪

⎩⎪

                           Ex =
1− 5 / 3( )4⎡⎣ ⎤⎦

8

1− 5 / 3( )4 ≅ 1.871×106
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Signal Energy and Power 
Some signals have infinite signal energy.  In that case
It is usually more convenient to deal with average signal 
power. The average signal power of a signal x n[ ]  is

                       Px = lim
N→∞

1
2N

x n[ ] 2

n=−N

N−1

∑
For a periodic signal x n[ ]  the average signal power is

                          Px =
1
N

x n[ ] 2

n= N
∑

The notation  
n= N∑  means the sum over any set of 

consecutive n 's exactly N  in length.

⎛

⎝
⎜

⎞

⎠
⎟
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Signal Energy and Power 

 

Find the average signal power of 
                                x n[ ] = 2sgn n[ ]− 4

       Px = lim
N→∞

1
2N

x n[ ] 2

n=−N

N−1

∑ = lim
x→∞

1
2N

2sgn n[ ]− 4 2

n=−N

N−1

∑

       Px = lim
N→∞

1
2N

4 sgn2 n[ ]
=1−δ n[ ]
 n=−N

N−1

∑
=N−1+N=2N−1
  

+16 1
n=−N

N−1

∑
=2N


−16 sgn n[ ]
n=−N

N−1

∑
=N−1−N=−1
  

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

       Px = lim
N→∞

1
2N

4 2N −1( ) + 32N −16 −1( ){ } = 20
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Signal Energy and Power 

A signal with finite signal energy is  
called an energy signal. 
 
A signal with infinite signal energy and  
finite average signal power is called a  
power signal. 



 

Fundamental Period of a Sum of Two Periodic Signals
                                                   δ14 n[ ]

N0=14
! − 6δ 8 n[ ]

N0=8
!

N0=LCM 14,8( )=56
" #$$ %$$

    

−2cos 3πn /12( ) +11cos 14πn /10( ) = −2cos 2πn 1/ 8( )( )
N0=8

" #$$ %$$
+11cos 2πn 7 /10( )( )

N0=10
" #$$ %$$

N0=LCM 8,10( )=40
" #$$$$$$$ %$$$$$$$

Impulses and Periodic Impulses

38n2δ n + 6[ ]
n=−18

33

∑ = 1368  ,  −12 0.4( )n u n[ ]δ 3 n[ ]
n=−4

7

∑ = −12 0.4( )0 + 0.4( )3 + 0.4( )6⎡⎣ ⎤⎦ = −12.8172

Equivalence Property  27 0.3( )nδ n − 3[ ] = 27 0.3( )3δ n − 3[ ] = 0.729δ n − 3[ ]
Scaling Property          13δ 3n[ ] = 13δ n[ ]   ,  No scaling property for discrete-time impulses( )

                                    22δ 3 4n[ ] = 22 δ 4n − 3k[ ]
k=−∞

∞

∑ =
22  ,  4n = 3k
0     ,  otherwise

⎧
⎨
⎩

⎫
⎬
⎭
=

22  ,  4n / 3 = k
0     ,  otherwise

⎧
⎨
⎩

⎫
⎬
⎭

                                     Since k  is an integer, impulses occur only where 4n / 3 is an integer

                                    
n 0 1 2 3 4 &

22δ 3 4n[ ] 22 k = 0( ) 0 4 / 3 ≠ k( ) 0 8 / 3 ≠ k( ) 22 k = 1( ) 0 16 / 3 ≠ k( ) &

9/10/16 M. J. Roberts - All Rights Reserved 36 



 

Signal Energy and Signal Power

x n[ ] = n −1.3( )n u n[ ]− u n − 4[ ]( )⇒ Ex = n −1.3( )n u n[ ]− u n − 4[ ]( ) 2

n=−∞

∞

∑

Ex = n2 1.3( )2n

n=0

3

∑ = 0 +1.32 + 4 ×1.34 + 9 ×1.36 = 56.5557

x n[ ]  is periodic and one period of x n[ ]  is described by 
x n[ ] = n 1− n( )  , 3 ≤ n < 6

Px =
1
N

x n[ ] 2

n= N
∑  , 

n 3 4 5
x n[ ] −6 −12 −20

Px =
1
3

36 +144 + 400[ ] = 580
3

= 193.333
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