Description of Systems



Systems

* Broadly speaking, a system 1s anything that
responds when stimulated or excited

* The systems most commonly analyzed by
engineers are artificial systems designed and
built by humans

* Engineering system analysis 1s the
application of mathematical methods to the
design and analysis of systems
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System Examples
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Modeling a Mechanical System

A man, 1.8 m tall and weighing 80 kg, bungee jumps off a high

bridge over a river. The bridge 1s 200 m above the water surface

and the unstretched bungee cord is 30 m long. The spring

constant of the bungee cord is £, =11 N/m, meaning that,

when the cord 1s stretched, it resists the stretching with a force

of 11 newtons per meter of stretch. In the first 30m of free fall,
Velocity, v(7)= g7 Position, x(7)= g7 /2

When the bungee cord begins to stretch the man experiences the

force of the cord pulling him up (he hopes) and the farther he

falls the stronger the upward pull of the cord. Will his hair get wet?
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Modeling a Mechanical System

Sum of forces equals .
{mass times acceleration} mg= K, (x(1)=30)=mx"(7)

x(7)=x,(2)+ Xp(f)=[(/71 sin(w/Ky/m /‘)+K,72 cos(\/KS/m l)+ %g+ 30

x(7)=—-16.85sin(0.37087)— 95.25¢c0s(0.3708/)+101.3 , 7>2.47

Bridge Level

Elevation (m)

Bungee :
MO Rall | Stretched N\

Water Level
5

Time, £ (s)
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Modeling a Mechanical System

In the modeling of this system many physical processes
were left out of the model.
1. Alr resistance,

2. Energy dissipation in the bungee cord,
3. Horizontal components of the man’ s velocity,
4. Rotation of the man during the fall,
5. Variation of the acceleration due to gravity as a
function of position,
and 6. Variation of the water level in the river .

Leaving out these processes makes the model less accurate but
much easier to use and the errors introduced are insignificant.
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Modeling a Fluid System

Toricelli's Equation: v, (7)= \/ 28 h, (1)- 14, |

where v 1s water velocity and h 1s water level

(h (;))+4ng[h ()=%]=5()
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Modeling a Fluid System

This graph shows the water level as a function of time for four
different volumetric inflow rates assuming the tank is initially
empty. Notice that when the inflow rate is doubled, the final

water level 1s quadrupled.
This 1s a consequence

of the non-linearity of
the differential equation.
Differential equations that
are difficult or impossible

to solve analytically can be

solved numerically.
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Feedback Systems

In a feedback system the response of the system is “fed back”
and combined with the excitation is such a way as to optimize

the response in some desired sense. Examples of feedback
systems are

1.
3.
5.

Temperature control in a house using a thermostat

Water level control in the tank of a flush toilet.

Pouring a glass of lemonade to the top of the glass without
overflowing.

A refrigerator ice maker, which keeps the bin full of ice
but does not make extra ice.

. Driving a car.
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Systems

* Systems have inputs and outputs

* Systems accept excitations or input signals
at their inputs and produce responses or
output signals at their outputs

« Systems are often usefully represented by
block diagrams

A single-input, single-output system block diagram

H—y0)

X(2)
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A Multiple-Input, Multiple-
Output System Block Diagram

X() —- H, Y

—> — V,(9)

s
h
.

Xz(f) =

—| 7,
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Block Diagram Symbols

Three common block diagram symbols for an amplifier (we will
use the last one).

X—p| A P AX Xq@—»[fx X @ - AX

Three common block diagram symbols for a summing junction
(we will use the first one).

4 R
X —(H)—=X-y X —E)—X-y Xﬁ?—x-y
\_ y y y J
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Block Diagram Symbols

Block diagram symbol for an integrator

x(t)—> f >j;x(t)d1:
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An Electrical Circuit Viewed as a
System

An AC lowpass filter is a simple electrical system.
It is excited by a voltage v, (7) and responds with a
voltage v_ (7). It can be viewed or modeled as a

single-1input, single-output system

L) R "
Vin(t)c Cto Youf(t) Vin(l‘)_> .7—[ _>V0m(t)
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Zero-State Response of an RC
Lowpass Filter to a Step Excitation

If an £C lowpass filter with an 1nitially uncharged capacitor 1s

excited by a step of voltage v (f)z Au (f) 1ts response 1s
v . (f)= A (1 —e” /"C)u (f) This response 1s called the zero - state

response of this system because there was initially no energy
stored in the system. (It was in its zero-energy state.) If the

excitation 1s doubled, the zero-state response also doubles.
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Zero-Input Response of an RC
Lowpass Filter

If an £C lowpass filter has an 1nitial charge on the capacitor

of /7 volts and no excitation is applied to the system its zero -

input response isv_ (f): Ve, r>0.
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Homogeneity

« In a homogeneous system, multiplying the
excitation by any constant (including complex
constants), multiplies the zero-state response by the
same constant.

Homogeneous System

x(t) —»| H F—> y@©

Multiplier

x(z)»?ﬂ» H > Ky

K
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Homogeneity

To test a system for homogeneity use this logical
process. Apply a signal g(¢) as the excitation x, ()
and find the zero-state response vy, (t) Then apply
the signal K g(t) as x, (¢) where K is a constant and
find the zero-state response y,(¢). If y,(¢)= Ky, ()
for any arbitrary g(¢) and K, then the system is

homogeneous.

If g(r)—2—y, (¢)and K g(t)—=—>Ky, (1)

H is Homogeneous
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Homogeneity

Let y(f): exp (X (f)) Is this system homogeneous?

Let x, (f): g (f) Then y, (f): exp (g (f))
Letx, (Z)z Kg (f) Then y, (f)z exp (K g (f))z [exp (g (f))J[(

Ky, (f): Kexp (g (f)):> Y, (f);t Ky, (/‘) , Not homogeneous
Let y(z‘)z X (f)+ 2. Is this system homogeneous?

Let x, (f): g (f) Then y, (f)z g (f)+ 2.

Letx, (Z)z Kg (l) Then y, (f)z Kg (f)+ 2

Ky, (f): Kg (f)+ 2K=y, (f);t Ky, (f) , Not homogeneous
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Time Invariance
 If an excitation causes a zero-state response and
delaying the excitation simply delays the zero-
state response by the same amount of time,
regardless of the amount of delay, the system 1s

time invariant.
Time Invariant System

x(t) —=| H F—>y(0)

[-t
«(t)—| Delay,7, L) 47 | yi-1,)

If g(A—Z—y, (r)and g(7-7)—Z—>y, (- 2,)= F{ is Time Invariant

This test must succeed for any g and any 7#,.
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Time Invariance

Let y(f)z exp (X (f)) [s this system time invariant?

Letx, (f)z g (f) Then y, (f)z exp (g (l))

Letx, (#)=g(7— %) Then y,(s)=exp (g (-1 ))

y, (7= 7 )=exp (g (-1 )):> y,(?)=y,(7—7) . Time Invariant
Let y(f): X (f/ 2). Is this system time invariant?

Letx, (#)=g(7) Then y, (r)=g(r/2)

Letx,(#)=g(s—7 ) Theny,(s)=g(?/2-1)
y,(t=1)=2((~-4 ) 2)= v, ()2 y,(~~4) . Time Variant
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Additivity
If one excitation causes a zero-state response and another
excitation causes another zero-state response and if, for any arbitrary

excitations, the sum of the two excitations causes a zero-state
response that is the sum of the

two zero-state responses, the Additive System
system is said to be additive. (O —> H >0

X (t) = FH >y,

Adder

X, (1) + X(2)
x](t)»(? > 3 >y, +y,0

X,(1)

If g()—"—y, (+)and h()—L—y, ()
and g(7)+h(\)—Z—y, (1)+y, (r)= H is Additive
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Additivity

Let y(f): u (X (f)) Is this system additive?

Letx, (#)=g(?) Then y, (#)=u (g (/‘))

Letx, (/)=h(s) Then y,(7)=u(h())

Let x,(7)=g(#}+h(r) Then y,(r)=u (g (7)+h (z‘))

y, (FHy,()=u (g (/‘))+ u (h (f))¢ u (g (7)+h (f)) Not additive.
(For example, at time 7=3, if g(3)=4 and h(3)=2,
y,BHvy,3)=u(@u)=1+1=2. But y,(3)=u(4+6)=1.)
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Linearity and LTI Systems

 If a system 1s both homogeneous and additive
it 1s linear.

 If a system 1s both linear and time-invariant it
is called an LTI system

* Some systems that are non-linear can be
accurately approximated for analytical
purposes by a linear system for small
excitations
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Linearity and LTI Systems

In an LTI system, the analysis of the effect of an excitation
on a system can be found by expressing the excitation as the sum

of simpler signals, finding the responses to those signals individually
and then adding those responses. Let x (f)z rect (f/ 4). We could

eXpress x (l) as u (z‘+ 2)— u (f— 2) or we could express it as
0.75rect (f/ 4)+ 0.25rect (f/ 4) or any other convenient sum of
functions that equals x (l)
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Stability

* Any system for which the response 1s
bounded for any arbitrary bounded excitation,

is called a bounded-input-bounded-output
(BIBO) stable system

* A continuous-time LTI system described by a
differential equation is stable if the

eigenvalues of the solution of the equation all
have negative real parts
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Causality

* Any system for which the zero-state response
occurs only during or after the time in which
the excitation 1s applied i1s called a causal
system.

« Strictly speaking, all real physical systems are
causal
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Memory

e If a system’s zero-state response at any arbitrary
time depends only on the excitation at that same
time and not on the excitation or response at any
other time 1t 1s called a static system and 1s said to
have no memory. All static systems are causal.

* A system whose zero-state response at some
arbitrary time depends on anything other than

the excitation at that same time 1s called a dynamic
system and 1s said to have memory

* Any system containing an integrator has memory
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Static Non-Linearity

* Many real systems are non-linear because the
relationship between excitation amplitude and
response amplitude 1s non-linear

Resistor, R
i(7) 10y + i(7)

Diode

iy,
R v(?)
Slope =1/ R j v(?)
- v(f) - ~ V(1)
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Static Non-Linearity

* For an analog multiplier, if the two excitations are the same
single excitation signal, the response signal 1s the square of
that single excitation signal and doubling the excitation
would cause the response to increase by a factor of 4

* Such a system 1s not homogeneous and therefore not linear

Analog
Multiplier

X4(2) () =x,69% ()

XA7)

Squarer

x(2) ()= () =X()
4
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Invertibility

A system 1s said to be invertible if unique
excitations produce unique zero-state responses. In
other words, 1f a system 1s invertible, knowledge of

the zero-state response 1s sufficient to determine the
excitation

+0
v; (1) ||
This full-wave rectifier is

a non-invertible system
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Dynamics of Second-Order
Systems

The eigenfunction of an LTI system is the complex exponential.
The eigenvalues of a second-order system are either both real or
occur 1n a complex-conjugate pair. The general solution form 1s
a sum of two complex exponentials and a constant. For example,
the capacitor voltage in a series A2’ circuit excited by a voltage
step of height .4 1s

)

Vozzf (f): Kle
where o= £/2Z and > =1/ LC. «a is the damping factor and

)

/ /
+K2e + A4

@ 1is the natural radian frequency.
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Dynamics of Second-Order
Systems

o

The solution form £ e g Kze(_a_ Y )[ applies

to all second-order LTI systems. It can also be written as
Kle(_a”wc)f + Kze(_a_jwc)f where ® =® \[1-¢* and @_
is the critical radian frequency and (= / @ is the

damping ratio.
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Complex Sinusoid Excitation

Any LTI system excited by a complex sinusoid responds with
another complex sinusoid of the same frequency but generally

a different magnitude and phase. In the case of the 22’ circuit

if the excitation is v, (#)= 4&**" the response is v, (7)= Be*™
where 4 and 4 are, in general, complex. 4 can be found by
substituting the solution form into the differential equation and
finding the particular solution. In the 2ZZC circuit

B A

(2nfY LC+ 2rfRCH]

B
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Discrete-Time Systems

* With the increase in speed and decrease in
cost of digital system components, discrete-
time systems have experienced, and are still
experiencing, rapid growth in modern
engineering system design

* Discrete-time systems are usually described
by difference equations
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Block Diagram Symbols

The block diagram symbols for a summing junction and an
amplifier are the same for discrete-time systems as they are
for continuous-time systems.

Block diagram symbol for a delay

x| 7] —

D

—»X[7- 1]
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Discrete-Time Systems

In a discrete-time system events occur at points in time but not
between those points. The most important example is a digital
computer. Significant events occur at the end of each clock
cycle and nothing of significance (to the computer user) happens
between those points in time.

Discrete-time systems can be described by difference (not
differential) equations. Let a discrete-time system generate an
excitation signal y[n] where n 1s the number of discrete-time
intervals that have elapsed since some beginning time n = 0.

Then, for example a simple discrete-time system might be
described by

y[r]=197y[n-1]-y[r-2]
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Modeling a Fluid System

Toricelli's Equation: v, (7)= \/ 2 g[h1 (7)- 4, :|

v Input Fl
4 (b, ())+ 4, \/ 2¢ b, (7)- 14 | =1 (7) nput Flow
) Rate Ofﬁlcrease ’ Volumetric Butﬂow Rate
of Water Volume * fl(f) .
<11
This differential equation 1s non-linear.
A
)
— —ﬁz
Vy(2)
Output Flow
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Solving a Differential Equation
Numerically

The differential equation that models the fluid system

74
4L 0, () 420 ()~ 2] =50
can be approximated by the difference equation

4 h, ((”"' 1)];)_ h, (”];)
7

S

+ A 28[0, (n7)~ 1, ] 2 £ (n7))
by replacing all derivatives by finite differences of the form

gf(hl ()= h, ((7+ 1)7];; )=h (7))
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Solving a Differential Equation
Numerically

The difference equation
y h, ((”'I' 1)];)_ h, (”];)
1
7

Ry

+A/2\/2g[h1 (/77;)— @] = {, (/77;)

can be written in the new discrete-time notation as

h [”]Ed%%fl =11+ A, [r=1]- 4.7 2(0, [7=1]-2)

which expresses the present value of the water level 1n terms of

the immediate past value of the water level.
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Solving a Differential Equation
Numerically

The difference equation

h [”]51}1{7& =11 b, [n=1]- 4720, [7=1]- 1)

describes a system that can also be described by a block

diagram. finl—= D [ L@ i > h,[n]

A, 4

A, D

B

AT,
Al

28 &

\/7 i

[ 8/2/13 M. J. Roberts - All Rights Reserved




Solving a Differential Equation
Numerically

The accuracy of the
approximate numerical
solution depends on
the time step 7 used.
Smaller time steps
usually result in more

accurate solutions.

h () (m) h (t) (m)

h, () (m)

0 1000 2000 3000 4000 5000 6000 7000 8000
T =500 s
4
Y MUURRRUREE SRR AR ST SUREY JUNUN JUUUN. NN DRNRL. JUUE JUNNS JNNUN AN
PYUUUUPAU AU NUUUN DUNUN IR IRURY RN NN NN SRR RN NURNN DURR SO
AN ORI DU UUUURY UNRURY IUURR DU NN UUNR NN NNNNN DUUNN SO FRNN A
03 1 000 2000 3000 4000 5000 6000 7000 8000
= 1000 s
4 * ! ) T ) !
sl Y
S A A B B ‘ ........................ ] ...........
P ESUURRRRREY EUUURRUUN IURRUSURRUOY INUURRRUREY DERUURRSUORY IURRRURROTY RUURRSUURNS PR
0 1000 2000 3000 4000 5000 6000 7000 8000

Time,  or nTS (s)
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Discrete-Time Systems

The equation

y[]=197y[r-1]-y[r-2]
says in words

“The signal value at any time 7 1s 1.97 times the signal value at the
previous time [/7— 1] minus the signal value at the time before that
[r—2]>

If we know the signal value at any two times, we can compute its
value at all other (discrete) times. This i1s quite similar to a
second-order differential equation for which knowledge of two
independent initial conditions allows us to find the solution for all

time and the solution methods are very similar.
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Discrete-Time Systems

y[n]=197y[n-1]-y[n-2]
We could solve this equation by iteration using a computer.

yn=1;ynl =0; <«——Initial Conditions

while 1,
yn2 = ynl ; ynl = yn; yn = 1.97*ynl - yn2 ; l -yln]

end

D

, + 1.97

We could also describe the system @4 - yln-1]
with a block diagram. Y

D

yln-2]
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Discrete-Time Systems

y[r]=197y[r—1]-y[r-2]

With the mitial conditions y [l] =land y [O] = 0 the (zero-

input) response is y|7].

y[7]
61

{‘ Ml.‘\” III,I\H ‘
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Solving Difference Equations

On the previous two slides we found the solution to

yl7]=197y[7-1]-y[»-2]
by iteration as a sequence of numbers for y[ﬁ] We can also solve

linear, constant-coefficient ordinary difference equations with techniques

that are very similar to those used to solve linear, constant-coefficient

ordinary differential equations. The eigenfunction of this type of equation

is the complex exponential 7. As a first example let the equation be

2y [/7]— y [/7— 1] = (0. The homogeneous solution of this equation 1s
theny, [/7] = KZ”. Substituting that into the equation we get

2KZ — KZ”' = 0. This is the characteristic equation. Dividing
through by Az”~' we get 2z—1= 0 and the solution is z=1/2.
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Solving Difference Equations

The eigenvalue for the equation 2y [/7]— y [/7 — 1] =01sthenz=1/2

and the homogeneous solution is y,[#]= A(1/2)’. Since the equation
1s homogeneous, the homogeneous solution is also the total solution.

To find £ we need an 1nitial condition. Letitbey [O] = 3. Then
y[0]= 4(1/2) = £ =3 and y[r]=3(1/2).
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Solving Difference Equations

The solution of inhomogeneous equations is also similar to

differential equation techniques. Let Sy [/7]— 3y [/7— 1] =(1/ 3)” with
an initial condition of y|[0]=—1. The characteristic equation is

5z—3=0. The eigenvalue 1s 3/5 and the homogeneous solution is
y,|7]= &(3/5)". The particular solution is a linear combination of

the forcing function (1/3)" and all its unique differences. The first
backward difference of (1/3)" is (1/3) = (1/3)"", which can be written
as —2(1/3)". This is just the same function but with a different

multiplying constant. So the first difference of an exponential is also

an exponential. Therefore the only functional form we need for the

particular solution 1s £, (1/3)".
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Solving Difference Equations

Substituting the particular solution form into the difference equation
weget SA, (1/3) -34,(1/3)" =(1/3)". Solving,

1/3Y
K, = p (1 / 3)(” 1?3)(1 / 3)”_1 = 5 (11//3;_ 3 =—1/4. Then the total
solutionis y[#]|=&(3/5) —(1/4)(1/3)". Applying initial
conditions y[0]=&(3/5) —(1/4)(1/3) =&k -1/4=-1
Therefore A = -3 /4 and the total solution is

ylz]=(-3/4)(3/5) —(1/4)1/3)".

[ 8/2/13 M. J. Roberts - All Rights Reserved 49 ]




Stability

* Any system for which the response 1s
bounded for any arbitrary bounded excitation,

is called a bounded-input-bounded-output
(BIBO) stable system

* A discrete-time LTI system described by a
difference equation is stable if the

eigenvalues of the solution of the equation all
have magnitudes less than one
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A System

x[n] 4{(? ¢ >~ y[n]

D

4
5
¢

If the excitation x[ 7] 1s the unit sequence, the zero-state

response is L

A
5

y|z]= [5—4(4/5)”}u[/7]

R 5 10 15 20
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A System

x[n] 4{5? ¢ > y[n]

D

4
5
¢

If the excitation is doubled, the zero-state response doubles.

If two signals are added to form the excitation, the zero-state
response 1s the sum of the zero-state responses to those two
signals. If the excitation 1s delayed by some time, the zero-state
response 1s delayed by the same time. This system 1s linear and
time invariant.
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System Properties

* The properties of discrete-time systems have
the same meaning as they do in continuous-
time systems
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Eigenfunctions of LTI Systems

* The eigenfunction of an LTI system 1is the
complex exponential

* The eigenvalues are either real or, 1f
complex, occur 1n complex conjugate pairs

* Any LTI system excited by a complex
sinusoid responds with another complex
sinusoid of the same frequency, but generally
a different amplitude and phase

« All these statements are true of both
continuous-time and discrete-time systems
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y(7)=x (sin (f)) = Causal?, Linear?
y(7)=x (sin (/‘)) For any time 7< 0, y(7) depends on
a value of x in the future, because for 7< 0,

sin(7)> 7 Non-causal.
Letx,(#)=g(7). Then y,(7)=¢ (sin (z‘))% Ky, (r)=Kg (sin (/‘))
Letx, (#)= Kg(7). Theny, (7r)=Kg (sin (Z))z Ky, (7) Homogeneous
Let x,(#)=h(7). Then y,(#)=h (sin (f))
Let x,(7)=g(7)+h(2).

Theny,(7)=Kg (sin (l))+ K'h (sin (/‘)): K [yl (7)+y, (/‘)]
Additive — Linear
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i
y [/7]: 2 X [/77] , /4 a finite positive integer
m=n—k

Linear?, Time-Invariant?, Stable?

Letx,[r]=elr}. Then y,[#]= 3. sl}

Letx, [#]= &g|7] Theny,[r]=4& g/{g [m]= &y, [7]

Homogeneous

Let x, [#]=h[]. Then y, []= gkh[m]

Letx,[r)=elrkehlnl. Then y, )= 3, @lmbenlm)= [nl+y.

Additive — Linear
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y|z]= g x|[#] , # afinite positive integer
=k
Let x,[]=g[#] Then y, ]~ zg ]
Letx,[7]=¢ [/7— 71, ] Then y, [#]= }ii;g [/77— 71, ]
Let g= m—ny = m=g+n,. Then y,|r]= ”fﬂo g1}
g=n—l=n,
k=g

Y [/7— 77, ]= 2 g [m] =Y, [/7] — Time-Invariant

nr=n—k—n,

If the upper bound on x [/7] 1s /4, what 1s the upper bound on y [/7]‘7

yau's

If x[7]< B, then y[7]< >, B=(24+1)2

f=n—K

Upper bound on y is (24+1)4— BIBO Stable
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y(7)=7x(7—1) , Linear?, Time-Invariant?

Let x,(7)=g(7). Theny, (7)=7g(s-1).

Let x,(#)= Kg(7). Theny,(7)=7Kg(s—1)= Ky, (#)— Homogeneous
Let x,(#)=h(7). Theny,(s)=7h(s-1).

Let x,(7)=g(7)+h(2).

Then y,(7)=7]g(s-1)+h(r—1)]|=y,(?)+y,(/)— Additive — Linear
Letx, ()=g(7). Theny, (/)=Ag(r-1) andy,.(r—2)=(r-2,) g(r—4-1)

Let x,(7)=g(7— 7). Theny,(r)=7Fg(r—1-7)#y,(7—7)
Time Variant
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y|#|=x*[#—-2] , Linear?, Time-Invariant?

Let x,[#]=g|7] Theny,|7]=g’|7-2]

Let x, [#|= &'g|7]. Theny,|[r]= (Kg | 7— 2])2 %Ky, |#]
Inhomogenous — Non-Linear

Letx,[7]=¢ [/7— 71, ] Theny,|[7]=¢’ [/7— 7, — 2]= VY, [/7— /70]
Time-Invariant
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y [/7] =X [/7+ 1]— X [/7— 1] , Linear?, Time-Invariant?
Let x, [ﬂ]: g[ﬁ] Theny, [/7]: g [/7+ 1]— g[ﬂ— 1].

Letx, [7|= K'g|#]. Theny,|r]|=&Kg|r+1]-&Kg|r—1]
Yy, [/7] =Ky, [/7] — Homogeneous

Letx, |#7|=h[z] Theny,|7]=h[rz+1]-h[z-1]

Let x, |#]=g|7]|+h]| 7]

Theny,|7]=g|r+1]
V£ [”]: yi [”]"" Y, [”

Let x, [7]= g[lfl—/?():.

+ h[ﬂ+ 1]— (g [/7— 1]+ h[ﬁ— 1])
— Additive — Linear

Theny, [/7]: g [/7— 7, + 1]— g [/7— 7y — 1].
Y [/7] =Y, [/7— 77, ]% Time-Invariant
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y(7)=x(7—2)+x(2-7), Linear?, Time-Invariant?, Dynamic?, Causal?, Stable?
Let x,(7)=g(7). Then y,(#)=g(s-2)+g(2-7).

Let x,(7)= Kg(7). Then y, ()= K[g(/‘— 2)+g(2- f)] =Ky, (7)

Homogeneous

Let x, (7)=h(7). Then y, (#)=h(z—2)+h(2-7).

Let x;(7)=g(s)+h(7). Then y,(7)=[g(r—2)+h(s-2)]+[g(2-7)+h(2-7)].
y,(7)=y,(#)+y,(#).— Additive — Linear

Let x,(7)=g(s—17). Theny,(#)=g(r-2-17)+g(2-7-17).

y,(1)#y, (f— Z, )% Time Variant

y(/‘) depends on x at other times — Dynamic

For 7<1, y(7) depends on x(7) at future times.— Non-Causal

Since y 1s a simple linear combination of shifted versions of x,
if x is bounded, so is y. — BIBO Stable
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y(7)=x(7)cos(37), Linear?, Time-Invariant?, Dynamic?, Causal?, Stable?
Let x, (7)=g(7). Theny, (7)=g(#)cos(37).

Let x, (7)= Kg(7). Then y, ()= Kg(#)cos(37)= Ky, (7)

Homogeneous

Let x, (#7)=h(7). Then y, (#)=h(7)cos(37).

Let x, (7)=g(#)+h(7). Then y,(#)=|g(7)+h(s)]cos(37)=y,(#)+y,(?)
Additive — Linear

Letx, (7)=g(7— 7). Then y, (#)=g(7— %, )cos(37).

y, (7= 1)=g(r—2)cos(3(7— %)=y, (?)

Time Variant

y(7) depends on x only at time #—> Static
Static — Causal

If x(7) is bounded, then x(7)cos(37) is also.— Stable
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27
y(7)= Jx(f)a”c, Linear?, Time-Invariant?, Dynamic?, Causal?, Stable?

—0Q

Let x,(#)=g(7). Theny, (7)= Tg(’c)df.

27
Let x, (Z)z Kg (f) Theny, (f)z KJ g(T)dT =Ky, (l)
Homogeneous

Let x,(#)=h(7). Theny, ()= Th(r)a’f

Let x,()=g()+h(). Theny, ()= [[e@)+h(r=3,()+3.)
Additive — Linear
Let x,(7)=g(7— 7). Theny,(7)= Tg(‘[— 7,)dt. Let A=1—17,.

2/~1, 2(~1)

Theny, (7)= J g(A)dr. y,(r-14,)= J g(7)ar — Time Variant
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27
y(/‘): J X(T)df, Linear?, Time-Invariant?, Dynamic?, Causal?, Stable?

—00

y(7) depends on values of x(7) at other times — Dynamic
For any 7> 0, y(#) depends on all values of x(#) up to
time 27— Non-Causal

If x(7) is a constant, there is no upper bound on y(7).
Unstable

Also, by Leibniz's rule for differentiating an integral
y’(7)=x(27)= Eigenvalue is 0. Real part is not negative.
Unstable
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/<0
(f) Linear?, Time-Invariant?, Dynamic?, Causal?, Stable?
X(/‘)+ x(7=2),720

0, 7<0
g()+g(r-2),720
0, /<0
Kg()+£kg(r-2), 120

Let x,(7)=g(7). Then y,(7)= {

Ky, (f)

Let x,(7)= Kg(7). Then y, (7)= {

Homogeneous
0, /<0
Let /)=h(7). Th /
C Xz() () enYz() {h(f)+h(f 2) >0

0, 7<0
Let x;(7)=g(#)+h(7). Then y,(7)= {(f)+h(f)+g(f Ve h(—2). 120
y;(7)=y,(?)+y,(#)— Additive — Linear
0, 7<0
g(7-2)+e(r-24-2),720
0, r—12,<0
n (=)= {g(f )+e(r—74-2),7-420

Time Variant

Let x,(7)=g(7—#,). Then y, (7)= {

=Y, (f)¢Y1 (f_fo)
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0, /<0
y(7)=
x(7)+x(r=2),720
Linear?, Time-Invariant?, Dynamic?, Causal?, Stable?
y(7) depends on x (7—2)—> Dynamic
y(7) depends only on x at the same or earlier times — Causal
If x(7) is bounded, x (#— 2) is bounded and y(#) is bounded. — Stable
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X(/‘)< 0
y(7)=
(z)+ x(7=2), x(2)=0
Linear?, Time-Invariant?, Dynamic?, Causal?, Stable?
0, g(/‘)< 0
Letx,(7)=g(7). Th /)=
0, Kg (/‘) <0
Keg()+Kg(r-2),Kg(r)=0
0, g(7)<0
Ky, (7 /
5O kg 32 a0 ™0
For example, let g(#)=1. Theny, (7)=2.
Let K=-1. Theny, (7)=0#-2.

Inhomogeneous — Non-Linear

Let x, (7)= Kg(7). Theny,(s)= {
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(;) { X (/‘) <0

x(f)+ x(f 2) X(/‘)> 0

Linear?, Time-Invariant?, Dynamic?, Causal?, Stable?

Let x, ()= (7). Theny, (/)= {O D), igig

Letx,(7)=g(7— 7). Theny,(7)= {O () ral—1-2). g((f;_ fl))<>00
0, g(7—24,)<0
¥ (7=4)= {Kg(/‘ 1)+ Keg(r—2,-2), g(r—2)=0 =¥:()

Time Invariant

y(7) depends on x (7—2)— Dynamic

y(7) depends only on x at the same or earlier times — Causal

If x(#) is bounded, x(#—2) is bounded and y(#) is bounded. — Stable
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y[17]= X [—/7] Linear?, Time-Invariant?, Dynamic?, Causal?, Stable?
Let x, [#]=g[#] Theny,|[#z]=g|-#]

Let x, |#7|= &¢g|#]. Theny,|r|=&Kg|-7»]|=Ky,|7] — Homogeneous
Let x, |[#]=h|#]. Theny,|#7]|=h|-7].

Let x, /7 =g [/7]+ h [/7] Then y, [ﬂ] =g [—/7]+ h [—/7]
v;|7]|=y,[#]+y,|#]— Additive — Linear

Y, [”_”o]zg[_(”_”o):l

Letx, |#]=¢ [/7— 71, ] Theny, [7]=¢ [—/7— 71, ];t N2 [/7— 71, ] — Time Variant

y at any time » depends on x at time — 72— Dynamic

y at any time 7~ depends on x at time — 7 For negative 7, — 7 1s the future.

Non-Causal
If x 1s bounded, y 1s bounded. — BIBO Stable
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y|#]|=x|7-2]-2x|7-8] Linear?, Time-Invariant?, Dynamic?, Causal?, Stable?
Letx,[#]=g|#] Theny, |#z]=g|z-2]-2g|7-8]

Let x, [/7]: Kg [/7] Theny, [/7]: K(g [/7— 2]— 2g [/7— 8])= Ky, [/7]
Homogeneous

Letx, [#]|=h[#]. Theny,[#]=h|z-2]-2h[~-8]

Let x, |#]|=g|7|+h|#] Theny,|z]|=g|7z—2]|+h|z-2]-2 (g | 78|+ h|7— 8])
v, l#z]=y,|7]+y,|#]— Additive — Linear

Letx,[#]|=g|7—n, | Theny,[r]|=gl|n-n -2]-2¢g|n-n—-8]=y,|7—7]
Time Invariant

y at any time 7 depends on x at other times — Dynamic

y at any time # depends only on x at earlier times. — Causal
If x 1s bounded, y is bounded. — BIBO Stable

[ 8/2/13 M. J. Roberts - All Rights Reserved 70 ]




IV

(X[/?] , 721
y[17]=<0 , 7=10
\X[/?+1] , 7<—1

Linear?, Time-Invariant?, Dynamic?, Causal?, Stable?

rg[ﬁ] , 721
Let x, [7|=g[#] Theny,|[7]=10 , 7=0 .
kg[ﬂ+1] , 7<—1
K'g[ﬂ] , 721
Letx, [7|= &'g|7]. Theny,|[#z]=40 , 7=0 =Ky, |n]
Kg[ﬂ+1] , 75 —1

Homogeneous
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X[ﬂ] , 721
y[ﬁ]=<0 , 7=0
\X[/?-I—l] , 7<—1

\V4

Linear?, Time-Invariant?, Dynamic?, Causal?, Stable?

(g[/i] , 721
Let x, [#]=g[#] Theny,[#]=10 , 7=0 .
\g[ﬂ+1] , n<—1
rh[/7] , 72>1
Let x, [#]=h|#]. Theny,[#]=10 , 7=0 .
\h[/?-l—l] , 75 —1
(o[ 2]+ ][] , 721
Let x, [#]=g[#]+h]|#] Theny,|[»]=10 , 7=0 .
\g[ﬁ+1]+h[/7+1] , 7<—1

Y3 [/7]= 2 [/7]+ Y, [/7] — Additive — Linear
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rg[ﬁ] , 721
Let x, [#]=g|#] Theny,|#]=40 , 7=0 .
\g[/7+1] , 7<—1

(g[/?—ﬁo] , 721 |
Letx,[#]|=g|7-#,| Theny,[#]=10 , n=0 2y |7—n]
\g[ﬂ—ﬁ0+1] , n=—1

Time Variant

y at any time 7 depends on X at other times — Dynamic

y at negative times # depends on x at time ~+ 1.— Non-Causal
If x 1s bounded, y is bounded. — BIBO Stable
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y|#]|=x[47+1] Linear?, Time-Invariant?, Dynamic?, Causal?, Stable?
Letx,[#]=g|#] Theny,|#z]|=g|47+1]

Letx, |#]|= Kg|#] Theny,|r|=&gldrn+1]=Ky,|7]

Homogeneous

Let x, |#]=h|#]. Theny,|#]=h[4r+1]

Let x, [/7]2 g [/7]+ h [/7] Theny, [/7]= g [4/7-|— 1]+ h [4/7-|— 1].
y;l#z]=y,|7]+y,[#]— Additive — Linear

Let x, [#]=g[#—7, ] Theny,[r|=g[4rn+1-n, )=y [7n-n |=g| 4(n—n)+1].

Time Variant

y at any time #~ depends on x at other times — Dynamic
y at any time » depends on x at time 47+ 1.

For 7> 0 that is in the future. — Non-Causal

If x 1s bounded, y is bounded. — BIBO Stable
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Y( ) : (a’x(i)j , Homogeneous?, Additive?

X(f)
_ 1 (dg(r) 4g(7)

Letx, (D=0, Then y, =1 D) 1y (0= 220
Let x, (/)= £a(7). Then y, (z):@1 (f)(”'(’;gf(’))] =g’(i )(dig’)j _ &y ()
Homogeneous
Let x, (/)=h(7). Then y, (1)= ﬁf)( "'};E’)J
Letx;(1)=£()+h(0). Then v, ()= (;)i - (Z)V € (’Z h(’))}

_ 1 de(7) an())] 1 dg()Y (am(?)\ . dg(r) an(?)
O g, o ] w5

v, (2)#y,(#)+y, ()= Not Additive — Non-Linear
22)_ 5,00 D) _ 5
ar ar
47 9 12/+8+9  7+17/12

Th )=——=4andy, (#)= dy, (¢ f)= =4 :
en}ﬁ() E an YZ() 340 an Y1()+Y2() 340 1273
A7 +9+2X2/Xx3 47 +12/+9 A +3/+9/4  r+17/12
y;(7)= = =4 4

_ = # .
£ +3+2 £ +37+2 £ +3+2 /+2/3

For example, let g(7)= 7 and let h(#)=37+2. Then
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”_X[/’Z]X[I/Z 2]
S

Letx, [7]=glr]. Then y,[r]=ELAEL=2), o - gellele2]

gl7—1]

_ _Kglnl&g|n-2]_  gl|rlel7-2]_
Letx, [#]= &g[#] Theny,[r]= g/{g[”g_l] =k g[i =AY [#]

, Homogeneous?, Additive?

Homogeneous
h [ﬂ]h [/7— 2]
h[r—1]
(g |7]+h [ﬂ])(g |7—2]+h[z- 2])
gl7=1]+h[rz-1]
Ys [/7] Y, [/7]-!- Y, [/7] — Not Additive — Non-Linear

Let x, [#]=h|#]. Theny,|r]=

Let x, [#]=g|#]+h[7]. Theny,|x]=
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y(7)=x(7—4), Invertible?

Let /— 7+ 4. Then y(7+4)=x(7)— Invertible

y(7)=cos (x (/‘)), Invertible?

x(7)=cos™ (y (/)) The cos™ function is multiple-valued.

Not Invertible.

y [/7] = 77X [/7], Invertible?

x|z]|=y|#]|/ n. When #=0, x|7] is undefined. — Not Invertible.

Ify [/7] is zero, that can be because x [/7]= 0 or because 7= 0 (or both).

So when y|#]=0 we cannot determine x| 7] from y|~]
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(X[/?—l] , 721
y[#z]=40 , =0 , Invertible?
X[ﬂ] , 7<—1

When »=0, y [/7]= 0 regardless of the value of x [/7] So, when 7= 0,
X [/7] cannot be determined by knowledge of y [//Z] — Not Invertible

y|7|=x|z|x|7—1], Invertible?

y /7 = X /ZX :/7—1: — X[ﬂ]:y[ﬂ]/x[ﬂ—l]

ylz|=x|z|x|z—1]- x|z-1]=y|#]/ x|7]|—> x|#z]|=y|7+ 1]/ x[7+1]
So we cannot determine x [#] without first determining either x [z—1] or
x[#+1].— Not Invertible

Example: Let x[#]=(-1)". Then y[z]=(-1)"(-1) =1,

y [/7] always equals —1 and that can occur with x [/7]= | and x [/7— 1] =—1

or with X[//Z]= —1 and X[—ﬂ]z 1.
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y|7]|=x[1- 7], Invertible?

y[ﬁ]: X[l—/?]% y[ﬁ— 1]: X[—ﬂ]% X[ﬂ]: yl:—(ﬂ— 1)] = y[l— /7]
Invertible

y[#]= D, (1/2)"x[7]} Invertible?

rl-yl=1l= 3 125 " xlnl- 3 (72" x[m]

y[rl-y[r—1]= (1/2)”-”X[;7]+§(1 /z)”-l-”’x[m]_mi(l 12 5[]

=0

x|z]=y|7|-y|7z—1]— Invertible
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y(7)= J e x(1)dr, Invertible?

Leibniz's rule for differentiating an integral is ;d J g(L)dl=g(x).
x—oo

Applying it to this case, y'(7)= ¢ " x(7)= x(7)— Invertible
y(7)=x"(7) , Invertible?

Ifx(7)= J.y(f)dT+K then x’(7)=y(7).

Therefore, y(/)=x' ()= x(1)= [ y()dfe+ &

W& can determine x (7) to within an additive constant £,

but not exactly. — Not Invertible
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y(7)=x(27) , Invertible?
y(7/2)=x(7)— Invertible

X[ﬂ/Z], 77 even ,
y|7]= , Invertible?
0 , 7 odd
x|7|, 27even
y[2]= 7]
0 , 2#7odd<« 27 cannever be odd.

Theretfore
x|7]=y|27]— Invertible
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IfX[//l]Z (O.9)”u[/7] and h[ﬂ]: u[ﬂ— 4] and y[17]= X[ﬁ]*h[ﬂ]
find y[ﬁ]

y[r]= Y x[mlh[n—m]= 3 (0.9Y u[m]u[n—m—4]

( 1—4
0.9Y > 4 _ =
y[ﬁ]:<”§(’)( ) » # >:1 (0'9) u[z7—4]
1-0.9
0 , 7<4]

=10[1-(0.9)" Ju[#-4]

This starts with value 1 at time »= 4 and approaches,

in a decaying exponential form, a final value of 10 as 77— ce.
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