Time-Domain Analysis of
Systems



Continuous Time




Impulse Response

Continuous-time LTI systems are described by differential

equations of the general form,
a0,y () a,,y" (O +ay () +ay(7)
=5 X" ()+ b6, X" () -+ b X (1) + b, x(7)
For all times, 7<O0:
If the excitation x(#) is a unit impulse 8(#), then for all time

7<0 it is zero. The response y(7) is zero before time 7= 0

because there has never been an excitation before that time.
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Impulse Response

For all time 7> 0:
The excitation is zero, but there has been a non-zero excitation before
=0, the impulse 6 (7). The impulse puts energy into the system at
time 7= 0 and then goes away. The response is no longer zero. Rather,

since the excitation 1s now zero, it 1s the homogeneous solution of the

differential equation.
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Impulse Response

At time 7= 0:
The excitation is an impulse. The inhomogeneous response in
general contains the forcing function (the impulse) and all its unique
derivatives. Therefore, it would be possible, in general, for the
response to contain an impulse plus all the derivatives of an
impulse because these all occur at time 7= 0 and are zero before and
after that time. Whether or not the response actually does contain an
impulse or derivatives of an impulse at time 7= 0 depends on the form

of the differential equation

7,y () +a,,y" )+ +ay (1) +ay ()
=5 x"()+ 6, X"V () 4+ b,x (1) + 5,x(7)
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Impulse Response

a,y" () +a, y" )+ +ay ()+ay()
=5 x"()+ 6, X" ()++ b,x (1) + 5,x(7)
Case l: m<n

If the response y(#) were to contain an impulse at time 7= 0

then the 7h derivative of the response y"”(7) would contain the
/th derivative of an impulse. Since the highest derivative of the
impulse excitation 1s the ##h derivative and 72 < 7, the differential
equation could not be satisfied at time 7= 0. Therefore, if 72< 7
the response cannot contain an impulse or any derivatives of an

impulse.
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Impulse Response

a0,y () a, ,y" (O ay ()+ay(7)
=5 X" ()46, X" () b,x (1) + b, x(7)
Case 2: m=n
In this case the highest derivative of the excitation and
response are the same and the response will contain an
impulse at time 7= 0 but no derivatives of an impulse.
Case 3: m>n
In this case, the response will contain an impulse at
time 7= 0 plus derivatives of an impulse up to the
(72— n)th derivative. This case is rare in the analysis of

practical systems.
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Impulse Response

Example

Let a system be described by y’(#)+ 3y(7)=x (7). If the excitation
x is an impulse we have h’(7)+3h(7)=6(7). We know that
h(7)=0 for /< 0 and that h(7) is the homogeneous solution for
>0 which is h(#)=Ke™". There are more derivatives of y than

of x 1n the differential equation. Therefore the impulse response

cannot contain an impulse. So the impulse response is of the form
h(7)= &Ke” u(?).
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Impulse Response

Example

To find the constant &A™ integrate the differential equation

h’(#)+3h(7)= 6 (7) over the infinitesimal time range 0~ to 0"

th’ (7)ar+ 3Th(f)= Ofé(f)

00" -0 (0 )+ 3] 4e™ w(ar=u(0" }-u(0")

=K =0 =1 =0

K+ 3/{ e: T =K+ 3K[(—1 / 3);0 (-1/ 3)] =1

o

K=1=h(s)=e"u(s)
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Impulse Response

Example
To check the solution, put it into the differential equation to see

whether it 1s satisfied.

g S u()y 3¢ u(r)=5(7)
e’6(7)-3¢7"u(r)+3eu(r)=6(2)
e’0(/)=06(/)=>6(r)=06(r) Check.
2530
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Impulse Response

Example

Let a system be described by 4y’ (7)+ 3y(7)=x’(7). The homogeneous

solution is y, (#)= K¢~"* and that is the form of the impulse response

for 7> 0. The number of y derivatives and the number of x derivatives

are the same. Therefore the impulse response has an impulse 1n 1t and

its form is h(7)= K¢ u(7)+ K36 (7). Integrate between 0~ and 0"

4? h' (7)ar+ 3? h(7)ar= T(s' (7)ar
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Example

o
+3 JKe_3f/4 u(7)ar+ 3K, {u(O+ )— u(O_

9_

Impulse Response

4OJ: h’ (7)dr+ 3? h(7)ar= ]:5' (7)ar

=0

0

=1 =0

0

AK+3K,=0

oreeloeree]

e :K

4
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Impulse Response

Example

Now integrate again over the same infinitesimal interval.

4Of j h'(/l)c/ﬂ, ar+ 3(]f j Ko 34 u(ﬂ)é/ﬂ ar+ 3(]t j K0 (l)é/ﬂ&/fz (]j j 5’(}{)5/},5/;‘
07— 07 —eo 0~ —oo 0 —oo

4th(/)a?— 4KOJ (1- &> () dr+ 34, Ofu(f)a’;: (]5(;)0’;
D y A SN

4K, =1=K;=1/4=4K+3/4=0= K=-3/16
h(7)=(-3/16)e"* u(2)+(1/4)5(7)

=1
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Impulse Response

Example

h(7)=(-3/16)e>*u(z)+(1/4)5(7)
The original differential equation is 4h’(#)+3h(7)=6"(7).
Substituting the solution we get
45’;[(_3/16)63”4 u(r)+(1/4)5(7)]
3 (3/16)* “u()+(1/4)8(7)|
4[(=3/16)&™5(7)+(9/64)e™ " u(r)+(1/4)8’ (z)]}
] =5(7)
3 (-3/16)¢* " u(2)+(1/4)8 (1) ]
—(3/4)5()+(9/16)e> " u(2)+6’(7)-(9/16)e>"* u(2)+(3/4)56(7)=5(7)
6’ (r)=06"(#) Check.

Z

- =0"(7)
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The Convolution Integral

If a continuous-time LTI system is excited by an arbitrary
excitation, the response could be found approximately by
approximating the excitation as a sequence of contiguous

rectangular pulses of width 7.

X
/\\/\A
Exact Excitation -
x(%)
_r"'"': 2 Bl
L T il
Approximate Excitation e
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The Convolution Integral

Approximating the excitation as a pulse train can be expressed

mathematically by
/+7, / -7
X(Z)E---+x(—];)rect( ];‘”]+X(O)rect(7p]+x(];)rect( ];P]+...
or
N 1—nl
X(f)E”EOOX(ﬂY;)rect[ ];”]

The excitation can be written in terms of pulses of width 7 and unit area

X(Z) Efx(ﬂf)frec{f ”T]

11=—00 p

shifted umt area pulse
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The Convolution Integral

Let the response to an unshifted pulse of unit area and width 7,

be the “unit pulse response” h (7). Then, invoking linearity, the

response to the overall excitation 1s (approximately) a sum of shifted
and scaled unit pulse responses of the form

y()= Y 7x(n7) ), (- 7))

J]=—00

As 7, approaches zero, the unit pulses become unit impulses,

the unit pulse response becomes the unit impulse response h(7)

and the excitation and response become exact.
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The Convolution Integral

Example

Let the unit pulse response be that of the £C lowpass filter

(z+7 2YRC —(++7,12)RC
h,(7)= [ = ] (z+%)—[l ef ]u(l—%)

A

1 | Unit Pulse
L

-
|
|
|
|
|

N

-~

A"\-""l

L~
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The Convolution Integral

Example
Let x(7) be this smooth waveform and let it be approximated

by a sequence of rectangular pulses.

X(1)

027 —— Exact
1 Zﬁl‘ —— Approximate
: - t \\J —— ; > f
-1 l 3

-0.171

[ 8/2/13 M. J. Roberts - All Rights Reserved 19 ]




The Convolution Integral

Example

The approximate excitation 1s a sum of rectangular pulses.

x(?)
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The Convolution Integral

Example

The approximate response is a sum of pulse responses.

h(?)
h(?)
h(?)
h(?)
h(?)
h(?)

N

o o
TR [ R B
] [ B
oz 5 [ A
TR ] T R B
6 s 5 [ T
oz 3 [ A
£ g 5 R N
1 hE 4 R
R ] [ A
6o 5 T T
oz 3 o
o [ A
6 T R B
[ 4 oo
ey £ [
' ' " R il
' oo

] [
o2 3 T T B
owE 5 [ A
R ] [ A
TR ] oo
s B [
R ] NGt
s D) ' [
gy o

[
i s 0 [ R B
] oo
oz 5 [ A
TR ] T B
6 a5 5 T T
oz 3 oo
R ] [
oS 5 oo B
g %) T —

T

a8 [ A
oz 3 oo
TR ] oo
6o B T T B
] o
(TR ] [ A
o2 3 T T B
] o
g ) N
1 e O '
R ] '
TR ]
]
R ]
2
o
£
(TR
[t

Y ¥ VY v oYy
Yy Y Y OY Y

[ 8/2/13 M. J. Roberts - All Rights Reserved 21 ]




The Convolution Integral

7,

0.1s

x(1)
0 —— Exact
—— Approximate
} } } e T ; > f
-1 u 3
-0.1
h(¢) and hp(t)
5 L
—— Unit Impulse Response
—— Unit Pulse Response
T,=02
; >t
-1 3
y(®)
0.2
—— Exact
—— Approximate
-0.1
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The Convolution Integral

7,

0.05 s

x(1)
0.2
—— Exact
—— Approximate
: i e {1
v— 3
-0.1

h(¢) and hp(t)

5

—— Unit Impulse Response
— Unit Pulse Response

Tp =0.1
> 1
3
y(?)
0.2
—— Exact
—— Approximate
+ o T + >t
\/ 3
-0.1
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The Convolution Integral

As 7, approaches zero, the expressions for the approximate

excitation and response approach the limiting exact forms

Superposition Integral Convolution Integral

x()= [ x(0)6(r— 7)ot y()= [ x(h(—7)er
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The Convolution Integral

Another (quicker) way to develop the convolution integral 1s
to start with x(7)= j x(7)8(7— 1)t which follows directly

from the sampling property of the impulse. Ifh(7) is the impulse
response of the system, and if the system is LTI, then the response
to x (T)5 (/‘— T) must be x (T )h (/‘— T). Then, invoking additivity,

if x(/)= [ x(£)8(r- 1)z, then y(r)= | x(D)h(r- 1)z
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A Graphical Illustration of the
Convolution Integral

The convolution integral i1s defined by

<()*h())= [ x(D)h(r- 1)

For illustration purposes let the excitation x (#) and the

impulse response h(7) be the two functions below.

h(?) x(f)
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A Graphical Illustration of the
Convolution Integral

In the convolution integral there is a factor h(7— 7).

We can begin to visualize this quantity in the graphs below.

h(t) h(-t)
I =1 | T
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A Graphical Illustration of the
Convolution Integral

The functional transformation in going from h(7) to h(7—7) is
h(r)——=">h(-7)——=">h(-(r-7))=h(r-7)

h(z-t)

(.

—1]| ¢
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A Graphical Illustration of the
Convolution Integral

The convolution value is the area under the product of x (7)

and h(7— 7). This area depends on what 7 is. First, as an

example, let 7= 5.

o| x®  h(5-0) X(1)h(3-7)
/‘ - T ; ‘ ; — - T
1|1 45 1 |1 4 5

For this choice of 7 the area under the product is zero.
Therefore if y(7)=x(7)*h(7) then y(5) = 0.
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A Graphical Illustration of the
Convolution Integral

Now let 7= 0. COhD)
4
h(-t) ‘7{‘)((‘5)
= T At K
Jx(r)h(—t)dr

Therefore y(0)= 2, the area under the product.
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A Graphical Illustration of the
Convolution Integral

The process of convolving to find y(¢) 1s illustrated below.

/=-05 rs=0 rs=05 rs=1 r=15

a7 I M v |

Sl

4 3 2
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A Graphical Illustration of the
Convolution Integral

h(t) X(T)
A

1

> T

—(I—T)/ RC

v (7)= fx(f)h(f T)dT = Ju(r)

<0
A

MIRIC X(T) A
. T

[

u(f— T)dt

h(z#-1)

X(T)

> T
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A Graphical Illustration of the
Convolution Integral

r<0: v, (7)=0
—(f—r)//?C'

r>0: v, (7)= fMﬁ) uO—Tﬁﬁ

\ (;‘): L j e—(f—r)//eCd,T _ 1 g_(f—f)/A’C _ I:_e_(,_r)//fC:| —1— e—//}EC
RC’, RC| -1/ RC | 0

For all time, ~

Vo ()= (1= " Ju(7)
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Convolution Example

xl(t) xz(t) xz(-t)

3m 31 31
4 | i 4 7 4 T

xl(t) and xz(-O.S -T) x](‘c) and xz(O -T) xl(‘c) and xz(l -T) x](‘c) and x2(2 -T) xl(‘c) and x2(2.5 -T)
3 m ’iﬁ-‘ 3 3 m_‘ 3 m
4 \ 4 v 4| 4t 4 \ 4 v 4 \ 4 n \ T
xl(r)xz(—O.S -T) xl(t)xz(z - T) xl(r)x2(2.5 -T)
4 4 { 4 4 \ T
} > f
4
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Convolution Example

X, (» X 2(t) X 2(—‘l:)

j\

xl(r) and x2(-3 -T) xl(r) and xz(—2 -T) xl(t) and xz(-l -7T) xl(r) and x2(0 -T) x](t) and x2(l -7T)
6| 6 6 | 6 " 6 | 6 T 6 | 6 6 | 6 "
xl(r)xz(—3 -T) xl('c)xz(—z -T) xl(‘c)xz(—l -T) xl(r)xz(O -T) xl(‘c)xz(l -T)
. , N\ ‘ ‘ . ‘
6 ‘ 6 " 6 ‘ 6 -6 ‘ 6 " -6 ‘ 6 " -6 ‘ 6 "
X ()*x_(1)
1 2
6
: I > f
-6 6
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Convolution Integral Properties

x(7)x A5(7—2,)= Ax(7—2,)
If g(7)=g,(7)*5(7) then g(7—7,)=g,(7—7)x6(7)=g,(7)*S(r- 1)
If y(7)=x(7)*h(7) then y'(7)=x"(7)*h(s)=x(7)*h’(7)

and y(az)=|dx(ar)*h(ar)
Commutativity

x(2)xy(2)=y(2)*x(2)

Associativity

L x () () ]+ 2(7)=x(2)*y ()*2(7)]

Distributivity

X ()+y()]#20)=x (1) 2()+ ¥ ()*2()
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The U

nit Triangle Function

tri(f):{:)_M : j;ll}:ramp(/‘+1)—2ramp(f)+ramp(i—1)
= rect(7)*rect(7)
tri(¢)
/\
- [
-1 1

The unit triangle, 1s the convolution of a unit rectangle with

Itself.
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System Interconnections

If the output signal from a system 1s the input signal to a second
system the systems are said to be cascade connected.

It follows from the associative property of convolution that the
impulse response of a cascade connection of LTI systems is the
convolution of the individual impulse responses of those systems.

X(7) =h,(2)

—>X()*h () = 1h() = Y()=[x(2) h ()]+hy(2)

X(7) —» h,(9)* h(2)

—=y(2)
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System Interconnections

If two systems are excited by the same signal and their responses
are added they are said to be parallel connected.

It follows from the distributive property of convolution that the
impulse response of a parallel connection of LTI systems 1s the
sum of the individual impulse responses.

x(2)xh,(2)

—(h,(9)

X()— j—»y(f)—X(f)*hl(f)+X(f)*hzéf)—X(f)*[h ()+h (2]
—1h,()

x(9)*hy(2)

x() == h(H+h () Py
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Unit Impulse Response and Unit
Step Response

In any LTI system let an excitation x(7) produce the response

y(7). Then the excitation g(x (f)) will produce the response

g(y (/‘)) It follows then that the unit impulse response h(/‘)is

the first derivative of the unit step response h_, (#) and, conversely
that the unit step response h_, (Z) 1s the integral of the unit

impulse response h(7).
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Stability and Impulse Response

A system 1s BIBO stable 1f 1ts impulse response 1s

absolutely integrable. That is if

T h(7) % is finite.
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Systems Described by
Differential Equations

The most general form of a differential equation describing an

N M
LTI systemis » a,y* (/)= 4,x“ (7). Let x(#)= X&" and

let y(7)=7&". Then x¥(r)=s*X&" and y“ ()= s*¥&" and
N M
Y a5 ¥ =) b5t Xe
#=0 #=0

The differential equation has become an algebraic equation.

Ye”za/f Xe”Zé/f:Y 2,(_ b

l,s
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Systems Described by
Differential Equations

The transfer function for systems of this type is

M k _
b,s"+b, 5"+t b8 +bs+ b,

N o N N-1 2
ZH@/( a,s" +a, s +-+as +as+a,

This type of function is called a rational function because it 1s
a ratio of polynomials 1n .s. The transfer function encapsulates
all the system characteristics and 1s of great importance in signal

and system analysis.
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Systems Described by
Differential Equations

Now let x(7)= X&’* and let y(7)= Y.
This change of variable s — s changes the transfer function

to the frequency response.

éM(/w)M +0,,, (/.a))M_1 +--+ 0, (/w)2 + 4 (/w)+ s
d/v(/w)/v Ta,. (/m)/v_l Tt a, (/.C‘))2 T 4 (/a))+ ay

Frequency response describes how a system responds to a

H(/w)=

sinusoidal excitation, as a function of the frequency of that

excitation.
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Systems Described by
Differential Equations

It 1s shown 1n the text that 1f an LTI system 1s excited by a
sinusoid x(7)= 4, cos (a)of+ 0, ) that the response 1s

y(7)= 4, cos (a)of+ 0, ) where 4, = ‘H(ja)o XA/X and
6, = <H(/w,)+0,.
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MATLAB System Objects

A MATLAB system object 1s a special kind of variable in
MATLAB that contains all the information about an LTI system.
It can be created with the tf (transfer function) command whose
syntax 1s

sys = tf(num,den)

where num 1s a vector of numerator coefficients of powers of s,
den 1s a vector of denominator coefficients of powers of s, both

in descending order and sys is the system object.
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MATLAB System Objects

Example
The transfer function

2
s +4
H. (s)=
1() s> +4s*+7s>+15s* +31s+75

can be created by the commands

»um = [1 0 4] ; den=[147 1531 75];
»H1 = tf(num,den) ;
»H1
Transfer function:
sA2 + 4

SAS + 4 sA4 + 7 sA3 +15sA2 +31 s+ 75
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Discrete Time




Impulse Response

Discrete-time LTI systems are described mathematically

by difference equations of the form

ayl|rl+ay|lr-1+--+a,y|n- V]

=g x|z o x|n—1]+--+ 5, x|n— M]

For any excitation x[7] the response y[#] can be found by
finding the response to x[] as the only forcing function on the
right-hand side and then adding scaled and time-shifted
versions of that response to form y|].
If x [/7] is a unit impulse, the response to it as the only forcing

function 1s simply the homogeneous solution of the difference

equation with initial conditions applied. The impulse response

is conventionally designated by the symbol h|[~]
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Impulse Response

Since the impulse is applied to the system at time »= 0,
that 1s the only excitation of the system and the system is
causal, the impulse response 1s zero before time 7= 0.
h [/7] =0, #7<0

After time 7~ = 0, the impulse has come and gone and the
excitation 1s again zero. Therefore for > 0, the solution of
the difference equation describing the system 1s the
homogeneous solution.

hl~z|=y,[z], »>0
Therefore, the impulse response 1s of the form,

hl7]=y,[7]ul~]
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Impulse Response Example

Example

Let a system be described by 4y|~]-3y|#—1]|=x[#] Then,
if the excitation is a unit impulse, 4 h|7|-3h[~z—1]=6]~].
The eigenfunction is the complex exponential z”. Substituting
into the homogeneous difference equation, 42" —32""' = 0.
Dividing through by z*',4z—3=0. Solving, z=3/4. The
homogeneous solution is then of the form h|~]|= & (3/4)".

[ 8/2/13 M. J. Roberts - All Rights Reserved 51 ]




Impulse Response Example

Example
The constant £ 1n the homogeneous solution can be found by

applying initial conditions. For the case of unit impulse

excitation at ttime 7 = 0,
4h[0]— 3h[0—1]= X[O]: | :>h[0]:1/4

=0

h[0]=4(3/4) =k=1/4

L 0 , 7<0
7=
o (1/4)(3/4)”, 720

h[ﬂ]:(l/4)(3/4)”u[/7]

[ 8/2/13 M. J. Roberts - All Rights Reserved 52 ]




Impulse Response Example
Example
Let a system be described by 3y|z|+2y|z—1]|+y|7-2]=x[~]
Then, if the excitation is a unit impulse,
3h|z]+2h|z—1]+h|r-2]=6]~]
The eigenfunction is the complex exponential z”. Substituting

into the homogeneous difference equation,
32742771+ 2777 =0.
Dividing through by 27, 322 +2z+1=0.
Solving, z=—-0.333 £ ;0.4714. The homogeneous solution 1s
then of the form

h[z]= &;(-0.333+ ,0.4714) + &, (-0.333— /0.4714)"
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Impulse Response Example

Example
The constants in the homogeneous solution can be found by
applying initial conditions. For the case of unit impulse
excitation at time 7 = 0,
3h[0]+2h[0-1]+h[0-2]=x[0]=1=h]0]=1/3
e
3Sh[i]+2h[i-1]+h[1-2]=x[1]= 0= h[1]=~2/9
S
h[0]= &, (-0.333+ /0.4714) + &, (=0.333— ,0.4714) = K, + K, =1/3
h[1]= &, (-0.333+ ,0.4714)+ &, (-0.333— /0.4714)=-2/9
K, =0.1665+ ,0.1181 , K, =0.1665- ,0.1181
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Impulse Response Example

Example

The impulse response 1s then
h[] (0.1665+ ,0.1181)(-0.333+ ,0.4714)"
7=
+(0.1665— /0.1181)(-0.333— ,0.4714)"

which can also be written in the forms,
(0.1665 + /0.1181) /> '*8
_+(O.1665 —/’().1181)6_/2‘1858”

_0.1665 (61'2.1858/7_'_6—/2.1858/7)
+70.1181 ( 218587 e—j2.1858/7)

ujlz

ul~]

h[~]=(0.5722)"

h[~]=(0.5722)

uf]

h[7]=(0.5722)"[ 0.333cos(2.18587)— 0.2362sin(2.18587) |u[ #]
h[~]=0.4083(0.5722)" cos(2.1858 7+ 0.6169)

[ 8/2/13 M. J. Roberts - All Rights Reserved 55 ]




Impulse Response Example

h[n]
¥ 1
0.5+
—o—o—o oo 'T‘!O.Onﬁ—-—n
-5 10
-0.5 +

h[~]=0.4083(0.5722)" cos(2.185877+0.6169)
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System Response

* Once the response to a unit impulse 1s
known, the response of any LTI system to
any arbitrary excitation can be found

* Any arbitrary excitation 1s simply a sequence
of amplitude-scaled and time-shifted
impulses

* Therefore the response 1s simply a sequence
of amplitude-scaled and time-shifted impulse
responses
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Simple System Response Example

System Excitation
x[/7]

sttem Impulse Response
[7]

JLLL‘-‘_L‘J_‘AAA‘—.
10 30 7
System Response
yl7]

-10 30
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More Complicated System
Response Example

x[7]

-10 - 10 15 20 7 SYStem
Excitation
h[ 7]
"t System
1 Impulse

oo o 0000 0o TTT?' --------- 7
10 s 5 10 15 20 Response

System

7
-10 - 10 15 0
{ ‘ ‘ ‘ Al Response
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The Convolution Sum

The response y|7] to an arbitrary excitation x[7] is of the form
y|z]=--x|-1|h]z+1]+x[0|n]7]+x[1|n]7-1]+---

where h [/7] 1s the impulse response. This can be written 1n

a more compact form

oo

ylrl= 2 x[m]h[n-m]

J/]=—0c0

called the convolution sum.
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A Convolution Sum Example

x[ 7] h[7]
2-¢ 24—
‘ | 1.
—e ° . | . ® o—>» /] —e . ® ° ® ° o—> /]
4 -3 -2 -1 1 2 3 4 4 -3 -2 -1 1 2 3 4
h[ -] h[7 - m1]
— 19 2 !
‘ i L]
G320 | 123 34" EFI2alUiamima”
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A Convolution Sum Example

xX[7] n=-1 h[-1 - 7] x[7] 7n=10 h[0 - 7]
2- —12 2 2
‘ ‘ “1 ‘ ‘ ‘ 1
A 320 1338 " A32a] 13347 I 320 1338 " F352a0] 13534
x[h[-1 - 7] x[72]h[0 - #7]
2 4
2
A 3201 1335487 320 132354 "
y[-1]=2 y[0] =6
x[7] n=1 h[1 - ] x[7] n=72 h[2 - 7]
2- 2 2 24
[ [ 1] [ ‘ }
43-2-1]1234”7432-1]1234”7 -4-3-2-1{1234’”-4-3-2-1 1

x[#2]h[2 - 7]

b i

=6 y[2] =4

432 34
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A Convolution Sum Example

x[ 7] h[7]
P 24—

—e . . | | e ® o—>» /] —e . * ° * ® o—> //
4 -3 2 -] 1 2 3 4 4 -3 -2 -1 1 2 3 4
yl7]

60—0
4
—12
—e o—>» //

-4 -3 -2 -1 1 2 3 4
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Convolution Sum Properties

Convolution 1s defined mathematically by

oo

ylrl=x[nl+hlz]= X, x[#]n[7— ]

]=—00

The following properties can be proven from the definition.
x[n]x 48| n—n, |= Ax|n— 1, |
Let y [/7] =X [/7] *h [/7] then
y[ﬂ— 71, ]= x 2] h[ﬂ— A ]= X [/7— 71, ]* h|~]
y [/7]— y [//Z— 1] =X [ﬂ]* (h [/7]— h [/7— 1])= (X [//Z]— X [/7— 1])* h [/7]
and the sum of the impulse strengths in y 1s the product of

the sum of the impulse strengths in x and the sum of the

impulse strengths in h.
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Convolution Sum Properties
(continued)

Commutativity

x[#]ryla]=yla]sx|7]

Associativity

(x[7]=yl7])z[#]=x[#]+ (y[7]*z[])

Distributivity

(x[7]+yl2])szln]=x[n]+z[n]+ y[2]*2[ ]
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Numerical Convolution

MATLAB has a command conv that computes a convolution
sum. The syntax 1s y = conv(x,h). MATLAB can only
convolve time-limited signals and the vectors x and h should
contain all the non-zero values of the signals they represent. If

the time of the first element 1n x 1s n_, and the time of the first

element of h is n, , the time of the first element of y isn_ +n, .

h0?

If the time of the last element in x 1s n_ and the time of the last

element of h is n, , the length of x is n . —n_, +1 and the length

hl’
ofhisn, —n +1. So the extent of y 1s in the range

n,+n <n<n_ +n, anditslength is

nxl+nh1_(nx0+nh0)+1:flxl_nx0+1+z/lhl_nh0+}_1

J

length of X length of h
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Numerical Convolution

nx =-2:8;nh=0:12; % Set time vectors for x and h

X = usD(nx-1) - usD(hx-6) ; % Compute values of x

h = tri((nh-6)/4) ; % Compute values of h

y = conv(x,h) ; % Compute the convolution of x with h
%

% Generate a discrete-time vector for y

%

ny = (nx(1) + nh(1)) + (@:(length(nx) + length(nh) - 2)) ;
%

% Graph the results

%

subplot(3,1,1) ; stem(nx,x,'k",' filled") ;

xlabel('n') ; ylabel('x") ; axis([-2,20,0,4]) ;
subplot(3,1,2) ; stem(nh,h,'k"," filled") ;

xlabel('n') ; ylabel('h') ; axis([-2,20,0,4]) ;
subplot(3,1,3) ; stem(ny,y,'k","filled") ;

xlabel('n") ; ylabel('y"') ; axis([-2,20,0,4]) ;
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Numerical Convolution

1 | |
-2 0 2 4 6 8 10 12 14 16 18 20

. ot [ Te, l l .
- 6 8 10 12 14 16 18 20

2 0 2 4
n
4 T T T T T T I T
(]
gl ® ®
2
oo oo o ® I SN
-2 0 2 4 6 8 10 12 14 16 18 20

n
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Numerical Convolution

Continuous-time convolution can be approximated using the
conv function in MATLAB.

(e o)

y(t)=x(¢)*h(¢)= j x(7)h(t-7)dz

—00

Approximate X(t) and h(t) each as a sequence of rectangles

of width T'.
- (t—nT ~T /2

X(t)E Z x(nTS)rect

— X I y

- (. _ )
h(t)z Eh(nTS)rect t—nl, ~1,/2

X I )
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Numerical Convolution

The integral can be approximated at discrete points in time as

y(ﬂ]; )E ;mx (/77]; )h ((/7— /77)7; )7;

This can be expressed in terms of a convolution sum as

y(u7)= 7, 3. x[ ][ - m)=7x[n]+h[ 4]

where x[ ] X(ﬂ}’) and hl://Z] h(ﬁ]’)
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Stability and Impulse Response

It can be shown that a discrete-time BIBO-stable system

has an impulse response that is absolutely summable.
That 1s,

oo

Y |h[#] is finite.

J1=—00
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System Interconnections

X[ 71—\ h [ 2] X[ 7] [ 7] = h [ 2] = Y[ 72]= X[ 7] h | 7] }h [ 7]

X[72]—{h [ 7z]h,[ 7] Y[ 7]

The cascade connection of two systems can be viewed as
a single system whose impulse response 1s the convolution
of the two individual system impulse responses. This is a
direct consequence of the associativity property of
convolution.
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System Interconnections
X[ 7]*h,[ 7]

—h,[7]

X[/7— yLA=x [l b, [ b gl =x 7% {h [7+h [ 7]}

—>{h,[ 7]

X[ 72] —» h,[7]+h [7] — V[ /]

The parallel connection of two systems can be viewed as
a single system whose impulse response is the sum

of the two individual system impulse responses. This is a
direct consequence of the distributivity property of
convolution.
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Unit Impulse Response and Unit
Sequence Response

In any LTI system let an excitation x[7] produce the response

y[#] Then the excitation x [#]—x[7—1] will produce the
response y [//Z]— y [/7— 1] :

It follows then that the unit impulse response 1s the first
backward difference of the unit sequence response and,
conversely that the unit sequence response is the accumulation

of the unit impulse response.
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Systems Described by Difference
Equations

The most common description of a discrete-time system 1s a

difference equation of the general form

N M
dey[ﬂ— #l= Zb/(X[/?— #]
A=0 £=0
If x[#]=X2", y| 7] has the form y|[~]= ¥2” where X 'and ¥ are

complex constants. Then x[7— #]=z*Xz" and

N M
y|z— #]=z7"¥2 and 2 a,z " ¥ = 2 bz XZ'. Rearranging

b
Yz 2514,2 = Xz Zé z %

~oF T ZH
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Systems Described by Difference
Equations

The transfer function is

H(2)=

or, alternately,

Z/(_ bz " éo +b7 v b+ b, Y

~1 -2 —-N
a +az +a,z +---+a,z
E/{_ d/ 0 1 2 %

@Z w2 BT 0, 24 5,
H(Z)_ iy < N N-1
Zho a,z @z +az +---ta,zta,

The transfer function can be written directly from the difference

equation and vice versa.
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Frequency Response

Let x[7]|= X&™. Then y|#|= ¥ and x|n— #]|= ¢ X" and
y|7z— #]= &7 ¥, Then the general difference equation

description of a discrete-time system

gd/{y[ﬁ—l’]z gééx[ﬂ—é]

becomes

N M
Q — QA Q — QA
7Y g = Xe™Yy b
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Frequency Response

: 4
We can form the ratio H (e’Q ): X: =0

H (e’Q) 1s the system's frequency response. It is the transfer
function H(z) with z replaced by .

e ] O (D
A=[H(®) M and £¥=LH(P )+ LY
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Frequency Response Example

Example
Let a system be described by the difference equation
8y[/7]+ 4y[/7— 1]+y[/7— 2]= X[ﬂ]
find the response to a unit-amplitude, complex-sinusoid at a radian
frequency €2 and then graph the amplitude of the forced complex

sinusoidal response versus cyclic frequency / and versus radian

frequency €.
8y|n|+ay|rn—1]+yl|rn—2]=

1 1
H(z)= H(e™ )=
(2) 8+4z‘1+z-2:> ( ) 8+4¢ ™+~

|Y[:‘H(€/Q)|/Yf and X V=AH(" LY
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Frequency Response Example

1Yl

A
D) 1 1 - F
e o o g
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Ify’(7)-3y(7)=4x"(7)+ 7x(7) find the impulse response h (7).
h’(7)-3h(7)=46"(7)+ 76 ()= Eigenvalue is 3.
h(7)= &¢" u(7)+ K6 (7)

[0 (=3[ ()= 5 (a7 [ 52Vt

R e e O R RS

K=3K,=1

Of J b (A) A dr - 30f+ j h(A)dA dr= 40f j & (A)dA dr+ 70f j S(A)dAdr
= 00 o 0~ — 0~ —oo

=h(7) =k u(7)/3+ &5 u(7) =4(7) =u(?)

K;=3(0)=4+7(0)= K;=4=> K=19

h(7)=19"u(7)+45(7)= W' (7)=19"6(7)+ 57" u(7)+ 46" (7)

h(7)-3h(7)=48(1)+76(2)=19&"5(7)+ 57" u(r)+ 46 (7)- 57" u(r)-126(7)= 46" (1)+ 756(7)
=5()

48 (1)+76(7)=46'(#)+76(7) Check.
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If 2y”(7)+5y’(#)=4x(7) find the impulse response h (7).
2h”(7)+5h’(7)=45(7)= Eigenvalues are —5/2 and 0.

h(7)= (/(wu/( Yu(?)
2 j h” (7)dr+ sjh'(z)dz 4 j 5(7)ar
2|0 (07 )-h'(07)|+5

R
=-54,/2 =0

5K 5K +5K,=4=K,=4/5

13§0+)—13§0)] {50 0)

=K+, 0

o [W(W)ardrss | [w()ara=a] [ s@)arar

:—ﬂr—J 0 :—ﬂ/——J :—ﬁ/——J
-0 =) 0
2(K+ K, )+ 5[ 2K, 15+ K] =02 K+ K, =0= K =—K,=—4/5

~

=0

h()=(4/5)(1- " Ju(r)= I ()= (4/5)[(1 5#2)5(;)+(565f/2/z)u(;)] & u(/)

b (/)= z{wza(;)_ (567" /2)u(/)} =2[8(7)- (56" 12)u(?)]

=50
217 (2)+ 51 (7)=45()= 4 5()- (5¢°* 12 )u(7) | +10° " u(7)= 45(r)= 45(r)=45(7) Check.
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If2y|7]-y[7—1]=3x[#—1]+x[7—2] find the impulse response h|].
2h[z]-h[z—1]=36[7—1]+6[~»—2]= Eigenvalue is 1/2.

Let 2h, [#7]h, [7—1]= 6[#7]. Then b, [#]= &(1/2Y u[~]

2h, [0]-h,[-1]=8[0]= &'=1/2 and h, []= (1/2)" ul~]

M =
=0

& )
Using superposition and time invariance, ifh, [#]=(1/2)"" u[]
then h|~z]|=3h,[7z—1]+h,[7z-2]=3(1/2) u|z-1]+(1 /2)”_1 ulz—-2]
hz]=(1/2) Bu[z—1]+2u[~-2]).

n 0 1 2 3 4

Theﬁrstfewvaluesofh[n]are h[”] 0 3/2 5/4 5/8 5/16

We can find these values also by direct iteration on
h[7]=(1/2)(35[7—1]+8[#-2]+h[7-1]) and we get

n 0 1 2 3 4

firming the validity of the solution.
(7] 0 3/2 5/4 5/8 5/16 cOMrming thevalidity ofthe solution
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Ifx(7)=6(7—1)-36(7+2) and h(7)= 4rect(#/5) and y(#)=x(7)*h(7) find the signal
energy of y(7) £,
y(1)=[6(r—1)-38(r+2)]*4rect(s/5)=4| 5(r—1)*rect(s/5)—35(r+2)*rect(s/5) ]

y(7)= 4[rect((f— 1)/ 5)— 3rect((/‘+ 2)/ 5):|

£, = ]i ‘y(/‘)‘z ar=16 T [rect((f— 1)/ 5)— 3rect((/‘+ 2)/5)]2 ar

£,=16 T rect” ((7—1)/5)+ 9rect’ ((7+2)/5)—6rect((r—1)/ 5 rect ((+2)/5) |

oo

£, =16 : rect’ ((7—1)/5)ar+9 T rect’ ((7+2)/5)ar-6 ]i rect((7—1)/ 5 )rect((#+2)/5)ar

—00

[ 7/2 1/2 1/2

£,=16| [ ar+9 [ a6 | dr|=16(5+45-12)= 608
| —3/2 -9/2 -3/2
(12, —-9/2<r<-3/2 (144 , —-9/2<r<-3/2
y(7)=1-8 , =3/2<rs<1/2 =y (r)=364 , —=3/2<r<1/2
4 , 1/2<r<7/2 16 , 1/2<rs<7/2

£, =144 X3+ 64 x2+16x3=608 Check.
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If x(7)= cos(2007z7)u(7) and h(7)= €' u(s) and y(#)= x(#)*h(7) find y (7).

y()= [ x(D)h(r— 1)t = [ cos(200zr)u(e)e™u(r— )r

7 —1007 7

Y(f): e—lOO;JélOOT coS (20077:1')62’1' — eTjeloor( 20077 e—/-zoom )d’T , >0 ; y(;): 0,7<0
0 0
1007 / 1007 (100+,2007)7 (100-2007)c |
_e (100+,2007)c |  (100—,2007 ) e 4 %
/)= / + = +
y()=—ul )!(e c Yo == )Loo +,200 " 100— 2007 |

6—1001 6(100+ 72007)r 1 6(100_ 72007)r 1

y(7)= + u(s)
2 100+ ,200r 100— ;2007

1007 100 (6(100+ /20077 n 6(100_ J2007)r ) )+/200 (6(100_ J2007)r 6(100+ /2007:);)

= u (/‘)

2 100? + (2007 )’
197 200 (¢ cos (20077)— 1 1+ /200 (~2* sin (20077))

- u(?)

2 4047842
(7)

100 (" cos (20077)— 1 }+200£™ sin (20077)
u

404784.2
_ c0s(20077)+ 2sin (20077)— u(?)
j 4047.842
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Ifx (/)= 2 cos (200727)u(7) and h(7)= & u(7) and y (/)= x (/)*h(7) find y (7).

v(7)= j X (D)h(r—1)ee = j 2% 00s(20077)u (2)e D u (s 1)z

/ —1007 7

y(f): 6—100/I€8OT COS(2OO]Z'T)QIT — e 2 J€8OT (6/'2007?[ + e—/QOOﬂ"L’ )QIT , /> O : Y(f)z O : /< 0
0 0
51007 ’ (504 /200m) (502008 51007 6(80+j2007t)1' e(80—/’2007t)1 7
/)= / +,2007 )t —-72007)T — +
y(7)==5u( )£(€ te yr 2 (){80+/2007r 80— 2007 |

51007 e(80+ 2007)r 1 6(80— /2007)r 1

y(7)= + u(?)
2 | 804,200 80— ,2007

1007 0 (€(80+ /2007) n 8(80— 200m) 2)+/200 (6(80— /200m) €(80+ /2007z)z)

= u (/‘)

2 80% + (2007 )
&1 160 (& cos(20077)— 1)+ 200 (-2 sin (20077))

= u (Z)

2 401184.2

80 (" cos (20077)— 1 1+ 200" sin (2007z;)u ”
401184.2

e[ 0.8¢0s(200727)+25in (200727) |- 0.8

= u (Z)

4011.842
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Ifx|7]|=ramp|~|u[3— 7] and h|7|=u[z+1]-u|7z-2] and y|[#]=x|~]*h[~]
find the signal energy of y [/’Z]

n=0 n=1 n=2 n=3 n=4
3 3 3 3 3
w2 &2 82 &2 &2
(=] — o\l o <t
% ]I " l = I L I e [
-5 0 5 5 0 5 5 0 5 5 0 5 -5 0 5
3 5 3 3 3
E? 52 5?2 52 E?2
=1 <=1 =1 =1 <1
11T, T, 11T, [11 Lo
-5 0 5 -5 0 5 -5 0 5 -5 0 5 -5 0 5
ylnl=1 ylnl=3 yln]=6 ylnl=5 yln] =3
T3 T3 T3 T3 T3
=2 =2 =2 =2 =2
s s s s s
él I £1 él I "’Ll il
> > » > >
-5 0 5 -5 0 5 -5 0 5 -5 0 5 -5 0 5
m m m m m
x[n]*h[n]
6 I
4_, .|
=
>
2, -
0 . " . ¢ . ¢ . " . I . . . " .
-10 -8 -6 -4 -2 0 2 4 6 8 10
n

Ey:12+32+62+52+32=80
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Ifx|7|=u|#z+4]and h|z|=-u|r-1]and y|~]|=x|7]|xh|~], find y|~].

(e o] (o)

y|7]= Z x|m|h|n—m]= 2 ulm+ 4](—u[/7—/77—1])

-1 ) o
- )1 >3 &
= ,,;4 7 >=(—2 1)u[17+3]
0 , 7<=3 i

n -4 -3 -2 -1 0

ylz] 0 -1 -2 -3 —4 = y|n]=—ramp|r+4]
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If_X_[”]: u[ﬁ—2]—u[/7— 6] and h[ﬂ]z u[17+ 3]—u[/¢— 3] and

y

Y17]

1= 3 sl ]

V74

=x[7]+¥h|#], find y[#].

- 5. (21wl 6ol s 3]-ul-m-3)
— ;(u[ﬁ— 7+ 3]—u[/¢— 77— 3])

In words, for any value of 7, add the impulses in (u | 77— m+3|—ul|n—m— 3])

for 7 ranging from 2 to 5. For example, let 7=0. Then

y[01= 3, @+ 3]-uf--3])

=(@[]-o[-5D+ @[O0]-u[-6 )+ @[-11-u[-7]p+ (u[-2]- u[-8])=2
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