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Representing a Signal	
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Linearity and Superposition	

If an excitation can be expressed as a linear combination of 	

complex sinusoids, the response of an LTI system can be 	

expressed as a linear combination of responses to complex 	

sinusoids.	
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Real and Complex Sinusoids	
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Real and Complex Sinusoids	
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Jean Baptiste Joseph Fourier	


3/21/1768 - 5/16/1830	
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Conceptual Overview	

The Fourier series represents a signal as a sum of sinusoids.	

The best approximation to the dashed-line signal below using	

only a constant is the solid	

line.  (A constant is a 	

cosine of zero frequency.)	
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Conceptual Overview	

The best approximation to the dashed-line signal using a constant 	

plus one real sinusoid of the same fundamental frequency as the 	

dashed-line signal is the solid line.  	




8/2/13	
 M. J. Roberts - All Rights Reserved	
 9	


Conceptual Overview	

The best approximation to the dashed-line signal using a constant 	

plus one sinusoid of the same fundamental frequency as the 	

dashed-line signal plus another sinusoid of twice the fundamental	

frequency of the dashed-line signal is the solid line.  The frequency	

of this second sinusoid is the second harmonic of the fundamental	

frequency. 	
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Conceptual Overview	

The best approximation to the dashed-line signal using a constant 	

plus three harmonics is the solid line.  In this case (but not in 
general), the third harmonic has zero amplitude.  This means that no 
sinusoid of three times the fundamental frequency improves the 
approximation.  	
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Conceptual Overview	

The best approximation to the dashed-line signal using a constant 	

plus four harmonics is the solid line.  This is a good approximation 
that gets better with the addition of more harmonics.	
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Continuous-Time Fourier Series 
Definition	
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Orthogonality	
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Orthogonality	




Orthogonality	
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Orthogonality	
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Orthogonality	
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Continuous-Time Fourier Series 
Definition	
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CTFS of a Real Function	
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The Trigonometric CTFS	




8/2/13	
 M. J. Roberts - All Rights Reserved	
 21	


The Trigonometric CTFS	
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CTFS Example #1	
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CTFS Example #1	
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CTFS Example #2	
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CTFS Example #2	
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CTFS Example #3	
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CTFS Example #3	
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CTFS Example #3	
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CTFS Example #3	
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Linearity of the CTFS	


These relations hold only if the harmonic functions of all	

the component functions are based on the same	

representation time T.	
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CTFS Example #4	
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CTFS Example #4	
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CTFS Example #4	
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CTFS Example #4	
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CTFS Example #4	


A graph of the magnitude 	

and phase of the harmonic 	

function as a function of 	

harmonic number is a good 	

way of illustrating it.	

Notice that the magnitude 	

is an even function of k 	

and the phase is an odd 	

function of k.	
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The Sinc Function	
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CTFS Example #5	
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CTFS Example #5	
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CTFS Example #5	
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CTFS Example #5	

The CTFS representation of this cosine is the signal	

below, which is an odd function, and the discontinuities	

make the representation have significant higher harmonic	

content.  Although correct in the time interval from zero	

to 7.5 ms, this is a very inelegant representation.	




8/2/13	
 M. J. Roberts - All Rights Reserved	
 41	


CTFS of Even and Odd Functions	
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Convergence of the CTFS	


For continuous signals, 	

convergence is exact at 	

every point.	


A Continuous Signal	
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Convergence of the CTFS	


For discontinuous signals, 	

convergence is exact at 	

every point of continuity.	


Discontinuous Signal	


Partial CTFS Sums	
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Convergence of the CTFS	


At points of discontinuity	

the Fourier series	

representation converges	

to the mid-point of the	

discontinuity.	
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Numerical Computation of the CTFS	

How could we find the CTFS of a signal that has no	

known functional description?	


                                Numerically.	


Unknown	
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Numerical Computation of the CTFS	


Samples from x(t)	
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Numerical Computation of the CTFS	




8/2/13	
 M. J. Roberts - All Rights Reserved	
 48	


Numerical Computation of the CTFS	
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CTFS Properties	


Linearity	
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CTFS Properties	

Time Shifting	
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CTFS Properties	


Frequency Shifting 	

(Harmonic Number 	


Shifting)	


A shift in frequency (harmonic number) corresponds to 	

multiplication of the time function by a complex exponential.	


Time Reversal	




8/2/13	
 M. J. Roberts - All Rights Reserved	
 52	


CTFS Properties	
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CTFS Properties	

Time Scaling (continued)	
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CTFS Properties	
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CTFS Properties	

Change of Representation Time	
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CTFS Properties	


Time Differentiation	
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Time Integration	


is not periodic	


CTFS Properties	


Case 1	
 Case 2	
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CTFS Properties	
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CTFS Properties	
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CTFS Properties	
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Some Common CTFS Pairs	




CTFS Examples	
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CTFS Examples	
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CTFS Examples	
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LTI Systems with Periodic Excitation	
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LTI Systems with Periodic Excitation	
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LTI Systems with Periodic Excitation	
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LTI Systems with Periodic Excitation	




The Continuous-Time Fourier 
Transform 
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Extending the CTFS	


•  The CTFS is a good analysis tool for systems with 
periodic excitation but the CTFS cannot represent 
an aperiodic signal for all time	


•  The continuous-time Fourier transform (CTFT) 
can represent an aperiodic (and also a periodic) 
signal for all time 	




CTFS-to-CTFT Transition	
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CTFS-to-CTFT Transition	
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CTFS-to-CTFT Transition	
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CTFS-to-CTFT Transition	
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CTFS-to-CTFT Transition	
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Definition of the CTFT	
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Definition of the CTFT	
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Definition of the CTFT	
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Some Remarkable Implications 
of the Fourier Transform	


The CTFT can express a finite-amplitude, real-valued, aperiodic 	

signal, which can also, in general, be time-limited, as a summation 	

(an integral) of an infinite continuum of weighted, infinitesimal-	

amplitude, complex-valued sinusoids, each of which is unlimited in	

time.  	

(Time limited means “having non-zero values only for a finite time.”)	
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Frequency Content	




Some CTFT Pairs	
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Convergence and the 
Generalized Fourier Transform	
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Convergence and the Generalized 
Fourier Transform	
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Convergence and the 
Generalized Fourier Transform	
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Convergence and the 
Generalized Fourier Transform	
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Convergence and the Generalized 
Fourier Transform	




More CTFT Pairs 

8/2/13	
 M. J. Roberts - All Rights Reserved	
 87	




8/2/13	
 M. J. Roberts - All Rights Reserved	
 88	


Negative Frequency	

This signal is obviously a sinusoid.  How is it described	

mathematically?	
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Negative Frequency	
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Negative Frequency	
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CTFT Properties	


Linearity	
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CTFT Properties	
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CTFT Properties	
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CTFT Properties	
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The “Uncertainty” Principle	

The time and frequency scaling properties indicate that if a signal 	

is expanded in one domain it is compressed in the other domain.	

This is called the “uncertainty principle” of Fourier analysis.	
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CTFT Properties	
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CTFT Properties	
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CTFT Properties	


In the frequency domain, the cascade connection multiplies	

the frequency responses instead of convolving the impulse	

responses.	
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CTFT Properties	
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CTFT Properties	
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CTFT Properties	
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CTFT Properties	
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CTFT Properties	
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CTFT Properties	




8/2/13	
 M. J. Roberts - All Rights Reserved	
 105	


Numerical Computation of the CTFT	
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