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Representing a Signal	
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Linearity and Superposition	


If an excitation can be expressed as a linear combination of 	


complex sinusoids, the response of an LTI system can be 	


expressed as a linear combination of responses to complex 	


sinusoids.	
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Real and Complex Sinusoids	
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Real and Complex Sinusoids	
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Jean Baptiste Joseph Fourier	



3/21/1768 - 5/16/1830	
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Conceptual Overview	


The Fourier series represents a signal as a sum of sinusoids.	


The best approximation to the dashed-line signal below using	


only a constant is the solid	


line.  (A constant is a 	


cosine of zero frequency.)	
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Conceptual Overview	


The best approximation to the dashed-line signal using a constant 	


plus one real sinusoid of the same fundamental frequency as the 	


dashed-line signal is the solid line.  	
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Conceptual Overview	


The best approximation to the dashed-line signal using a constant 	


plus one sinusoid of the same fundamental frequency as the 	


dashed-line signal plus another sinusoid of twice the fundamental	


frequency of the dashed-line signal is the solid line.  The frequency	


of this second sinusoid is the second harmonic of the fundamental	


frequency. 	
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Conceptual Overview	


The best approximation to the dashed-line signal using a constant 	


plus three harmonics is the solid line.  In this case (but not in 
general), the third harmonic has zero amplitude.  This means that no 
sinusoid of three times the fundamental frequency improves the 
approximation.  	





8/2/13	

 M. J. Roberts - All Rights Reserved	

 11	



Conceptual Overview	


The best approximation to the dashed-line signal using a constant 	


plus four harmonics is the solid line.  This is a good approximation 
that gets better with the addition of more harmonics.	
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Continuous-Time Fourier Series 
Definition	
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Orthogonality	
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Orthogonality	





Orthogonality	
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Orthogonality	
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Orthogonality	
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Continuous-Time Fourier Series 
Definition	
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CTFS of a Real Function	
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The Trigonometric CTFS	
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The Trigonometric CTFS	
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CTFS Example #1	
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CTFS Example #1	





8/2/13	

 M. J. Roberts - All Rights Reserved	

 24	



CTFS Example #2	
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CTFS Example #2	
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CTFS Example #3	
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CTFS Example #3	
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CTFS Example #3	
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CTFS Example #3	
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Linearity of the CTFS	



These relations hold only if the harmonic functions of all	


the component functions are based on the same	


representation time T.	
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CTFS Example #4	
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CTFS Example #4	
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CTFS Example #4	
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CTFS Example #4	
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CTFS Example #4	



A graph of the magnitude 	


and phase of the harmonic 	


function as a function of 	


harmonic number is a good 	


way of illustrating it.	


Notice that the magnitude 	


is an even function of k 	


and the phase is an odd 	


function of k.	
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The Sinc Function	
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CTFS Example #5	
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CTFS Example #5	
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CTFS Example #5	
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CTFS Example #5	


The CTFS representation of this cosine is the signal	


below, which is an odd function, and the discontinuities	


make the representation have significant higher harmonic	


content.  Although correct in the time interval from zero	


to 7.5 ms, this is a very inelegant representation.	
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CTFS of Even and Odd Functions	
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Convergence of the CTFS	



For continuous signals, 	


convergence is exact at 	


every point.	



A Continuous Signal	
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Convergence of the CTFS	



For discontinuous signals, 	


convergence is exact at 	


every point of continuity.	



Discontinuous Signal	



Partial CTFS Sums	
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Convergence of the CTFS	



At points of discontinuity	


the Fourier series	


representation converges	


to the mid-point of the	


discontinuity.	
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Numerical Computation of the CTFS	


How could we find the CTFS of a signal that has no	


known functional description?	



                                Numerically.	



Unknown	
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Numerical Computation of the CTFS	



Samples from x(t)	
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Numerical Computation of the CTFS	
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Numerical Computation of the CTFS	
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CTFS Properties	



Linearity	
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CTFS Properties	


Time Shifting	
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CTFS Properties	



Frequency Shifting 	


(Harmonic Number 	



Shifting)	



A shift in frequency (harmonic number) corresponds to 	


multiplication of the time function by a complex exponential.	



Time Reversal	
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CTFS Properties	
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CTFS Properties	


Time Scaling (continued)	
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CTFS Properties	
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CTFS Properties	


Change of Representation Time	
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CTFS Properties	



Time Differentiation	
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Time Integration	



is not periodic	



CTFS Properties	



Case 1	

 Case 2	
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CTFS Properties	
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CTFS Properties	
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CTFS Properties	
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Some Common CTFS Pairs	





CTFS Examples	
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CTFS Examples	
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CTFS Examples	





8/2/13	

 M. J. Roberts - All Rights Reserved	

 65	



LTI Systems with Periodic Excitation	
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LTI Systems with Periodic Excitation	
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LTI Systems with Periodic Excitation	
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LTI Systems with Periodic Excitation	





The Continuous-Time Fourier 
Transform 
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Extending the CTFS	



•  The CTFS is a good analysis tool for systems with 
periodic excitation but the CTFS cannot represent 
an aperiodic signal for all time	



•  The continuous-time Fourier transform (CTFT) 
can represent an aperiodic (and also a periodic) 
signal for all time 	





CTFS-to-CTFT Transition	
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CTFS-to-CTFT Transition	
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CTFS-to-CTFT Transition	
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CTFS-to-CTFT Transition	
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CTFS-to-CTFT Transition	
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Definition of the CTFT	
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Definition of the CTFT	
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Definition of the CTFT	
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Some Remarkable Implications 
of the Fourier Transform	



The CTFT can express a finite-amplitude, real-valued, aperiodic 	


signal, which can also, in general, be time-limited, as a summation 	


(an integral) of an infinite continuum of weighted, infinitesimal-	


amplitude, complex-valued sinusoids, each of which is unlimited in	


time.  	


(Time limited means “having non-zero values only for a finite time.”)	
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Frequency Content	





Some CTFT Pairs	
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Convergence and the 
Generalized Fourier Transform	
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Convergence and the Generalized 
Fourier Transform	
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Convergence and the 
Generalized Fourier Transform	
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Convergence and the 
Generalized Fourier Transform	
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Convergence and the Generalized 
Fourier Transform	





More CTFT Pairs 
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Negative Frequency	


This signal is obviously a sinusoid.  How is it described	


mathematically?	
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Negative Frequency	
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Negative Frequency	
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CTFT Properties	



Linearity	
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CTFT Properties	
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CTFT Properties	
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CTFT Properties	
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The “Uncertainty” Principle	


The time and frequency scaling properties indicate that if a signal 	


is expanded in one domain it is compressed in the other domain.	


This is called the “uncertainty principle” of Fourier analysis.	
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CTFT Properties	
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CTFT Properties	
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CTFT Properties	



In the frequency domain, the cascade connection multiplies	


the frequency responses instead of convolving the impulse	


responses.	
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CTFT Properties	
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CTFT Properties	
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CTFT Properties	
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CTFT Properties	
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CTFT Properties	
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CTFT Properties	
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Numerical Computation of the CTFT	
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