The Continuous-Time Fourier
Series



Representing a Signal

* The convolution method for finding the response of an LTI
system to an excitation takes advantage of the linearity and
time-invariance of the system and represents the excitation

as a linear combination of impulses and the response as a

linear combination of impulse responses.

« The Fourier series represents an excitation as a linear

combination of complex sinusoids and the response as a

linear combination of complex sinusoid responses.
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Linearity and Superposition

If an excitation can be expressed as a linear combination of
complex sinusoids, the response of an LTI system can be
expressed as a linear combination of responses to complex

sinusoids.
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Real and Complex Sinusoids
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Real and Complex Sinusoids

Let x(#)= 4 cos(37)— 7sin(27) and express x(7) as a linear
combination of complex sinusoids.

e/'3f+€—/'3f e/’2f_€—j2f . o, . ., o
x(7)=4 > -7 7 =2 e’3+e3)+/3.5( 2—6/2)

This 1s a simple example. Any periodic signal with engineering

usefulness can also be represented as a linear combination of complex

sinusoids.
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Jean Baptiste Joseph Fourier

3/21/1768 - 5/16/1830

[ 8/2/13

M. J. Roberts - All Rights Reserved




Conceptual Overview

The Fourier series represents a signal as a sum of sinusoids.
The best approximation to the dashed-line signal below using

only a constant 1s the solid

line. (A constant is a
cosine of zero frequency.)

Constant

0.6

-0.6

10

- - Exactx(?) .
— Approximation of x(7) by a constant
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Conceptual Overview

The best approximation to the dashed-line signal using a constant
plus one real sinusoid of the same fundamental frequency as the
dashed-line signal is the solid line.

Sinusoid 1

1.6 - - Exactx(s) .
— Approximation of x(7) through 1 sinusoid
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Conceptual Overview

The best approximation to the dashed-line signal using a constant
plus one sinusoid of the same fundamental frequency as the
dashed-line signal plus another sinusoid of twice the fundamental
frequency of the dashed-line signal is the solid line. The frequency
of this second sinusoid is the second harmonic of the fundamental

frequency° Sinusoid 2

0.6

A A AN AN AN AN

_4\/\/\../\/\/\/\/\/\/10

-0.6

X(1) '=--Exactx(f) | ) )
— Approximation of x(7) through 2 sinusoids
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Conceptual Overview

The best approximation to the dashed-line signal using a constant
plus three harmonics is the solid line. In this case (but not in
general), the third harmonic has zero amplitude. This means that no
sinusoid of three times the fundamental frequency improves the
approximation.

Sinusoid 3
0.6 1

-0.6 1

X() --Exactx() _ _
— Approximation of x(7) through 3 sinusoids

IW/
f ! —~f

4 / [+ 7 10
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Conceptual Overview

The best approximation to the dashed-line signal using a constant
plus four harmonics is the solid line. This 1s a good approximation
that gets better with the addition of more harmonics.

Sinusoid 4
0.6
BRA i e S i R e i e T S S — i~ el A
4 10
-0.6
X(#) == Exactx(f) | _ _
— Approximation of x(7) through 4 sinusoids
1
4 I T 1=0 !
, t,+T
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Continuous-Time Fourier Series
Definition

The Fourier series representation of a signal x(7)

overatime 7, <7/</7,+ 7 1s

X(f) — 2 CX [é]e/'Znh/T
fr=—o0

where ¢ _[£] 1s the harmonic function and £ 1s the harmonic
number. The harmonic function can be found from the signal

using the principle of orthogonality.
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Orthogonality

The illllel‘ pl’Oduct Of two functi()ns X,¢7) and x (2) are orthogonal on the interval -a<7<a

. X,(2) X,(2)
over a range of times 7, < /<7, + 7

is defined by 8

H+7 7
-a -a a

(. ()% ()= | %, (O)x )t .

inner product

B

If this inner product 1s zero, the 45

two functions are orthogonal over - !
the interval 7, <7< 7, + 7. -AB
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Orthogonality

The nner product of two complex sinusoids

&*™" and &> (# and ¢ integers )on the interval 4, <7< 7 + 7" is

lLht7 LHt7

( e/’2 w7 e/’Z ngt!/ T’ ): J e/’Z w7 e gt/ C/f — J‘ 6'/2 (A=)l T Q’f
% %

Using Euler's identity

14T B B
(6’/27[/{;/7, e"zw/f)z J. {cos(2nk—qf)+jsin(27té—fﬂdf
. 7 7
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Orthogonality
Lt 7 A’— A’—
(e"zﬂ/f’/f,e"z”q’”)z J [cos(2ﬂ—qu+jsin(27t—qz‘ﬂc/f
! 7’ 7
If /=g,
Ht+ 7 Ht+7
(e/.ziréf/T’ e/'zan/f): J I:COS(O)‘F/.SiIl(O):I&/f: J' di=7T
If £## ¢, the integral

Ht 7 . .
(6"2”/”/7,6"2”9’/7): J. COS(Zﬂu1j+/'Sin(2ﬂLl) ar
) 7 7

1s over a non-zero, integer number of cycles of a cosine and a sine

and 1s therefore zero.
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Orthogonality

Therefore &> and ¢°"”'” are orthogonal if # and ¢ are not equal.

Now multiply the Fourier series expression x(#)= Y ¢, [#]e*™
fr=—oc0
by €/2""" (g an integer)
X( f) g /AT — i c [ A’] e/Zn(/f—q);/T

fr=—o0
and integrate both sides over the interval 7, <7< 7, + 7

w7 H+7T
j X(f)e—/-zﬂqf/f d’f: J‘ |: 2 CX [A’]e/'zﬁ(l’—q)f/f:|g7f.
fr=—o00

) )
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Orthogonality

Since £ and 7 are independent variables

Lo+ 7 0o Ht 7
J X(Z)e—j-zﬂqf/f 6l’f: 2 CX [A’] J‘ e/'zﬂ(l’—q)f/f QIZ‘
A f=—o0 A

=0 if ##g, =7 if b=g

1
7

1T
Therefore J x()e”?™" dr=c |g|7 and ¢ [g]=

)

lo+7T

J‘ X( f) e—/‘27rqf/7’ a
%

lh+ T

implying that ¢ _[4]= % j x(7)e”?™" ar.
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Continuous-Time Fourier Series
Definition

Summarizing
o0 to+T
x(1)=> c [k]e”™" and c [k] =% x(t)e™ ™" dt.
f=—oo

The signal and its harmonic function form a Fourier series

pair x(t)<——>c [k] where T is the representation time and,
therefore, the fundamental period of the continuous-time Fourier
series (CTFS) representation of x(z). If T is also a period of x(7),
the CTFS representation of x(z) is valid for all time. This is, by far,
the most common use of the CTFS in engineering applications. If T
is not a period of x(t), the CTFS representation is generally valid

only in the interval ¢, <t <t,+7T.

[ 8/2/13 M. J. Roberts - All Rights Reserved 18 ]




CTEFS of a Real Function

It can be shown that the continuous-time Fourier series (CTFS)

harmonic function of any real-valued function x(7) has the property

that ¢, [£]=c [-4]

One mmplication of this fact 1s that, for real-valued functions,

the magnitudes of their harmonic functions are even functions

and their phases can be expressed as odd functions of harmonic

number £.
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The Trigonometric CTFS

The fact that, for a real-valued function x(7)

e, [#]=c, |-4]
also leads to the definition of an alternate form of the CTFS,

the so-called trigonometric form.
x(7)=a,[0]+ D {a [#]cos(2mhz/ T)+b [4]sin(rir/ T)}
=1

where
lo+7

a_|£]= % J x(7)cos(2maz/ T')ar

ly+7

b, [A']z% [ x()sin@rhs! 7)
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The Trigonometric CTFS

Since both the complex and trigonometric forms of the CTFS represent a signal, there
must be relationships between these different types of harmonic functions.

Those relationships are
- a,[0]=c,[0]
b, [0]=0
| a[4]=c.[4]+c, [4]

b, [4]=/(c. [4]-<. [#])
c,[0]=2,[0]

. [4]= a |£]- /b, | 4] L =123
) 2

o, [A=e, [a)= A0 A

s, A=1,2,3)

N

2
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CTFES Example #1

Let a signal be defined by x(7)=2cos(40077) and let 7= 5 ms which

1s the same as 7.
%+7 %+7

[/f]_— j X(/‘)cos(Zﬂ'é/‘/]’)df [/f]_— j X(/‘)Sln(Zn%'l/T)dl

Integral of product Integral of product

l/ |
¢

0. 005 0.005
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CTFES Example #1

Calculation of harmonic amplitude #2
x(7) and cosine x(7) and sine

Z'F\ Z'R

ANPGRS % p o ,"‘A)OS,
l \\’\//_ .7 0.005 l v\ e

) 2

Product Product
2 1.5364
0.005

0.0051 /

-2 -1.5364

Integral of product Integral of product
0.29978‘V\/\ 0.84792
RS VA

-0.29978 . /

0.005
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CTFES Example #2

Let a signal be defined by x(7)=2cos(40077) and let
7’=10 ms which 1s 27;.

Calculation of harmonic amplitude #1
x(2) and cosine x(2) and sine

NNAL . DD/
AV R VAN AVARAT)

Product Product

P A A ‘ 0.01
f

Integral of product Integral of product
0.087762}_~ A~

0.30003‘V\/\ )
0.01
0.01
l \/\/ f | \/\/
-0.30003 -0.51229
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CTFES Example #2

Calculation of harmonic amplitude #2
x(2) and cosine X(7) and sine

N A L N D L,
ARAVARVA N VARV

Product Product
0.01
/
0.01° !
Integral of product Integral of product

2|/_//_/ 0.15893WW\
' 0017 ' 0.01°7
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CTFES Example #3

Let x(#)=1/2-(3/4)cos(2077)+(1/2)sin(3077) and let 77=200 ms.

Calculation of Harmonic Amplitude #1

x(2) and Cosine x(2) and Sine
1.75 1.75
,I' m -/ /\ >/
NV . O o, ) 0.1
- -1 S~ AR |
Product Product

-0.61496 £1.75
Integral of Product Integral of Product
0.16078 — { ./
-0.1 0.1
0.1 61’ -0-50
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CTFES Example #3

Calculation of Harmonic Amplitude #2
x(2) and Cosine X(7) and Sine

-0.80686

Integral of Product Integral of Product

_0\ ot/ 022277

-0.75 g@" -0.1 o1/
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CTFES Example #3

Calculation of Harmonic Amplitude #3
x(2) and Cosine x(2) and Sine

-1.Y471 -0.75
Integral of Product Integral of Product
f N
-0.16799 o —/
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CTFES Example #3

Calculation of Harmonic Amplitude #4
x(2) and Cosine x(2) and Sine

-0.85653

Integral of Product
0.18716

-/
0™ 04066 | 0.1
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Linearity of the CTEFS

X, (1) +:
L]

N
~ —
O

These relations hold only if the harmonic functions of all
the component functions are based on the same
representation time 7.
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CTES Example #4

Let the signal be a 50% duty-cycle square wave with an

amplitude of one and a fundamental period 7; =1.

x(7)=rect(27)* 6, (7)

Calculation of harmonic amplitude #1

x(7) and cosine
14
, Cd - N

\
/, \

Product
1

-0.5 0.5

Integral of product
0.63661

0.5 ' 0.5

>/

X(7) and sine

14
’ =~ N
/s’ .
-0.54 , 05’
N\ ’
N -~ _1 1
Product

Integral of product
A

05 05/

-0.318
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CTES Example #4

Calculation of harmonic amplitude #2

x(7) and cosine

14
~ > -
\ |\ ’
\ } \ /
A + \ L >/
-0.5 / \ 7 0.5

\ / \ /
S N

Integral of product
0.15914

05 \/l 03/
-0.15914

x(7) and sine
14

/ \
/ \ B \

Product
1

1

Integral of product
A

05 03/

-0.31829
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CTES Example #4

Calculation of harmonic amplitude #3

X(7) and cosine x(7) and sine
. 14 . 14
1y o\ Iy dg 1\ ) Y
NE A A p L Y ,
-0.5 \ ,, ‘\ ] ‘\0 . 57 -0“5 1 ‘\ ] ‘\ ,l 0.5
/ /
/ \\.' 1 \.r' \. \I \v{ \J

Integral of product

) _ 0.10609
0.5 03/ /Q'\ T /\

Integral of product

0.5 0.5

021217 -0.10609
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CTES Example #4

Calculation of harmonic amplitude #4

x(7) and cosine

14
A Y 4
\ [ \
“ "y |\ ,' \ ,’
' —L— >/
0.5, , 4 !0 v ,0.5
\ P A Y
\ 714+ N \
Product

Integral of product

0.079555V\
A ,

-0.5 \A \/ 0.5

-0.079555

x(7) and sine

14

[A) V4
N 'l\ \
Y
1

\

\
1
\ ,l \‘ ' \ '
I \!1” \l I

Product
1

-1

Integral of product
0.15911
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CTES Example #4

A graph of the magnitude

and phase of the harmonic
function as a function of
k

harmonic number is a good %
way of illustrating it.

Notice that the magnitude Le [K]
1s an even function of k T
and the phase 1s an odd o l ‘ l ‘ .
function of k. '2()} l l l l 20
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The Sinc Function
Let x(r)= Arect(t/w)*8, (¢) ,w<T,. Then

sin(7kw / T)
Tk

x(t)= Arect(t/w) *Op. (t)%%cx [k]=A

sin(7rx)

The mathematical form arises frequently enough

TX

to be given its own name, "sinc". That 1s sinc(t) =
Tt

sinc(?)

1

sin(m).
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CTFES Example #5

Let x(7)=2cos(40077) and let 7= 7.5 ms which is

1.5 fundamental periods of this signal.

Calculation of harmonic amplitude #1
x(7) and cosine x(7) and sine

2R\\ /\" y 21,\»("\/\0.,00751
A UK

Product Product

2 0.70853
0.00751 0.007¢

-1.9938 -1.8153

Integral of product Integral of product
0.76379 0.15207F -~

| \ims’

| soyd 11709
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CTFES Example #5

Calculation of harmonic amplitude #2
X(7) and cosine x(2) and sine

N A ™
j ‘\\// \—’V‘mf l v \‘\Q.ooés
2 2

Product Product
2 1.9025
0.0075
/
-1.9881 -0.38268 0.0075
Integral of product Integral of product
0672%\\ 1.4547|/J_/J
' 0.007 ' 0.007
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CTFES Example #5

Calculation of harmonic amplitude #3
x(2) and cosine x(2) and sine

2 N
3 ,,’\‘ ﬂ K ) /\\00075
j \\// \\\%)075 l \/ \
2

Product Product
2 1.5364

0.0075
/ 0.0075
2 -1.5364
Integral of product Integral of product
0.19986V\/\ /’\/‘\ 0.56528
l \/\/ 0.0079
-0.19986 5005¢
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CTFS Example #35

The CTFS representation of this cosine 1s the signal
below, which 1s an odd function, and the discontinuities
make the representation have significant higher harmonic
content. Although correct in the time interval from zero
to 7.5 ms, this is a very inelegant representation.

x(?)

VAN AN A
VARRVAR\AVAR

|
t="7.59ms
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CTEFS of Even and Odd Functions

For an even function, the complex CTFS harmonic function
c, | #] is purely real and the sine harmonic function a, [£] is

ZC10.

For an odd function, the complex CTFS harmonic function

c, | #] is purely imaginary and the cosine harmonic function
b, [#] is zero.
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Convergence of the CTES

Partial CTFS Sums

N
(=3 o [4le
For continuous signals, =
convergence is exact at

every point.

A Continuous Signal

x(2)

i >~/
-7

N N N ST
N s\x<mx <>\>< <>\
b
(9]
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Convergence of the CTES

Partial CTFS Sums

/.
For discontinuous signals, /\ 7/\ /

convergence is exact at
every point of continuity.

Discontinuous Signal

ng)

— ] e —
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Convergence of the

At points of discontinuity

the Fourier series
representation converges A

CTES

/\/— 199

/\/—59
/\/— 19

to the mid-point of the 2
discontinuity.
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Numerical Computation of the CTEFS

How could we find the CTFS of a signal that has no
known functional description?

Numerically.
x(2)

N
NV N

c |#£]= - LX (7)e 7> a

\Unknown
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Numerical Computation of the CTEFS

AN

1 N-1 ( 1)7; ]
[l’ E;Z j X(”];)e_/-znbﬂ}/]”a/f
=0

7

Samples fror_n x(7)
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Numerical Computation of the CTEFS

XY)

VARV

%

It can be shown that, for harmonic numbers |k| << N
c,[k]=(1/N)D 9T (x(nT,)) , | <<N

where

ng(x(nTs)) _ ﬁx(nTs)e-jznnk/N
=0
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Numerical Computation of the CTEFS

The Discrete Fourier Transform

N-1
77, gf(x(nTs )) = ZX(nTS)e_ﬂ””k/N
n=0
1s an intrinsic function in most modern high-level computer

languages.

[ 8/2/13 M. J. Roberts - All Rights Reserved 48 ]




CTES Properties

Let a signal x(7) have a fundamental period 7, and let a
signal y(7) have a fundamental period 7;,. Let the CTFS

harmonic functions, each using a common period 7" as the

representation time, be ¢, [£] andc¢ [£]. Then the following

properties apply.
x(?) e
>@ﬂg:5_>cz[k]
Linearity y(f) —b
t)+ By(t)eL k|+Bec, [k k
ax(1)+ By() e, [+ fe, (k] | el g
+ c_[k]
. >9— :
y(®O—FS . [k] g
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CTES Properties

Time Shifting x(7—1,)«——e > ¢ [k]

C, k|
0.2‘ b

L T
A z(i[k]

VvV VV VV3"" T

10 k
-
— Time Shift ‘ [ ]|
c |k
1__
k
-10 10
. G &c\[k]
) l‘ JU
T
10 10 k
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CTES Properties

Frequency Shifting
(Harmonic Number  ,/27kt/T X(t)%cx [ k— ko]
Shifting)

A shift in frequency (harmonic number) corresponds to
multiplication of the time function by a complex exponential.

Time Reversal X(_f)% c, | k]
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CTES Properties

X(1)

Time Scaling
Let z(7)=x(ar), a>0 ﬁ"v[
Case 1. 7=7, /a= 7. for z(7)

c.[#]= ¢, [4] o 0
Case 2. 7= 7], forz(7)

If 2 1s an integer,

14|

c |#/a], #/aan integer

0 , otherwise ’ E‘
a
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CTES Properties

Time Scaling (continued)

TIIIHIHIHIMT%

Ll Ll
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CTES Properties

Change of Representation Time
With T =T

Ox?

With T =mT, , x(t)«Z—c_, [k]

x(t)«——c, [k]

0 c |k/m] , k/m an integer
C =
o 0 . otherwise

(m 1s any positive integer)
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CTES Properties

Change of Representation Time

e, [£]
X(1) T:TO ‘t
S
T~
|Cx.2[k]’
X(1) '
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a
dt

CTES Properties

Time Differentiation

(x(1))F— j2mke, [k]/T

“ . [1]
rh 0.5[
k
.- -11 11
T &;x[k]
o -11 L 7
T
|j2nke [k]/T]|
L%
x'(¢) l
T 1 T -11 llk
1 l 11 " s Lj2mke [k]/T
14

il

) S A A A | rlLk

116 & 111 1 1
-
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CTES Properties

Time Integration

Case 1 Case 2
Case 1. ¢, [0]=0 c,[0]=0 c,[0]=0
, xEZ) X‘(lf)
Jx(l)dh s .CX[k] k#0
Y J2rk /T ,
Case2. ¢ [0]#0 _fwx(f)dt fx(f)dt

j;x(ﬂ.)a’l is not periodic LVAVAVL z f/
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CTES Properties

Multiplication - Convolution Duality
K(0)y (1) —2e [K] e, [£]
(The harmonic functions ¢ [k] and cy[k] must be based
on the same representation time 7'.)
x(1)®y(1) 2o Te [K]e, [K]
The symbol ® indicates periodic convolution.

Periodic convolution is defined mathematically by
x()@y(1)= [ x(2)y(-)de
x(t)®y(t)= X 4 (£)*y(t) where X 4 (¢) is any single period of x(¢)
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CTES Properties

c.[4]
2
X(1) ? ®
o)
—— ANANNNNL i« TS5 | ecssss cecccoer
\VAAVAVALVAVAV SR v
6t Ty }c\[k_*c)_k]’
2
X(Oy(@) . N
V+ 6 ‘wIQ.O @
) :
CXD_’ 2 ST ok f+
1 6 e, [£]
2
y(1)
o)
N AN NN/, e TS P
— VIV V2 T -10 10
ot oy
T
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CTES Properties

Conjugation

Parseval’s Theorem

%JT‘X(I)‘Z dt = i

Cx [k]‘z
k=—oo

The average power of a periodic signal is the sum of the

average powers in 1ts harmonic components.
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Some Common CTFS Pairs
«—~=>8|k]| ,T arbitrary

5 (1) fTS {(I/TO) , k/m a.n integer
" * 0 otherwise
ol 27!y mTO PECL NG [ k — mq]

sin(27qt /T, )%%(] /2)(5 k+mg|-6[k- mq)

cos(27qt /T, )%(1/2)(5 k—mq]+8[k+mq])
. [K]

tri(z /w)* 6, (Ot) (w/T )sinc® (wk / mT,)8,, [ k]

rect(t/w)#8;, (t)¢——>(w /T, )sinc(wk / mT, )&

(m an 1nteger)
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CTES Examples

x(1)= A{2rect(2(t—TO /4)/TO)>*<5TO (t)—l}
Find the CTFS harmonic function using 7' =17;,. T
rect(t/w)* 68, (1)¢—z—>(w/T,)sinc(wk / mT, )8, [k]

mT,

Since T =T, =>m=1. If rect(t/w):rect(Zt/TO) then w=T, /2.
rect(2¢ /T, )8, (t)¢——(1/2)sinc(k/2) & [k]
0 \ )

=1 for
any integer k

2rect(2t /T, )8, (1) sinc(k/2)
Using the time shifting property, x (¢ —t,)«>—e > ¢ [k]

2rect(2(r—T,/4)/T,)*6, ()%smc(k/Z) k2

Then, using 1%5[ ] , T arbitrary , 5[k] and
Af2rect(2(t—T,/4)/T, )8, (1)- }%A{smc(k/Z) e ™2 —§[k]}=c, [K]
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CTES Examples |,
12
x(t)=12sin(27t /0.01)[ rect(r/0.01)%8,,,(t) ] — /\ 7\ \/\ —1

x(#)=12sin (2007t )| rect(100¢)* 8, , () | \/ L\A
Find the CTFS harmonic function of X(t) with 7 =20 ms. 2 ms=
sin(27qt / T, ) «—=—>(j/2)(8[ k+ mq|— 8[k—mq])

mT

sin (2007t )« (j /2)(8[k +2x1]- 8[k—2x1])

2x0.01

rect(r/w)# 8, (t)%)(w /T, )sinc(wk / mT, )5, []

rect (100¢) % 8, , () ¢—=—>(1/2)sinc(k / 2)
[,

12sin (2007t [recT( tX)*EOOZZt):I = 12(j/2)(8[k+2]-68[k—2])*(1/2)sinc(k /2)
(1001) 8,5 (

t) |« j3(sinc((k +2)/2)-sinc((k—2)/2))

Using x(t)y(t)«—=—c, [k]*c
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CTFES Examples

Find the CTFS harmonic function of x(7) with 7=10"".

10°®
e, [#]= (11 )] x()e” " dr=c [0]=10" | (35%10°/)ar=35/2
0
10°* 10°*

¢, [4]=10° | (35x10°/)e ™" ¥ ar=35x10" | 2" ai
0

( B 1078 -8 3 35
J2ax108 47 10 J2x108 47
¢ [#]=35%10"1| /—= —j c ar
-2ax10°4 | —2rx10°4 1,

r 1078
— 2Tk 1 -8 — 27x10% 4z
e [4]=35x100]- >0 _|_¢
2ax10°k | (2 x10°4)
0

10716 5727k |— g2k }_ 15 | — g2k _ Prke 2k

¢ [#]=35%10" [—

+ =
2wk (27mh) x10'° (2nk)
1/2 , #=0
k=351
o [£]=35 s 20
2k’
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LTI Systems with Periodic Excitation

The differential equation describing an £C lowpass filter 1s

R CV,OZ/f (Z) + Vozzi (Z) = Vz'n (Z)
If the excitation v, (7) is periodic it can be expressed as a

CTFS,

oo

v, ()= 2 ¢, [£]e”"

fr=—oo
The equation for the 4th harmonic alone 1s

R CV,OM,A’ (Z) + Vozzf,é (f) — Vz'ﬂ,l' (f) — Cf/? [A,] e/'z et
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LTI Systems with Periodic Excitation

If the excitation 1s periodic, the response 1s also, with the
same fundamental period. Therefore the response can be
expressed as a CTFS also.

Vot (D=, [£™
Then the equation for the 4th harmonic becomes
(24 RCI T)e,, [K*™7 +¢. [F]e*™7 = ¢, [#]e*

Notice that what was once a differential equation is now

an algebraic equation.
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LTI Systems with Periodic Excitation

Solving the Ath-harmonic equation,

c. [#]= c, [4]
. JATRC] T+1

Then the response can be written as

Vozzf (Z): Z Coz// [A']éjzﬂb/f = z Cf” [A,] e/'Zﬂ%’f/T
fr=—o0

DI RCI T+1
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LTI Systems with Periodic Excitation

Com[k]‘
o] [k]
.
. Caw [é] . H I ‘
theratio = *r g s the anHHHH[ i T
m - Cm[k: |
harmonic response of the system. “e[d]

R=1Q,C=1F,T =20s
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The Continuous-Time Fourier
Transform



Extending the CTFES

e The CTES is a good analysis tool for systems with
periodic excitation but the CTFS cannot represent
an aperiodic signal for all time

 The continuous-time Fourler transform (CTFT)
can represent an aperiodic (and also a periodic)
signal for all time
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CTFS-to-CTFT Transition

Consider a periodic pulse-train signal x(7) with duty cycle w/ 7

X()
| ﬂ ﬂ

Aw . o
Its CTFS harmonic function is ¢ [A’]— —Wsmc
A

As the period 7; 1s increased, holding w constant, the duty

cycle 1s decreased. When the period becomes infinite (and

the duty cycle becomes zero) x(7) is no longer periodic.
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CTFS-to-CTFT Transition

Below are graphs of the magnitude of ¢_[ 4] for 50% and 10% duty
cycles. As the period increases the sinc function widens and its
magnitude falls. As the period approaches infinity, the CTFS
harmonic function approaches an infinitely-wide sinc function with
zero amplitude.

e [4] e, [£]

05A ¢ 0.5A +
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CTFS-to-CTFT Transition

This infinity-and-zero problem can be solved by normalizing

the CTFS harmonic function. Define a new “modified” CTFS
harmonic function 7 ¢, [#]= 4wsinc (leg ) and graph it
versus 47, instead of versus #£. ( Jo=1/ ]5)

7,c.[#]

05A¢

-T=T=I=I=

jeLLT: kﬁ)mmMﬂhdM

‘TO C

0.5A

[#]

;

-10

10 -10

Mﬂm}m%

10
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CTFS-to-CTFT Transition

In the limit as the period approaches infinity, the modified
CTFS harmonic function approaches a function of continuous
frequency / (47,). 47, 1s continuous because in the limit as

7, approaches infinity, £ approaches zero and the "gaps"
between the harmonics disappear.

7,c.[]

0.5A

4y

-10 10
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CTFS-to-CTFT Transition

(e ] (e ]

In x(t)= 2 c [k]e/*™" let Af=1/T. Then x(t)= 2 c |[k]e? .

k=—o0 k=—o0

Substituting the integral expression for ¢, [k] ,

- to+T
x(t)= 2 {% J x(1)e /2T dT}jzﬂkAﬁ.
k=—oo

)

o T/2
Lett,=-T/2. Then x(¢)= 2{ J. x(7)e /2T df}ejZ”kAﬁAf

k=—oo| —T/2

T —oo
k=—eo| —T/2

—00 —00

X(Z) = lim{ i { J X(T)e—ﬂrcmfr dT:|ej27rkAﬁAf} _ ]2 {]ﬁ X(,L.)e—jznfr dT:|ej27rff df

:j(x(t))
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Definition of the CTFT

Forward f form Inverse

(o)

X(N)=9 (x(0)= [ x()e ™ ar x(1)= 7 (X(1))= [ X (1)

—00

Forward @ form Inverse

X(jo) = (x(1))= [x()e ™ dr x(1)=F (X( )=~ [ X(jo)e ™ do

—co —oc0

Commonly-used notation:

()2 X(f) or x(1)e—ZoX(jo)

[ 8/2/13 M. J. Roberts - All Rights Reserved 76 ]




Definition of the CTFT

Example
Use the definition of the forward CTFT

X(f)= (x(1))= [ x(t)e?>*" dt
to find the forward CTFT of x(¢)=4e " u(z).

X(f)= j 4eu(t)e ™ dt = 4J.e_(j2”f+7)t dt
oo 0

1= e,

j2rf+7) | j2mf+T

[ 8/2/13
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Definition of the CTFT
Example

Use the definition of the inverse CTFT

L f g ooy s
X(f)zEIX(/w)e’ 2o

to find the inverse CTFT of X (/0 )=5 rect(%).

100
X(z‘)——_[Srect(zo )e’“”cz’a}—z— J & dw

-100

x(7)= 2_1]-0 | cos(w7)+ ssin(w7) |dow = _HJ),O cos (@)l = ;{ sin (fa)f)}

x(7)=—

[ 8/2/13 M. J. Roberts - All Rights Reserved 78 ]
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Some Remarkable Implications
of the Fourier Transform

The CTFT can express a finite-amplitude, real-valued, aperiodic
signal, which can also, in general, be time-limited, as a summation
(an integral) of an infinite continuum of weighted, infinitesimal-
amplitude, complex-valued sinusoids, each of which is unlimited in
time.

(Time limited means “having non-zero values only for a finite time.”)
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Frequency Content

X(2)
—&PA\MMV\%WVAWPMMWM— /
-1+
X
waass
-130 ' T4

x(9)

1,

A
iad

-1 4

Highpass ffm'

‘]‘L,“

Y

A\ MR N LR L R
VU WORTYO T o e

b

-130

x(2)
0.5
(iR .HllhIHxl|“]HHVI\J\li“||IIHJIH}HH'HHHMVHH /
R LT
-0.5
XA
ot Bandpass
-130 130 /

130

J
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Some CTFT Pairs

5(t)2>1
e‘“’u(t)él/(jw+oc) , a>0 —e""“u(—t)él/(jw+a) , <0
te“’“u(t)@l/(jaﬁoc)2 , a>0 —te“"’u(—t)@l/(jawoc)2 , a<0
t"e_“tu(t)< L >( ! )n+1 , o0>0 —t”e‘“’u(—t)< < >( ! )n+l , 00<0
Jo+o Jjo+o
e“’“sin(a)()t)u(t)< z >(jw+:;2+w2 . o>0 —e“"’sin(a)ot)u(—t)< < >(ja)+z(;2+a)2 , <0
0 0
e cos(w,t)u(t) e s L2 a0 ~ e eos(@y1)u(~1)e- T —LOTE— a <o
(]w+oc) + 0 (]a)+a) +o;

e—a‘t‘( F N 20

W’ +o’

, >0
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Convergence and the
Generalized Fourier Transform

x(7)
Let x (Z) = 4. Then from the f

definition of the CTFT, A

X(/)= J‘Ae_/'z’rﬁdf:AJ‘ e’ dy

This mtegral does not converge so,
strictly speaking, the CTFT does not

exist.
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Convergence and the Generalized
Fourier Transtform
X (®

. o . ! o decreasing
But consider a similar function,
x ()=dae" | >0 t

Its CTFT integral B )
- X (f)l
XG (f) — J Ae—GM e—jZ?Z'ﬁ éjf I\

4 i\ O decreasing
does converge. Z ;&
f

-1 1
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Convergence and the
Generalized Fourier Transform

20
o’ +(2nf)

Carrying out the integral, X _ ( f ) =A

Now let o approach zero.

2
If f #0 then Iim A ° - =0. The area under this

>0 ¢° +(27f)

20
o’ +(2nf)

the value of 0. So, in the limit as o approaches zero, the

function 1s A I —df which is A, independent of

—00

CTFT has an area of A and is zero unless f = 0. This exactly

defines an impulse of strength A. Therefore A<~ AS(f).
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Generalized Fourier Transform

Convergence and the

By a similar process it can be shown that

cos(27rf0t)@%[5(f—fo)"‘5(f+fo)]

and

: g ]
s1n(27tf0t)%5[5(f+fo)—5(f—fo)]
These CTFT’s that involve impulses are called
generalized Fourier transforms (probably because

the impulse 1s sometimes called a generalized

function).
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Convergence and the Generalized
Fourier Transtorm

IX( )l

x(?)
IA rf‘
—Z AX(f)
5 ol
o f
_J'E__
Xl X(f )l
(1) \ %1 \ X(1) !
2
1 " t -4
To J;
P £X(f) L P £X(f)
< T J
1 f -1 :
bl b r ol
0
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More CTFT Pairs

The generalization of the CTFT allows us to extend the table
of CTFT pairs to some very useful functions.

5(t) -1 12>5(f)
sgn(t)él/jn‘f u(t)é(l/Z)ﬁ(f)+l/j27rf
rect t)%sinc(f) sinc(t)@rect(f)

(z‘)@sinc2 (f) sinc” (t)@tri(f)
5, (1) 18, (1) - 1, =117, 18, (1) ==0, (1) L=/,
) (U2 3(f=£)+8(r+ 1)) sin(2sie)=—(i/2) 81+ 1,)=6(r=1,)]
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Negative Frequency

This signal 1s obviously a sinusoid. How is it described
mathematically?

XA(Z‘)

It could be described by x(7)= Acos(277/ 7; )= Acos (27 f7)
But it could also be described by x(7)= Acos (27 (- )7)
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Negative Frequency

X(2)
p A
X(7) could also be described by . 7 \ -
27 St — J2TC fo! ' ,
)(7)= 45 E¢ LN
2 - 75—

or
x(7)= 4, cos (271'/0/‘)+ A, cos (2%(—/6’)1‘) , A+A4,=A4
and probably in a few other different-looking ways. So who is

to say whether the frequency 1s positive or negative? For the

purposes of signal analysis, it does not matter.
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Negative Frequency

Consider an experiment in which we multiply two sinusoidal
signals x, (#)=cos(27 £7) and x, (#)=cos(20077) to form
x(7)=x,(#)x, (7). x(#) can be expressed using a trigonometric
identity as

x(7)=(1/2)| cos (27 (/; —100)7 }+ cos (27 ( +100)7)]
Now imagine that we continuously change / 1100

J from a frequency abovel00 to a

frequency below 100. #'—100 becomes /
negative. - f
/]OO
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CTFET Properties

Iféf"(x(t)) =X(f)or X(jw) and y"(y(t)) =Y(f)or Y(jw)
then the following properties can be proven.

ax(t)+By(t)e——aX(f)+BY(f)
Linearity ax(t)+By(t)«L—aX(jo)+BY(jo)

x(t)— o -
E} F oX(f)+BY(f)
y@)— B '

x(f)—| o T
E}—OCX(JCHBY(JC)
yO— B — o !
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CTFET Properties

1
AN
-t
Time Shifting b
X(1 =1 )= X(f)e
x(t—t,)ZL— X(jw)e "
x(1)
A
g

IX( )
1IL
4 [ S 4 7
ﬁi(f )
4 I f‘:f
IX( )
1IL
4 [ S 4 7
£X(f)
A 8T
4
4 ~f
-8m
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CTFET Properties

Frequency Shifting

e I Y T

x(1)e"™ "> X(w-a,) g/ ] \/ \/ V

IX( )
[ S
Im”™) A
Re(e’zm) =f
p Y £X(f)
2 " -
2COS(2’IEI)
_|_\
A IX( )
1\1
A
Tm(e ™) R
. e(e 12 =4
& AO%(f )
-1 T
ot ~f

1
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CTFET Properties

Time Scaling

Frequency Scaling

a a
s 1 .

X(dt)( > X(]—j
a‘ a
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The “Uncertainty” Principle

The time and frequency scaling properties indicate that if a signal
1s expanded 1n one domain it 1s compressed in the other domain.
This is called the “uncertainty principle” of Fourier analysis.

<0 X(r
21 27
e T o
e, e
x()2 2x (/]

o M2 T o) I |
3 -3 3

-3
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CTFET Properties

Transform of x (1)«<—X (-f)
a Conjugate X (1) L= X (-jo)
x(1)#y (1) =—X(f)Y(f)
Multiplication X(t)*y(t)éX(ja))Y(ja))
Convolution o
Duality x(1)y(t)e——X(f)*Y(f)
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T
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CTFET Properties

X, (1)

F
Xv%rt

-1

|

X, (o)l

|

|

-167

A

0.5%
l‘ - T > H

1675

%E X, (jw) *X, (jow)l

| —©®

-167

X, (o)l

W

-

-167
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CTFET Properties

In the frequency domain, the cascade connection multiplies
the frequency responses instead of convolving the impulse
responses.

X()) =h,()

—x(7)*h (/) — h,(2)

—>Y()=[x(2) h()]xhy()

X(2) = h,()* h(H=>Yy()

X(/)~

H,(/)

~X(/H(/)

H,(/)

~Y(/)=X(/)HH,L/HH (/)

X(/)—HLNHH () —Y()
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Time
Differentiation

Modulation

Transforms of
Periodic Signals

CTFET Properties

d
il

x(t))eL— j2rmf X(f)

—(x(1))¢Z> jo X(jw)

x(t)cos(27tf0t)@%[X(f—fO)+ X(f+fo)]

X(t)cos(a)ot)@%[x(j(w — @, ))"' X(](a) T @, ))]

im f k)
- ;}w 16(w - kay,)
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CTFET Properties

x, (1) X (O

A

1

_J [\ o f
F ACX%(f)

2 ! 4 l el

|
X il

* IX,()
xz(t) 2
b
! >/
- F AXAf)
2 > ! . ot
-1 4=f
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CTFT Properties

T‘x(t)‘zdt:ﬂx(f)‘zdf

Parseval’s
Theorem P 5 1 % T
JIx(@)f di=——[|x(jo) do
Integral Definition T 2 gy = 6 (x)
of an Impulse _me A

- X (1) —Zsx(~f) and X(=t)Zx(f)
’ X(jt)Zs27x(~w) and X(—jt)Z27x(o)
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CTFT Propertles

ﬁ
3"—a8

]27tft dl_

I
glg'—oS

{ X(f)e > df =J X(f)df
Total - Area e 0 oo
Integral 0 i oo
“ dr | = J.X(t)a’t
x(0)= [27[{ (jw)e™ a’a)_HO = i [OX(ja))da)
s X(f) 1
Jx(mare T x)a(7)
Integration .
[x(R)dres >X(,i)“’)+nx(o)5(w)
o J
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X(2)

CTFET Properties

X(2)

0)= [ x(/xt

|

/\LX /
V'
-/ S
X(/)

x(0)= [ X()r
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CTFT Properties

|X1(f)|

A

-1
LCXl(f )

9=
p—l
4— DI —

= jZch
I '

¢ X f)l
XA) 1
1 A
)QQQZXQQQ‘J“
. —ZL £XA )

b=
=
;IV
]
]
J

L L
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Numerical Computation of the CTFT

It can be shown that the DFT can be used to approximate
samples from the CTFT. If the signal x(7) is a causal energy

signal and / samples are taken from 1t over a finite time

beginning at 7= 0, at a rate /, then the relationship between the
CTFT of x(7) and the DFT of the samples taken from it is
X471 V)= T.e ™ sinc(£/ V)X 0 [ #]
For those harmonic numbers £ for which £<< AV
X4 V)= 7, X per [ 4]
As the sampling rate and number of samples are increased,

this approximation is improved.
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Ifx(t)«~—>X(f)=6(f-8)+8(f+8) and x(1)«="—c,[k], find c,[k].
The relationship between the CTFT and the CTFS harmonic function is

[oe] oo

X(0)= 3 e, [ <X (f)= 3 e, [K]8(F-k/T)

k=—co k=—cc
In this case, setting 7' =1,

(e}

x(1)= Y . [k]e"™ L5 X(f)= Y (8[k-8]+6[k+8])6(f k)

k=—oc0 k=—c0
Therefore ¢ [k]|=6[k—8]+5[k+8].
If we instead set T =1/8,

oo oo

x(t)= Y c [k]e"™ L= X(f)= D, (6[k—1]+8[k+1])5(f - 8k)

k=—oo k=—oo

and x(¢)«—=—8[k—1]+8[k+1]. Then, using the CTFS property
x(t)«—Z—c [k] {cx[k/m] , k/m an integer
” =c,,[k]= .
and x(t)—2—-c,, [k] 0 , otherwise
_ O|lk/8—1|+O|k/8+1| , k/ Int
x(z)%{ [k/8=1]+5[k/8+1] ’"a‘,““eger}:a[k-s]w[mg].
0 , otherwise
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A continuous-time system has a transfer function

2x10°
H (S ) ~ 6
s°+2000s+2x10
and therefore a frequency response

2%x10° 2%x10°

H(jo) = -

(jo)" + j2000w+2x10°  (jw+1000)" +10°

Find its impulse response.

e " sin(w,t)u(t)= >(ja)+fx)32+a)2 ,Re(a)>0

e sin (1000t ) u(t) 2L 10020 -
(jw+1000)" +(1000)

6
2000e™""™" sin(1000¢ )u(t ) ¢«ZL— 2X120 7
(jw+1000)" +(1000)

Therefore h(z)= 2000 sin(1000¢ )u ()
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This rectangular pulse train excites an amplifier X(2)

500,000 p
5 +50,000

with transfer function H (s) =

T

500,000 w
j2mf +50,000
If 7,=0.5 ms,w=0.1 ms and A=100 mV find the average
signal power of the amplifier response (using MATLAB where

therefore frequency response H( f) =

necessary).
rect(t) «Z—>sinc(f)
# _0.1sinc(f/10,000)

0.1rect(10,000¢) <

10,000
& _0.Isinc(f/10,000)

0.1rect(10,000¢)# 5,5, (1) «Z— 10.000 20008, (f)

0.1rect(10,000¢) 5,5, (1) «Z >Smc(f g30,000)62000(f)
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Y(/)=H(/)X(/) y
500,000 sinc(/7/10,000) 1.,
Y()= 27 /+ 50,000 50 S0 (/) we

Using the definition of the periodic impulse,
=, 500,000sinc( #/10,000)

Y()=(1/50) 3

— J2r /450,000
Using the equivalence property of the impulse

5(/—20004)

oo

500,000sinc(4/5)
Y(/)=(1/50 : o(/—20004
()= ) ,f;o 7400074+ 50,000 4 )

From Parseval's theorem, 2 = 2 ‘cy [A’]r.

fr=—oo

1 500,000sinc(4/5) N =

A= 2 =(1/2500
o 41=5 400074+ 50,000 ° ( ),;_oo

500,000sinc (4/5)|
7400074+ 50,000
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2 A

(e o]

P =(1/2500) Y 5.00,00051nc(k/5)
Z| j40007k + 50,000

We can find this quantity using MATLAB. W

N1
Y
N

k = [-kmax : kmax] "' ;

Py = sum(Cabs(5e5*sinc(k/5)./ (3*4000 *k +5e4)).A2) /2500 ;

For kmax =10, Py = 0.1845

For kmax =20, Py = 0.1867

For kmax =50, Py = 0.1872

For kmax =100, Py = 0.1873

For kmax = 200, Py = 0.1873

If the amplifier had infinite bandwidth the response signal power would
be 0.2.
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The signal from a pressure sensor in an industrial plant is
interfered by radiated EMI (electromagnetic interference) from a
periodic rectangular pulse train of fundamental frequency

15 kHz. What would be the impulse response of a filter that
would reject this EMI, including all its harmonics?

The source of the EMI is of the form e (7)= Arect(7/ w)* o, (7).
The mechanism of interference through radiation depends on the
first derivative of the EMI. So the received EMI is of the form

e(r)=A| 6(r+w/2)-8(r—wi2)]* S, (7). Its CTFT is
E(f)=d| & =7 f5 ()= 24sin (2 fiv] 2) /55 . (/).
where £, =1/7;. So it has impulses at integer multiples of /. An

impulse response that averages the signal over exactly one fundamental
period 7, of the EMI would be h(7)= Brect (f/ 7, ) Its CTFT 1s

H( /)= B7;sinc(Z;, /)= BZ;sinc(// /). This frequency response

has nulls at integer multiples of /. So it would reject the EMI, including

all 1ts harmonics.

[ 8/2/13 M. J. Roberts - All Rights Reserved 111 ]




