Discrete-Time Fourier Methods



Discrete-Time Fourier

Series Concept

A signal can be represented as a linear combination of sinusoids.
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Discrete-Time Fourier
Series Concept

The relationship between complex and real sinusoids
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Discrete-Time Fourier
Series Concept
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Discrete-Time Fourier
Series Concept

Sinusoid 1
0.6

-0.6
Exact x|n]

JJJ—\JL—j—dJJ—\J—Iv——MJJJ—Iv——dJJJ—L
n
-10 30

n, ny+ N

x[n]

: l Approximation through 1 Sinusoid
-10 30 i

[ 8/2/13 M. J. Roberts - All Rights Reserved




Discrete-Time Fourier
Series Concept

Sinusoid 2
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Discrete-Time Fourier
Series Concept
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Discrete-Time Fourier
Series Concept
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Discrete-Time Fourier
Series Concept
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Discrete-Time Fourier
Series Concept

Sinusoid 6
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The Discrete-Time Fourier Series

The discrete-time Fourier series (DTFS) 1s similar to the CTFS.

A periodic discrete-time signal can be expressed as

my+ V-1
< [”]: z CX [é]gl.ycéw//\/ CX [A’]: i Z < [”]e_/znkﬁ//\/
faryy N o=

where c¢_[#] is the harmonic function, A is any period of x | 7]

and the notation, 2 means a summation over any range of
=)

consecutive £’s exactly /A 1n length.
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The Discrete Fourier Transform

The discrete Fourier transform (DFT) 1s almost identical to the DTFS.

A periodic discrete-time signal can be expressed as

/70+N—

1
< [ﬂ] _ /\i/ % X [A,] e/.zﬂkn//\/ X [A’] _ Z X [”] e_/zmén//\/
= =1

where X[A'] 1s the DFT harmonic function and A 1s any period of x [/7]
The main difference between the DTFS and the DFT is the location of
the 1/ term. So X|[4]|= V¢, | 4]
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The Discrete Fourier Transform

Because the DTFS and DFT are so similar, and because the DFT 1s
so widely used 1n digital signal processing (DSP), we will concentrate

on the DFT realizing we can always form the DTFS from
e [4]=X[#]/ .
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The Discrete Fourier Transform

Notice that in
1

X[/?]: o 2 X[é]e/%réﬂ//\/

N

the summation 1s over /V values of £, a finite summation. This is

because of the periodicity of the complex sinusoid, & />*”"

in harmonic number £. If £ 1s increased by any integer

multiple of /A the complex sinusoid does not change.

e J2 7 hnl NV — o J2(ftmMNnl N — g J2mhnl NV e J2mmn
1
This occurs because discrete time 7 1s always an integer.

, /77 an Integer
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DFT Example

Find the DFT harmonic function for

X[ﬂ] = (u[ﬂ]— u[ﬂ— 3])* O, [/7]

using 1ts fundamental period as the representation time.

X[ #]= ;(;V)X[”] 2kl ¥
X(A=3 6Ly o[ n)eme

— JOTA/S — 73mA/S 3k/S — 73mA/S
7 e’ e’ —e”’

2 |
: —e
)( _ — 2;hnlS __ _
[A’] o 26 — | o /2mhlS k5 X 2R — kIS
=0 —e e —e

in 374/ 5)= 3¢ /2™ drel (#/5,3)
sin (JZA'/ 5) ’

2
X[[’] _ Ze—jznms _ e—jzn/f/s
77=0
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The Dirichlet Function

drcl(24) drcl(£5)

sin (7 V?)
Nsin(rz)

appears often in discrete-time

The functional form

signal analysis and 1s given the

special name Dirichlet function. drel(£7)
That is \ 0 % 0 {
in(zw Nz
drcl(z, V)= sm.( ) 2 o
Nsin(rz)
-1+
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The DFT Harmonic Function

| .

We know that x[7]=— 2 X[#]e”?™™ so we can find x[7]
N

from its harmonic function. But how do we find the harmonic

function from x[~]? We use the principle of orthogonality like
we did with the CTFS except that now the orthogonality is in

discrete time instead of continuous time.
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The DFT Harmonic Function

Let 7, =", Thenx[n]=(1/ V)Y, X[4]e”™ " =1/ V), X[4]7}.
#=(W) #=(W)
Since the starting point of the summation is arbitrary let it be £= 0 for

convenience. Also let the range of x| 7] be 77, <7< 77,+ /. Now we can

express the inverse DFT 1n matrix form as

x[] e s I ()
xlm+1] L) oy ot e et X[1]
: po o z s
x|y + V1] o gttt e X[ V1]
< - = < Nt S v ~
or as /x = WX,
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The DFT Harmonic Function

We can solve Ax = WX (if W is not singular) for X as X = W' AX. The matrix

equation can be written in the form

X [/70 ] B | 7 ff/\’;o fy/’\jo (¥V-1)
77 +1 my+1 )Y V-1)
x[m+v-1] | LI gt A
_ _ - ) = ’ - f= V-1 ~
or

M=w, X[0]+w, X[1]++w,  X[¥-1]
where W = [WOW1 W ] The first column w, of W is the constant 1,
which can be thought of as a complex sinusoid of zero frequency. The

second column is one cycle of a complex sinusoid, the third is two cycles,

etc. through w, , which is /-1 cycles of a complex sinusoid.
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The DFT Harmonic Function

Below 1s a set of complex sinusoids for /= 8. They form a
set of basis vectors. Notice that the £#= 7 complex sinusoid

rotates counterclockwise through 7 cycles but appears to rotate

clockwise through one cycle. The #= 7 complex sinusoid 1s
exactly the same as the £#=—1 complex sinusoid. This must be

true because the DFT is periodic with period V.

Im(ejZTEkl/l/g ) Im(ej2nkn/8 ) Im(ej2nkn/8 ) Im(ejzﬂkn/g )
k=0 k=1 k=2 k=3
Re(ejZJ'Ckl’l/g ) Re(ejQJ'[kn/8 ) \ Re(ej?,ﬂ:kl’l/g ) Re(ejZJ'ckn/8 )
n n n n
Im(e J2mtkn/8 ) Im(ejZTckn/S ) Im(ejZJ-[kn/8 )
k=5 k=6 k=7
Re(ejZIckn/S ) Re(ejZJ'ckn/8 ) Re(ejzn]m/g )
n n ! n
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The DFT Harmonic Function

The projection of a real vector x in the direction of another

real vectory 1s

x'y
P=—7"Y
y'y
If p=0, x and y are orthogonal. If the vectors are complex-
valued
xy
P=—7Y
y'y

where the x” is the complex-conjugate transpose of x. x’y

and x”y are both the dot product of x and y.
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The DFT Harmonic Function

The dot product of the first two columns of W 1is

W/’\’jo
Vi _ W/\]jo—i_l _ 70 V-1
wiw =[l 1 1] 7Y (=mp ()
Wﬂ0.+/\/—1
| TN

The factor (1 + W+ W) ‘1) is a finite-length geometric

series which can be summed using

-

e N , =1

D=1

=0 R //'-'/—'1
L 1—7
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The DFT Harmonic Function

1— w7
1— 7,

(1+W/v0 +---+W/VV‘1):

and

77

This proves that those two columns of W are orthogonal. Using

1—W;V_W |- "

similar logic 1t can be shown that

0., £ #4£
o, =[) 47

Any two distinct columns of W are orthogonal.
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The DFT Harmonic Function

Starting with
M=w,X[0]+w X][1]+:+w, X[¥V-1]
premultiply all the terms by w;’ to get
wfﬂ&=@x[0]+ﬁfwl X[1]+---+mX[/v—1]=/vX[o]

=N =0 =0
and solve for X[0]
H
x[0]= "2 = win
Wy Wy
=N

The vector X [O ]W0 1s the projection of the vector AX 1n the

direction of the basis vector w,. Similarly, each X|[4|w, is the

projection of the vector AX 1n the direction of the basis vector w,.
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The DFT Harmonic Function

The entire vector X can be found from

V%
W

Vs
W,

Vi
W/Vl

This can be written in summation form as

7y + V=1

X[H= 3 x[ler

/7:/70

This defines the forward DFT.
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The DFT Harmonic Function

The most common definition of the DFT 1is

N-1
X [é] _ 2 < [”] e_/.27ré77//\/ ] X [/7] _ i 2 X [A’] e/ziréﬂ//\/
=0 N S

Here the beginning point for x[] is taken as 77, =0 . This is
the form of the DFT that is implemented 1n practically all computer

languages.
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Convergence of the DFT

 The DFT converges exactly with a finite
number of terms. It does not have a “Gibbs

phenomenon” in the same sense that the
CTFS does
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The Discrete Fourier Transform

X|k| is called the DFT harmonic function of x|7| and k is the
harmonic number just as we have seen in the CTFS. X[n]

and X[k] form a DFT pair based on N points.

x[n]e—277_, X[k]

N

From x| Z X|k|e”*™ ™ we see that x[n] is formed

j2mkn/N eaCh

by a linear combination of functions of the form e
of which has a period N. Therefore X[n] must also be periodic

with period (but not necessarily fundamental period) N.
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Linearity

Time Shifting
Frequency Shifting
Time Reversal

Conjugation

Time Scaling

DFT Properties

ax|[n]+ By[n]«ZF—aX[k]+ BY[k]
X[n—n0]< "@‘;T >X[k]e_j2”k”°/N
X[n]€j27rkon/N< DIT >X[k—k0]

x[=n] = x[N = n]2%7 s X[~k] = X[N — k]
X [n] =227 5 X [-k] = X' [N — k]

0 , otherwise

N—mN , Z[k]=(1/m)X[k]
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DFT Properties

Change of Period N — gN, g a positive integer
(X[k/q] , k/q an integer

X |k|=
q[ | <\O , otherwise

Multiplication - Convolution Duality ~ x[n]y[n]«22"—(1/N)Y[k]® X[k]

N

N

x[n]®y[n]e=F—Y[k]X[#]

where x[n]@y[n]z X[m]y[n—m]

Parseval's Theorem 2 |x[ n]|2 -
n=<N>
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DFT Properties

It can be shown (and 1s 1n the text) that if x [/7] 1s an even
function, X[ 4] is purely real and if x [ ] is an odd function
X | 4] is purely imaginary.
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DFT Pairs

j2rnn/N , DYY
e <

=2 —>mN$,, [k —m]
cos(27mgn / N)« me(.vj >(mN/2)(5mN[k—m4]+5mzv[k+m9])
sin(27gn / N )< ‘@mf]g >(ij/2)(5mN[k+mq]—5mN[k—m6]])
5, [n] 222> m3, , [£]
1225 N$§, [k]

(u[n—no]—u[n—nl])*5N[n]< DI

e—jnk(nl +n )/N

Y (n1 - n, )drcl(k /| N,n, — no)

=S

A\ 4

e
tri(n/N,)*8, [n]«=Z—>N, drcl*(k/N,N,) , N, an integer
sinc(n/w)#* 8, [n]«Z"—> wrect(wk / N) 8, k]
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The Fast Fourier Transtorm
One could write a MATLAB program to implement the DFT.

% (Acquire the input data in an array x with N elements.)

% Initialize the DFT array to a column vector of zeros.
X = zeros(N,1) ;
% Compute the X(k)’s in a nested, double for loop.
for k =0:N-1
forn=0:N-1
X(k+1) = X(k+1)+x(n+1) *exp(-3*2*pi*n*k/N) ;
end

end

[ 8/2/13
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The Fast Fourier Transtform

There is a function in MATLAB fft that accomplishes the same goal and is

typically much faster. This table compares the speeds of the two methods. M

stands for computer multiplies and A stands for computer additions.

y N=27
| 2
2 4
3 8

4 16
5 32
6 64
7 128
8 256
9 512
10 1024

ADFT MDFT AFFT MFFT ADFT / AFFT
2 4 2 1 1
12 16 8 4 1.5
56 64 24 12 2.33
240 256 64 32 3.75
992 1024 160 80 6.2
4032 4096 384 192 10.5
16256 16384 896 448 18.1
65280 65536 2048 1024 319
261632 262144 4608 2304 56.8
1047552 1048576 10240 5120 102.3

DFT / MFFT

4
4
5.33

12.8
21.3
36.6
64
113.8
204.8
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Generalizing the DFT for
Aperiodic Signals

Pulse Train

X[ 7]

A A I A

This periodic rectangular-wave signal 1s analogous to the
continuous-time periodic rectangular-wave signal used to
illustrate the transition from the CTFS to the CTFT.
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Generalizing the DFT for
Aperiodic Signals

/VW =35, /\/O =22
DFT of X[4|
. 11
Pulse Train - .y
-88 88

As the period of the
rectangular wave
increases, the period of
the DFT increases
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Generalizing the DFT for
Aperiodic Signals

Normalized v, I ;[ ;]\?:22
DFT of ! é
Pulse Train 1 T
N =5N =44
By plotting versus £/ /V, H|X[ﬂ|
instead of £, the period o %
of the normalized DFT V=5, H 8

stays at one.
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Generalizing the DFT for
Aperiodic Signals

The normalized DFT approaches this limit as the
period approaches infinity.

X[k]l

11

[ 8/2/13
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Definition of the Discrete-Time
Fourier Transtform (DTFT)

Inverse

F Form

X[n] = JIX(F)eJZ”F” dF «<— X(F)= 2 x[n]e‘ﬂ’””1

Forward

o0

n=—o0

Inverse

_E 21

(2 Form

Forward

X(ejg)ejQ” dQ < X(ejg)z 2 X[n]e_jQ”
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The Discrete-Time Fourier
Transform

The function ¢ /* appears in the forward DTFT raised to the #th power.
It 1s periodic 1n € with fundamental period 2. 7 1s an integer. Therefore

¢’ is periodic with fundamental period 27 /7 and 27 is also a period

of ¢7*. The forward DTFT is
X(e’Q )= 2 X [/7]8_/9”

J]=—00

JQn

a weighted summation of functions of the form ¢ ", all of which repeat with
every 27 change in Q. Therefore X(e’ Q) 1s always periodic i 2 with period

27. This also implies that X (/) is always periodic in # with period 1.
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DTFT Pairs

We can begin a table of DTFT pairs directly from the definition.

(There 1s a more extensive table in the text.)

5[n]Z—1
o u[n] -~ ejgjfazl_;e_m o<1 P Y ejjjfazl_;e_p o] >1
o sin(Qn)u[n] <2 e_;qj‘si‘(f:zg))m lal<1 . — o sin(@un)u[-n—1]Z e_;fa:“‘:o(:(zg))m o> 1
o cos(@unuln]tos— L @S] s(@un)ufen— 1] LS @]

e”*? = 2ae’ cos(Q, ) + & e =20’ cos(Q, )+ &
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The Generalized DTFT

By generalizing the CTFT to include transforms that have impulses

we were able to find CTFT's of some important practical functions.
The same is true of the DTFT. The DTFT of a constant

X(F): i /46—/'27[/‘7/7 :[42 e—jZﬂ'F/?

does not converge. The CTFT of a constant turned out to be an
impulse. Since the DTFT must be periodic, that cannot be the
transform of a constant in discrete time. Instead the transform must

be a periodic impulse.
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The Generalized DTFT

Find the inverse DTFT of a periodic impulse of the form A8, (F).

Using the formula
1/2
x|n|= J.1A51 (F)e’*™™dF = A J S5(F)e’*™™ dF = A
-1/2

proving that the DTFT of a constant A is Ao, (F ) or, in radian-

frequency form A«~Z—27AS, (Q).

[ 8/2/13 M. J. Roberts - All Rights Reserved 43 ]




The Generalized DTFT

Now consider the function X(F)=AS,(F—F,) , —1/2<F,<1/2.
Its inverse DTFT 1s

1/2
X[n]:J1A51(F_Fz))ej27andF:A J- 5(F_F6)ej27andF:Aej27rFon

—1/2
Now change x[n] to Acos(2mFyn)=(A/ 2)(ej2”F0” + e‘jz”FO”).
Then
Acos(2nFyn)«2—(A/2)| §,(F-F,)+6,(F+F,) ]
or

ACOS(Qon)@ﬂ:AI:ézn (Q _ QO ) + 527r (Q + QO ):I
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Forward DTFT Example

Find the forward DTFT of x|n]|= u[n — no] — u[n - n, ]

(o) nl—l

u[n_nO]_u[n_nl]é 2 (ll[n—no]—u[n—nl])e_ﬂﬁ” = 2 Rt

n=—c0 n=n
Letm =n—n,. Then

l I’LO 1 nl—no—l

—277:F+ —j2rnF. —Jj2rnF.
u[n—ny|-u[n- nl%xe’ (mem) — gmi2nim Je
m=0

e
m=0

Summing this geometric series

—j27rF(n1—nO)
T _—j2mFn, l—e

uln—ny|-u[n—n|«Z>e

1 . e—jZn’F
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Forward DTFT Example

—j27:F(n1—n0)
—j2mFn, l—e

u[n—n,|-u[n—n|«Z—e o

—jmF(n—ng) —jr

Factor out e from the numerator and ¢ ’* from the denominator

~jmF(n—ng) ej”F(nl—”o) _ e—jﬂF(”l—no)

v —j2nF
u[n—n,|-u[n—n, [«ZLse ™

—jnF Tl —jnkF
e’ e’ —e/

By the definition of the sine function in terms of complex exponentials

e—jﬂF(”o+”l) Sin(ﬂF(nl — Ty ))

—_— —_— — y4 g AN
T e e
o —jn’F(no+n1)
u[n—n,|-u|n—n |2 i (n, —n, )drcl(F,n, —n,)
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Forward DTFT Example

Consider the special case of n, +n, =1= n, =1—n, (making the
function a periodic repetition of a discrete-time rectangular pulse
of width 2n,+1 centered at n =0).
sin(ﬂ:F(n1 —n, ))

sin(77:F )

T
u[n—n,|-u|n—n ]«

u[n— no]—u[n— nl]#(rzl —no)drcl(F,n1 - no) , n,+n,=1
Compare this to the CTFT of a rectangular pulse of width w centered
atr=0.

sin(7zwf)
T f

The DTFT is a periodically-repeated sinc function and also a Dirichlet

rect(¢/w)«~Z— wsinc(wf) =

function.
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More DTFT Pairs

We can now extend the table of DTFT pairs.

5[n]«Z—1
1 . 1

[l +(1/2)3,(F) C e (Q)

sinc(n / w)«Z—wrect(wF)*§,(F) . sinc(n/w)«Z—wrect(wQ/2m)*6,, (Q)
trl(n w)(—)wdrch (F w) , tri(n / w)@wdrcl2 (Q / 271:,w)
12—, (F) : 1+2—276,,(Q)
5N0 [n]@(l/No)&/No (F) ) 5N0 [n]#)(271’/N0)52mN0 (Q)
cos(ZEE,n)é(l/2)[51(F—FO)+51(F+E))] : cos(QOn)éﬁ[ézﬂ (Q—QO)+52”(Q+QO)]
sin(2Fyn) 2= (j/2)[8,(F+F)-6,(F-F)] .  sin(Qun)«Z> jr[5,,(Q+Q,)-6,,(2-Q,)]
i2nF —jmF(ng+n)
u[n _ no] _ u[n _ nl] T e‘;;F — (e—jZIrnoF _ e—jzan) - eeT(nl _ no)drcl(F,nl _ no)
- ejQ - - e—jQ(n0+nl)/2
u[n—no]—u[n—nl] : ejQ—l(e_jno —e M ):e—j—Q/Z(nl —no)drc:l(Q/271',n1 —no)
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DTFT Properties

ax[n]+By[n]«L—aX(F)+BY(F) , ocx[n]+ﬁy[n]@aX<e’Q)+ﬁY(e’Q)

x[n—n,|e«ZL—se ™ X(F) x[n—n, |eZ— e X(™)
0 x|« L X(F~F) . ™ x[n]eL— X (")
It y[n]= {z[n/m] | ’otz ;';11:: imeger} then y[n]«Z— X (mF) or y[n]«Z—X(e")
K [ X (—F) | X [n]eEX ()
x[n]-x[n-1]L—>(1-e)X(F) , x[n]-x[n-1]L>(1-e7)X(e™)
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DTFT Properties

5, st X Ixoa ). 3 e X (o), o
x| - n]%X( F) , x[-n]e—Z X (e7?)
x[n]xy[n]e=—X(F)Y(F) , x[n]#y[n]eZ=X(e)Y(e)
x[n]y[n]e"—X(F)@ Y(F)™™ . x[n]y[n]eZ—(1/27) X ()@ Y ()™
Ze’z " =§,(F) , iejg":27r52ﬂ(£2)
ni\X[ﬂ]\z = [[X(F) aF ni‘x[n]‘z =(1/27) |, [x(e®) a2

(Note: x(t)@y(t)= JTX(T)y(t —7)dt where T is a period of both x and y)
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DTFT Properties

Find the inverse DTFT of
X(F)= [rect(SO(F -1/ 4)) + rect(SO(F +1/ 4))} 0, (F)
Start with
sinc(n /w)«Z—wrect(wF )5, (F)
In this case w = 50.
(1/50)sinc(n/50)«Z—rect(50F)* 6, (F)
Then, using the frequency-shifting property
e’ x[n]«~— X(F - F,)

e’ (1/50)sinc(n/50)«~—rect(50(F —1/4))*8,(F)
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DTFT Properties

Frequency shifting the other direction
e ™" (1/50)sinc(n/50)«Z—rect(50(F +1/4))*6,(F)
e +e

2

Combining the last two results and using cos(x)=

(1/25)sinc(n/50)cos(zn/2) "
| rect(50(F —1/4))+rect(50(F +1/4)) |6, (F)
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DTFT Properties

Time scaling in discrete time 1s quite different from time
scaling in continuous-time. Let z [/7] =X [aw]. If 2 1s not an

integer, some values of z| 7| are undefined and a DTFT cannot

be found for it. If & is x [l
an integer greater than ! W’TMTWL"‘J%%”
one, some values of x [/7]
will not appear in z| 7] %yln]
because of decimation and %J“‘ J*LF‘WJTLTLLU'LWJ‘LLLWLW
there cannot be a unique {F

zinl | ||

relationship between their ™[ || || =oeereereeeee ‘
DTFT’s IMWFLMTL% n
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DTFT Properties

Time scaling does not work for time compression because of

decimation. But it does work for a special type of time expansion.

Let z[n]z{

So the time-scaling property of the DTFT 1is

/ , n/ Int
x[n m] n mar.lln eger Then Z(F):X(mF)
0 , otherwise

[ ] X[n/m] , n/m an integer Z[”]@X(WF)
z|ln|= : .
0 , otherwise or z[n]éX(e’mQ)
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DTFT Properties

In the time domain, the response of a system 1s the convolution

of the excitation with the impulse response of the system
yl7z]=x[7]<h[~]

In the frequency domain the response of a system 1s the product

of the excitation and the frequency response of the system

Y(e")=X (" (")
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DTFT Properties

Find the signal energy of x[#]|=(1/5)sinc(#/100). The
straightforward way of finding signal energy is directly from

the definition £ = i ‘X [/7]‘2

J]—=—00

E.= Y |(1/5)sinc(#/100) = (1/25) Y sinc?(2/100)

J]=——00 J]=——00

In this case we run into difficulty because we don't know how

to sum this series.
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DTFT Properties

We can use Parseval's theorem to find the signal energy from
the DTFT of the signal.

(1/5)sinc(n/100)«~—20rect(100F)* &, (F)

Parseval's theorem 1s

i x[n] = jl\X(F)\2 dF

Nn=—oo

For this case
1/2
E, = | [20rect(100F )5, (F)| dF = | [20rect(100F)" dF

-1/2
1/200

E_ =400 j dF = 4

-1/200
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Transtorm Method Comparisons

A system with transfer function

z
(z—0.3)(z+0.8)
1s excited by a unit sequence. Find the total response.
Using the DTFT

Y(e?)=H( )X (")

H(z)= , |4>0.8

e x(#ﬂﬁ (Q))
(¢°-03)e?+0.8) \1-¢ "7

. J
Vo

DTFT of Impulse Response DTFT of Unit Sequence

6'/29 €/Q
(P 03) P 08) 1) " (P ooayrro5) )
-0.1169  0.3232  0.7937 r
P03 P08 Pl (1-0.3)(1+ 0.8)52” (@)

Y ()=

Y(M)=
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Transtorm Method Comparisons

Using the equivalence property of the impulse and the periodicity of
both 6, (Q) and e’Q

—0.1169¢ 7 | 0.3232¢ 2 0.7937¢
Y ()= + +2.49336,, (Q
(") 1- 03ef9 T1r08e” | 1-g7 2 (D)
—0.1169¢ "  0.3232¢ " e’
Y ()= +0.7937 + 75, (Q
()= 1-03¢7 110867 (1—6 7t )]
—0.793775,, (Q)+2.49336,,, (Q)
-0
—0.1169¢ " | 0.3232¢" e’
Y ()= +0.7937 +75,,, (Q
()= 1-03¢7 140867 (1—6 70 )j

y[7]=]-0.1169(03) " +0.3232(-0.8) " +0.7937 |u[#-1]
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Transtorm Method Comparisons

A system with transfer function

H(z)=—— .

z—09
is excited by the sinusoid x|[n]=cos(27n/12). Find the response.

cos(2mFyn)«Z—(1/2)| 8,(F-F,)+6,(F+F,)|

z|>0.9

i2nF
e]

Y(F)=— 09><(1/2)|:51(F—1/12)+61(F+1/12)]
e — V. \ iy v
\DTFT o}rlmpu lsej DTFT of Excitation
Response
aer O (F=1/12) 6, (F+1/12)
V()=(112) 2o CATLIR) e ST LIS
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Transtorm Method Comparisons

Using the equivalence property of the impulse and fact that both
¢”™" and 6,(#) have a fundamental period of one,
6 0, (F7— 1/12) 5(F+1/12)
_ /6 /6
V()= () ot AL, e LT

Finding a common denominator and simphfylng,

5, (7=1/12)(1-0.9¢™ )+ 8, (F+1/12)(1-0.9¢")
1.81—-1.8cos(7/6)

Y(#)=0.4391[ 6, (F-1/12)+6,(#+1/12)]
+/0.8957[ 8, (#+1/12)-6,(F-1/12)]
y|7]=0.8782cos(27/2/12)+1.7914sin(2772/12)
y|7]=1.995cos(2772/12-1.115)

Y(#)=(1/2)
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Transtorm Method Comparisons

The DFT can often be used to find the DTFT of a signal. The

DTFT is defined by X(#)= Z x[7]e/*""” and the DFT

J1=—00

N—-1
is defined by X[4]=) x[#]e ™. If the signal x[#] is causal

7=0

and time limited, the summation in the DTFT 1s over a finite
range of #~ values beginning with 0 and we can set the value of

/N by letting /—1 be the last value of 7~ needed to cover that finite

N-1
range. Then X(#)=) x[z]e”*"”. Now let #— #/ V yielding

7=0

X(F1 W)= x[1]e = X[4]

7=0
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Transtorm Method Comparisons

The result
N-1
X(#1 V)= x[n]e ™" = X[#]
7=0

is the DTFT of x [/7] at a discrete set of frequencies /= £/ /V or
Q=2nk//N. If that resolution in frequency is not sufficient, /
can be made larger by augmenting the previous set of x [/7] values
with zeros. That reduces the space between frequency points
thereby increasing the resolution. This technique is called zero

padding.
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Transtorm Method Comparisons

We can also use the inverse DFT to approximate the inverse DTFT.

The inverse DTFT is defined by x[7]= JI X(»)e*™ " dF

N-1
and the inverse DFT is defined by x[#]= /\l/ Y X[#]e> .
#=0

We can approximate the inverse DTFT by

(1Y NV

N BV | M- |
x[#]zY, | X1 V)P ar="y X(#I V) | & ar
~0 N #=0 HN
N-1 2r(fHll N 2mkIN 2rnlN 1 N=1 .
[z Y X (41 M)E IS X )
#=0 Jinn J2nn 5

N-1
x[7]z & sinc(n/ N)AL/Z X (£ V)™
#=0
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Transtorm Method Comparisons

For n<< /V,
~ l N 2hnl N
x[7]z =Y. X(#/ ¥)e
NS
This is the inverse DFT with X[4]= X(4#/#).
Use this result to find the inverse DTFT of

X(#)=]rect(50(#-1/4))+rect (50(#+1/4))]+6,(#)
with the inverse DFT.
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Transtorm Method Comparisons

N =
k

%
%

512 ; % Number of pts to approximate X(F)
[0:N-1]'; % Harmonic numbers
Compute samples from X(F) between @ and 1 assuming

periodic repetition with period 1

X =rect(50*(k/N-1/4)) + rect(50*(k/N-3/4));

%
%

Compute the approximate inverse DTFT and

center the function onn =0

xa = real(fftshift(ifft(X))) ;

n=[-N/2:N/2-1]"; % Vector of discrete times for plotting

%

Compute exact x[n] from exact inverse DTFT

xe = sinhc(n/50).*cos(pi*n/2)/25;
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Transtorm Method Comparisons

Exact

0.05

-0.05 -

S e i ‘imﬂﬂh..ﬂ Ir..ﬂmnhﬁ, i R
= RN it :

| 1 | | | | | | |

-250

-200 -150 -100 -50 0 50 100 150 200

Approximation Using the DFT

250

0.05

T T

1 | 1 | 1 | | 1 |

-0.05 -
-250

-200 -150 -100 -50 0 50 100 150 200
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The Four Fourier Methods

Continuous Discrete
Frequency Frequency
Continuous CTFT CTES
Time
Dls.crete DTFT DET
Time

[ 8/2/13 M. J. Roberts - All Rights Reserved




Relations Among Fourier Methods

Multiplication-Convolution Duality

Discrete Frequency Continuous Frequency
Continuous Time  x(¢)y(¢)«Z"—=X[k]*Y[k] x(¢)y(t)«Z—=X(f)*Y(f)
Discrete Time  x[n]y[n]«Z—Y[k]® X[k] x[n]y[n]«Z— X(F)® Y(F)

Discrete Frequency Continuous Frequency
Continuous Time  x(t)®y(¢)«Z—T, X[k|Y[k] x(¢)*y(t)«——X(f)Y(f)
Discrete Time  x[n|®y[n]|«Z"— N, Y[k]|X[k] x[n]*y[n]«ZL— X(F)Y(F)
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Relations Among Fourier Methods

Parseval’s Theorem

Discrete Frequency Continuous Frequency

Continuous Time %L |x(1‘)‘2 ar= i |X[A’]|2 ]i|x(f)‘2 ar= T|X(f)|2 a
o oo o0 oo

oo

J]——00

Discrete Time 3 [x[#[ =— ¥ X[ X k[T =[x ()
=) =)
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Relations Among Fourier Methods

Time and Frequency Shifting

Discrete Frequency Continuous Frequency
Continuous Time  x(7—t,)«"—c [k]e ™™  x(t—t,)«ZL— X(jw)e ™"
Discrete Time X[n—no]&X[k]e‘f“k”O/N X[H—HO]AX(QJQ)Q_]Q”O
Discrete Frequency Continuous Frequency

Continuous Time  x(#)e™*™" «Z—c [k—k,| x(t)e"’™ %X(J((U—wo))

DiSCI’CtC Tlme X[n]e+]2ﬂkn/N NOS’ X[k k ] X[n] +jQon : s X( (Q—Qo))
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Relations Among Fourier Methods

x(1) X
Lit . ‘
vy I)I([k]l 6 ff
Y -4 4
it | !
X £X(f)
. A X[k] g -t o
T - [+ nt 2 73 -4 |_| |—| j
0 AN L L,
I S
b 0
CTFS CTFT
IX( F)l
2N +1
x[n] ] \! ![ NE !l \n !l L !l
X|n F
l : = 1 }"2{\.;1‘+| ?
i £X(F)
N,, | , n o4
Nw N
- -2 2 F
N, N, R
DFT DTFT
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