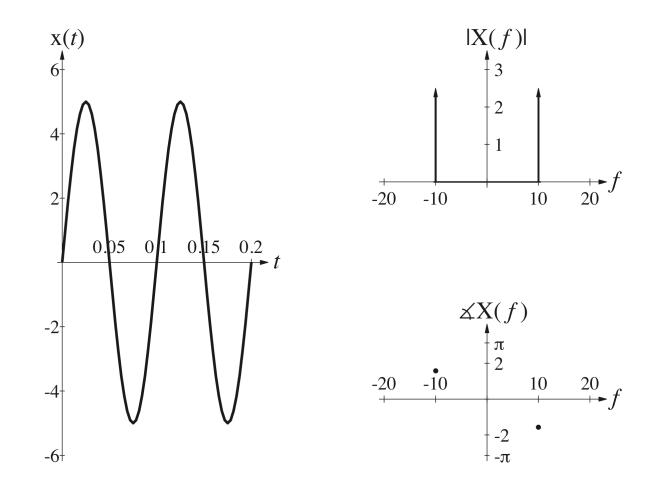
Original Continuous-Time Signal

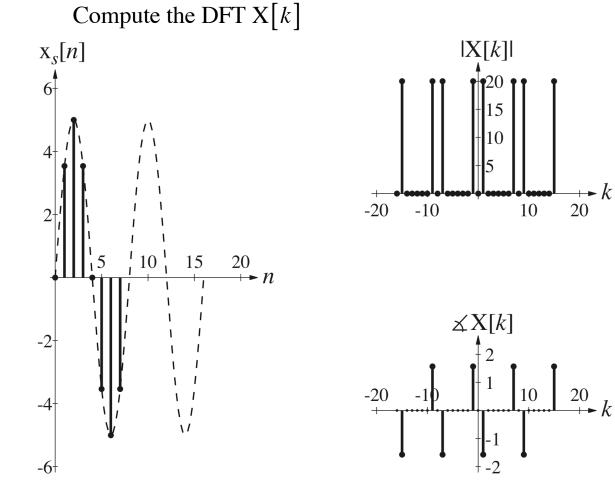
$$\mathbf{x}(t) = 5\sin(20\pi t) \longleftrightarrow (j5/2) \left[\delta(f+10) - \delta(f-10)\right]$$



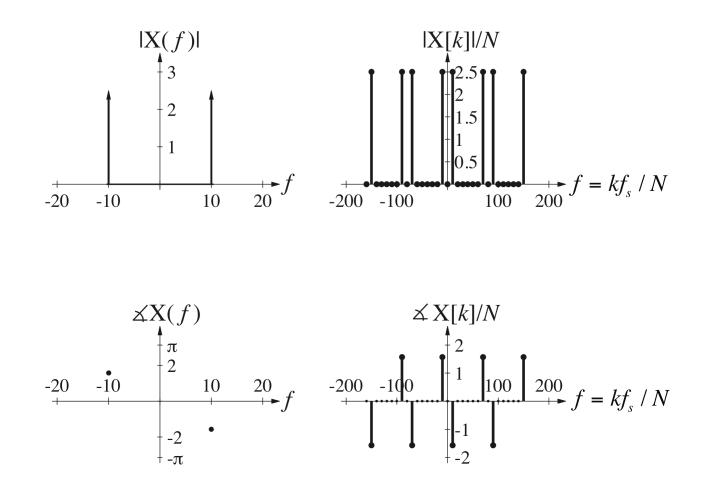
Sample at 80 Hz ($f_s = 80$) $\Rightarrow T_s = 1/80$ $x_s[n] = 5\sin(20\pi nT_s) = 5\sin(\pi n/4)$

Use first 8 points (one period)

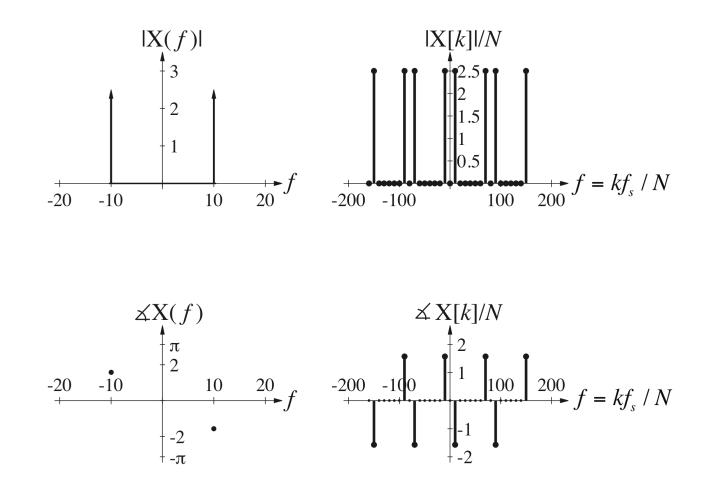
$$\mathbf{x}_{sw}[n] = \begin{cases} 5\sin(\pi n/4) &, \ 0 \le n < 8\\ 0 &, \ \text{otherwise} \end{cases}$$



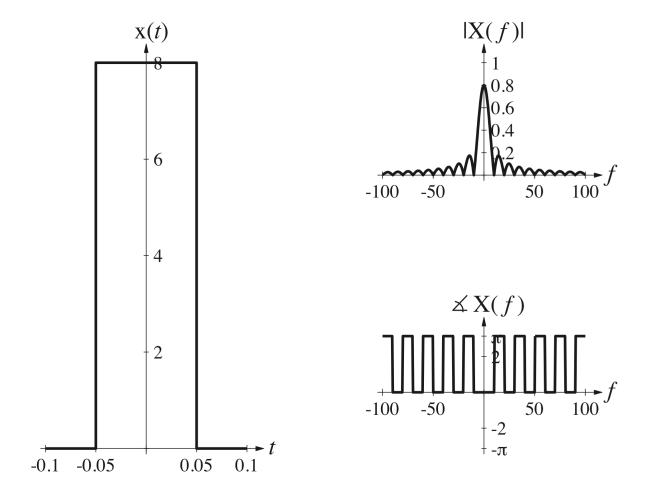
Scale the DFT by dividing by *N*. Graph versus frequency kf_s / N instead of harmonic number *k*.

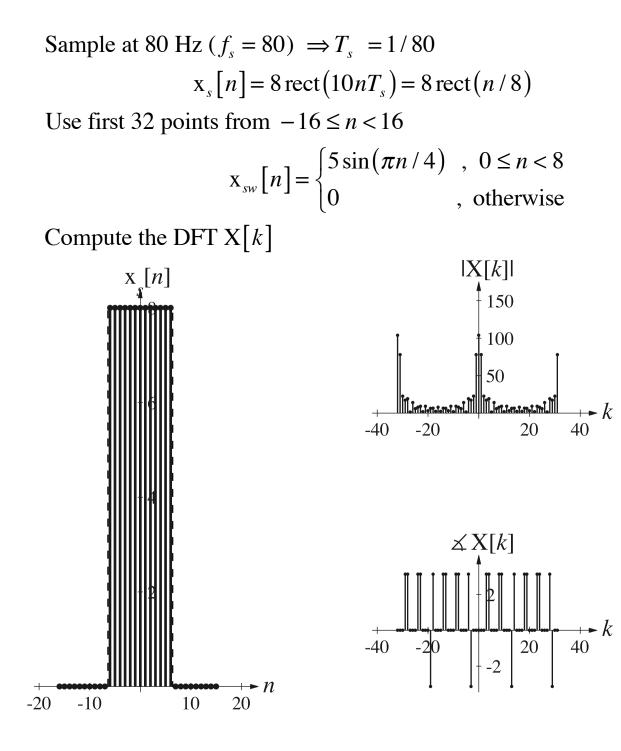


Compare the CTFT of the original signal to the (scaled) DFT of the samples. Notice that the base period ($-4 \le k < 4$ or $-40 \le kf_s / N < 40$) of the scaled DFT has the same two impulses at the same two frequencies as the original CTFT.

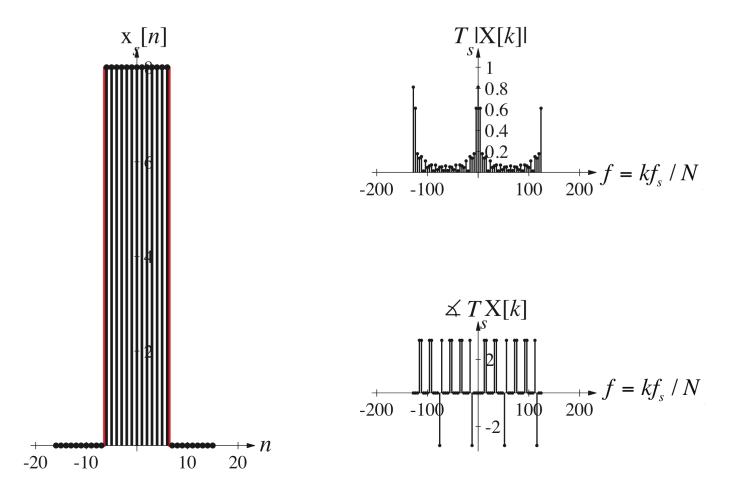


$$\mathbf{x}(t) = 8 \operatorname{rect}(10t) \longleftrightarrow 0.8 \operatorname{sinc}(f/10)$$





Scale the DFT by multiplying by T_s . Graph versus frequency kf_s / N instead of harmonic number k.



Compare the CTFT of the original signal to the (scaled) DFT of the samples. Notice that the base period $(-16 \le k < 16 \text{ or } -40 \le kf_s / N < 40)$ of the scaled DFT is now (approximately) a sampled version of the original CTFT.

