
Let Rp = 2 kΩ , a = 4 , Rs = 6 kΩ , Cs = 500 nF
Draw a Bode diagram of the magnitude and phase of the frequency

response H jω( ) = Vs jω( )
Vin jω( ) .
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The secondary impedance reflects through the ideal transformer to an 
equivalent primary impedance of

Zp jω( ) = Zs jω( ) / a2 = Rs / a2

jωRsCs +1
.  The primary voltage is then 

Vp jω( ) = Zp jω( )
Rp + Zp jω( )Vin jω( ) =

Rs / a2

jωRsCs +1

Rp +
Rs / a2

jωRsCs +1

Vin jω( )

           = Rs / a2

jωRpRsCs + Rp + Rs / a2( )Vin jω( )



Vp jω( ) == Rs / a
2

jωRpRsCs + Rp + Rs / a
2( )Vin jω( )

Vs jω( ) = aVp jω( )⇒Vs jω( ) = Rs / a
jωRpRsCs + Rp + Rs / a

2( )Vin jω( )

H jω( ) = Rs / a
jωRpRsCs + Rp + Rs / a

2( ) =
1

aRpCs

1

jω +
Rp + Rs / a

2

RpRsCs



 

Putting the frequency response into a form that illustrates the simple 
system components,
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.  The single real pole is at jω = −395.8.





Let C1 = 20 nF , R1 = 20 kΩ , C2 = 100 nF , R2 = 5 kΩ and K = 8.
Draw a Bode diagram of the magnitude and phase of the frequency

response H jω( ) = Vout jω( )
Vin jω( )  of this Sallen-Key bandpass filter.
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H jω( ) = Vout jω( )
Vin jω( ) =
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Substituting in numerical values

H jω( ) = −571.4 jω
jω( )2 + 4429 jω( ) + 5 ×106

Poles at s = −2214.5 ± j309.82 ⇒ Underdamped





A signal generator generates a 
constant-amplitude, variable-
frequency analog sinusoid that 
is sampled at a rate of 1 kHz to
form the input signal for this 
bandpass digital filter.  Find the 
frequency of the signal generator
that corresponds to the center 
frequency of the filter.  Also 
find the effective -3dB bandwidth 
of the filter by finding the signal
frequencies at which the power 
of the output signal is half of its 
value at the center frequency.



This filter's block diagram is drawn in Direct Form II so the transfer function

is H z( ) = 12.38z4 − 24.77z2 +12.38
z4 −1.989z3 + 2.656z2 −1.675z + 0.711

 and the frequency

response is H e jΩ( ) = 12.38e j4Ω − 24.77e j2Ω +12.38
e j4Ω −1.989e j3Ω + 2.656e j2Ω −1.675e jΩ + 0.711

.



Squared Magnitude of the Frequency Response.





The digital center frequency is Ω = 0.999 radians/sample.  That
corresponds to a signal generator frequency of ω = 999 radians/second
or 159 Hz.  The -3dB points are at
                Ω = 0.8785 radians/sample ⇒139.82 Hz
                Ω = 1.124 radians/sample ⇒178.90 Hz
for a half-power bandwidth of about 39.1 Hz.



 

A signal x t( ) = 4 cos 2000πt( )cos 200πt( )  is sampled at its Nyquist rate.  
What is the signal power of the resultant discrete-time signal x n[ ]?
The Nyquist rate is 2200 samples/second.  Therefore

x n[ ] = 4 cos 2π 5 /11( )n( )cos 2π 1 / 22( )n( ) = 2 cos 2π 9 / 22( )n( ) + cos πn( )⎡⎣ ⎤⎦
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Alternate Solution:
A signal x t( ) = 4 cos 2000πt( )cos 200πt( )  is sampled at its Nyquist rate.  
What is the signal power of the resultant discrete-time signal x n[ ]?
The Nyquist rate is 2200 samples/second.  Therefore
x n[ ] = 4 cos 2π 5 /11( )n( )cos 2π 1 / 22( )n( )
X F( ) = δ1 F − 5 /11( ) +δ1 F + 5 /11( )⎡⎣ ⎤⎦ ∗ δ1 F −1 / 22( ) +δ1 F +1 / 22( )⎡⎣ ⎤⎦
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X F( ) = 2δ1 F −1 / 2( ) +δ1 F − 9 / 22( ) +δ1 F + 9 / 22( )
Px = 22 +12 +12 = 6



A signal x t( ) = 4 cos 2000πt( )cos 200πt( )  is sampled at twice its Nyquist rate.  
What is the signal power of the resultant discrete-time signal x n[ ]?
The Nyquist rate is 2200 samples/second.  Therefore

x n[ ] = 4 cos 2π 5 / 22( )n( )cos 2π 1 / 44( )n( ) = 2 cos 2π 9 / 44( )n( ) + cos πn / 2( )⎡⎣ ⎤⎦
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It can be shown that this answer is the same for any sampling rate that is greater than the
Nyquist rate.  Why is this signal power less than the previous signal power?



A signal x t( ) = 4 cos 2000πt( )sin 200πt( )  is sampled at twice its Nyquist rate.  
What is the signal power of the resultant discrete-time signal x n[ ]?
The Nyquist rate is 2200 samples/second.  Therefore

x n[ ] = 4 cos 2π 5 / 22( )n( )sin 2π 1 / 44( )n( ) = 2 cos 2π 9 / 44( )n( ) + sin πn / 2( )⎡⎣ ⎤⎦
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It can be shown that this answer is the same for any sampling rate that is greater than the
Nyquist rate.  This is the same as the previous signal power.



 

A signal x t( ) = 4 cos 2000πt( )sin 200πt( )  is sampled at its Nyquist rate.  
What is the signal power of the resultant discrete-time signal x n[ ]?
The Nyquist rate is 2200 samples/second.  Therefore

x n[ ] = 4 cos 2π 5 /11( )n( )sin 2π 1 / 22( )n( ) = 2 sin 2π 9 / 22( )n( ) + sin πn( )⎡⎣ ⎤⎦
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Why is this signal power less than the previous two signal powers?


