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Web Appendix L - The DFT in Relation
to the Other Fourier Methods - With
Examples

L.1 Approximating the CTFS Using the DFT

The harmonic function of a periodic signal with period T_ is

jT x(t)e "t

E

1
X I: k:l =
TF
Since the starting point of the integral is arbitrary, for convenience setitto t =0

X[k]= Ti ! x(t)e " dt.

F

Suppose we don’t know the function X(t) but we have a set of N_ samples over one

period starting at t=0, the time between samples is T.=T_/N_. Then we can
approximate the integral by the sum of several integrals, each covering a time of length

T

S
N

-1 (n+1)T,
X[k]z_l_i [ j x(nTs)ejZ”kfF”TSdt] (L.1)

F n=0 nT,

(Figure L-1).
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Figure L-1 Sampling an arbitrary periodic signal to estimate its CTFS harmonic function

(In Figure L-1, the samples extend over one fundamental period but they could extend
over any period and the analysis would still be correct.) If the samples are close enough

together X(t) does not change much between samples and the integral (L.1) becomes a
good approximation. We can now complete the integration.
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For harmonic numbers ‘k‘ << N_ we can further approximate the harmonic function as

N -1

Ni 2 X(nTs)e—jZﬂ:nk/NF

F n=0

X[k]

n

) X[k]=(1/N,.)x DFT (x(nT)) .

This result returns a set of harmonic function values in the range 0 <k <N_ which

repeat periodically with period N_. The values of X[k] for ‘k‘ << N_ and k negative
can be found from X[k]= X[k + NF]. So, for example, to find X[—l], find its
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periodic repetition X[ N_ —1] which is included in the range 0 <k <N_. The set of
harmonic function values in the range —-N_<<-k <k<k <<N_ is the
approximation of the actual harmonic function. Smaller values of T , implying larger

values of N_, yield better approximations.

Now assume that we know numerical values of a harmonic function X[k] of a

periodic continuous-time function X(t), in the range —N_<<-k <k<k <<N_
and that the signal power is negligible outside that range and we want to find samples
from one period of X (t) . The CTFS is

( ) Z X[k] glamdet - 2 Xl:k:'eJZn:kf et

k=—co

If the time samples of X (t) are taken at integer multiples of T. =T_/N_, then

N /2-1
T)= X k ]27T|(n/NF _ X Jerkn/NIE
(im)= 3 X[ = S X
and
/
(nT)E 2 Xext[k:l JZn’kn/NF+N221X9Xt|:k]e12ﬂkn/N

k==N./2

X[k], =k <k<k,

0 . <[K|<N, 12 and X_ [k]=X_ [k+mN_] where
! max =

where X_, [k] = {

m

is any integer. Then, taking advantage of the periodicity of X_, [k],

Np-1 Ng/2-1 N -1

( ) z Xext[k:l pi2mk/Ng Z XEth:k]eJZEKn/NF - F(]_/NF);XeXtD(]ejmn/NF

k=N /2

DFT (X, [K])
or

x(nT,) =N, x DFT 2(x, [k]).

L.2 Computing the DTFS Using the DFT

The forward and inverse DTFES formulas are
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(K= 3 e L x[n]= B X[ w

=M k=(Ng)

>

If the time-domain function X[n] is bounded on the representation time n, <n<n,+N_

the harmonic function can always be found and is itself bounded because it is a finite
summation of bounded terms.

The summations in (L.2) should look familiar. In

Ny +Np -1

2 X[n]e—jann/NF

n:no

if we let n; be zero we get

N -1

—j2rkn/N
2 x[n]e F

E

and this is the DFT, first encountered in approximating the CTFS numerically in Chapter

8. So the DFT and the DTFS are very similar, differing only by a scale constant N_ if the
choice of the first n in the summation

Ny +Np -1

2 X[n]e—jann/NF

n:no

is ny=0. As was true for the DFT, the DTFS harmonic function is periodic with period
N_.. Summarizing, if a signal x[n] has a fundamental period N, and N_ is an integer

multiple of N, its DTFS harmonic function is
X[k]=(1/N,)DFT (x[n]) , 0<k<N, (L3)
where 0<n<N_. Conversely, X[n] can be found from X[k] as

x[n]= DFT (N, X[k]) , 0<n<N,

L.3 Approximating the CTFT Using the DFT

In cases in which the signal to be transformed is not readily describable by a
mathematical function or the Fourier-transform integral cannot be done analytically, we
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can sometimes find an approximation to the CTFT numerically using the DFT. The CTFT
of a signal X(t) is

X(f)=[x(t)e > "dt .

—oco

If we apply this to a signal that is causal we get

x(f):Ix(t)e‘JZ”“dt.

We can write this integral in the form

X(f)=Y, [ x(t)e > "dt.

n=0 nT

s

If T, is small enough, the variation of X(t) in the time interval nT, <t < (n + 1)Ts is small
and the CTFT can be approximated by

. (v,
X(f)=Xx(n) [ et

n=0 T,

or K
o -jerntT —j2;zf(n+1)Ts
X(f)=2x(m)——,
or
X(f):ﬂ S x(nT )e—jznms —Te i sinc(T f)ix(nT )e_,-zﬂms
B j27Z'f =0 s s s < s
(Figure L-2).
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Figure L-2 A signal and multiple intervals on which the CTFT integral can be evaluated

If X(t) is an energy signal then beyond some finite time its size must become negligible

and we can replace the infinite range of n in the summation with a finite range 0 <n < N_
yielding
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X(f)sze""ths sinc(Tsf)NF1x(nTS)e“'2’””Ts .

n=0

Now if we compute the CTFT only at integer multiples of f /N_= f_, which is the
frequency-domain resolution of this approximation to the CTFT,

X(kfF ) = Tse_j”kfFTs Sinc(TskfF ) Nilx(n_l_s)e—Jz;zkanTS
or

X(kf)=T.e ™™ sinc(k /N ) Y x(nT, Je " .

n=0

The summation in this equation is the DFT of X (nTS) . Therefore
X(kf.)=T.e ™" sinc(k / N )x DFT (x(nT,))
where the notation DFT () means “discrete Fourier transform of”. For ‘k‘ <<N_,

X(kf.)=T, x DFT (x(nT,)) - (L4)

So if the signal to be transformed is a causal energy signal and we sample it over a time
containing practically all of its energy and if the samples are close enough together that
the signal does not change appreciably between samples, the approximation in (L.4)

becomes accurate for ‘k‘ << N -

oo

The inverse CTFT is X(t) = JX( f )ejz”ﬁdf . If we know X(kfF) in the range

—oco

-N_<<-k <k<k <<N_ and if the magnitude of X(kfF) is negligible outside that
range then

Kow (K+Y)f - (k+1) £
x(t)= Y, [ x(kf)e"df = Y X(kf.) [ e "df
k==K ax kfe k==K ax kfe

Konae [P Gl k iemt(k+1)fe  jomtkf,
()= 3 X(kfF)[ejzm} -3 x(kfp){e " ]

k=- kma>< kfF k :_kmax

e j 277.'th _ 1 kmax

x(t) == ) X(kfF)e‘iz”tkfF

j 27[t k:_kmax

L-6
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If we compute X (t) only at a discrete set of points nT_,

eJern/N . e - smc(n/N ) Kinax 2k,
()= St 8 i Joe o SRR o

max

smc(n/N ) Ne/2-1

(nT)~ jen/N TN k__%/zxm(kf ) j2mnk/N

X(k.) \ —k, <ks<k, and X, (kG ) = X, ((k+mN,) 1,)

where Xext(kfF): 0 k <M<N /2
) max - F

where m is an integer. Taking advantage of the periodicity of X_, (kfF ) ,

(nT) jﬂn/N smc_l(r:\I/N )Z Xext(kf ) j2mnk/Ng

k=0
Then, for n<<N_,

X(0T) = 2 3 X, Je

DFT (X, (K, ))

Therefore x(nT,) = (1/T,)x DFT (X, (. )).

L.4 Approximating the DTFT Using the DFT

The DFT can be used to compute the DTFT for a restricted class of signals. If the

signal to be transformed x[n] is a causal energy signal, the general formula for the
DTFT

X(F)=n§;x[n]e“'2”Fn

can be restricted to the form

L-7
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where n=N_ is the time beyond which the signal energy of x[n] is negligible. Then,

if we compute estimates of the DTFT at discrete values F =k /N_ we get

Np -1

X(k/Ng)= Y x[n]eizmome
n=0

The summation is the DFT of X[n]in the discrete-time range 0<n<N_. So we can

summarize by saying that the DTFT of X[n] computed at frequencies F =k /N_ is

X(k/N,)= DFT (x[n]). (L.5)
The inverse DTFT is

x[n] = JlX(F)eJZ”F”dF :

If we have the values of X(k/ NF)(which is periodic with period 1) in the range
0<k <N_ -1 then

N, -1 (k+1)/N
x[n]= > X(k/N.) [ e dF .
k=0 k/Ng

Nt gl2mFn (e 1 et j2r(k+1)n/N j27kn/N
x[n]: 2 X(k/ NF)[ jz””LN = Tomn & X(k/ NF)[e -e }
B glemNe _ 1 Net j2ankn/N. _ _j2an/N, Sinc(n/ NF)NF_l j2mkn/ N
X n]zwkzo )((k/NF)(::‘J —eJ N—Fk:O X(k/NF)eJ
For n<<N_,
x[n]zNiNle(k/ N, e = DET (X (k/N,)) .

L.5 Approximating Continuous-Time Convolution Using
the DFT

A common use of the DFT is to approximate the convolution of two CT signals
using samples from them. Suppose we want to convolve two aperiodic CT energy signals

X(t) and h(t) to form y(t) . We know that

L-8
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y(t)=x(t)=h(t)eF—x(f)H(f)=Y(F)
If x and y are both causal and practically time-limited to the time range 0 <7 <7, we can
approximate X(kfF) and H (kfF) using X(kfF ) =T xDFT (X(nTS )) and form

Y(kfF) = X(kfF)H (kfF) from samples of X(t) and h(t) . Then to get back to the time

domain we need to approximate an inverse CTFT. The process of finding this
approximation mirrors the derivation of the approximations in

X(kfF ) =T x DFT (X(nTS )) Assuming X(t) and h(t) are properly sampled we can

write

o f,/2 N /2-1 (k+1) £
y(t)= [y(f)e"df = [ v(f)e® "= > [ Y(Kf,)e’ "df
—oo —f, 12 k=—Np /2 ki
Using the periodicity of the DFT,
- (k+1) £ - j2n(k+1) 1, jonkf,
y(t)E Nz‘jy(kfF) J R NztlY(kfF)ejz (k 1).f t_ g2kt
k=0 kfe k=0 _]27'Ct
j2mf .t 1N -1 i o jm it —jmfet Np-1 .
y(t)s e TR Y( ) jorkfet — pinfe ft € 12; kzé Y(kf ) j2mkict
- jmfe tsm( )N - j2mkict
y(t)=e ) Y (kf. e
Now we can find approximations to y(t) at the sample times t = nT,
o sintlzen/ N .
y(nT,)= N e —(n ) 2 N k25\((kf Jezmts

inverse DFT of Y(kf )

y(nTS)s Jrn/Ne fsmc( j 2 Y(kf ) j2mnk /N

|:k0

inverse DFT of Y(kf )

For ‘n‘ <<N_,

y(nT,)= £, x DFT *(¥ (K, )).

L-9
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From X(kf,) =T, x DFT (x(nT,)).

v (k) = X (k. JH (K, ) = T.DFT (x(nT,))xT,DFT (n(nT,))

Therefore

y(nT)=[x(t)+n(t)] , =T.xDFT (DFT (x(nT))x DFT (h(nT)) @)

L.6 Approximating Discrete-Time Convolution Using the

DFT

If X[n] is a DT energy signal and most or all of its energy occurs in the time

range 0 <n<N_ then
Np -1
X(F)z > x[n]e
and "~

=
-

X(k/N,)= lx[n]e“'z”"k’”F = DFT (x[n])

n=0

Convolving two DT signals through the use of the DTFT,

v =[] n[nJ =X (F)H(F) = v(F)
-k,

y[n]=[Y(F)e* dr= Y, [ Y(F)e*™dF

k=0 Kk/Ng

Assuming Y(F) does not change much in any F-interval of width 1/ N_,

= KN, j27n

27z,'n/N N_. -1
y[n:IENF N 1i2Y( ] j2rnk/N,
F

j2rn £ k=0

Inverse DFT of Y(k/NF)

L-10

N. -1 (k+1)/N _ N -1 j2n(k+)n/Ng jarkn/Ng
y[n]= Y[ K j [ e dF = ZY[L]‘E -
0 |: k=0 N|:

(L.7)
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y[n]=e""" sinc(n/N_)x DFT ’1(Y(k/ NF))
and for ‘n‘ <N,
y[n]= DFT *(v(k/N,)).
Using (L.7),
y[n]= DFT *(X(k/N)H(k/N,))

y[n]=x[n]h[n]= DFT }(DFT (x[n])xDFT (h[n])) @8

L.7 Approximating Continuous-Time Periodic Convolution
Using the DFT

We can also approximate CT periodic convolution using the DFT. Let X(t) and
h (t) be two periodic CT signals with a common period T, and sample them over exactly
that time at a rate f_above the Nyquist rate, taking N_ samples of each signal. Let y(t)
be the periodic convolution of X (t) with h (t) . Then

y(t)=x(t) @ h(t) 22T, X o[ K [Heres [ K] = Yeres [K]-

Then, from X, [k]= DFT (x(nT,)) = N, X o [K]%8,, [K].

DFT {x{nT, DFT (h(nT, \ \
XCTFSI:k:IZ N(F ( )) , HCTFSI:k]: N(F ( )) ’ —TFSK<TF
= ) N /2-1 -
y(t) = 2 Y eres I:k]eHanth = 2 Y. [k]e+J2”kth
k== k=—N /2
N, /2-1 _ N /2-1 ‘
y(nTS) = 2 YCTFS I:k]eﬂananTs — 2 YCTFS [k:leﬂzﬂkn/NF
k=—N_ /2 el
N /2-1 |
y(nTS) = TF k:_ZN: /ZXCTFS [k:IHCTFs I:k]e+J2”k”/NF

L-11
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TS 2N,
y(nT.)= =% v ZN‘ [DFT (x(nT.))x DFT (n(nT))]e
Then, using the periodicity of the DFT,

y(nTS)z—LF —Nl Nil[DFT (x(nT,))x DFET (n(nT,)) e .
F 'VF k=0
.

=DFT ’l[DFT (x(nTS))X DFT (h(“Ts))]

Therefore

y(n,)=[x(t)en(t)] =T xDFT A(DFT (x(nm))x DFT (n(n1,))) @9)

L..8 Computing DT Periodic Convolution Using the DFT

Let x[n] and h[n] be two periodic DT signals with a common period N_. Let
y[n] be the periodic convolution of x[n] with h[n] . Then

y[n]:X[n]®h[ ]%NFXDTFS[k] DTFSI: ] YDTFS[k]'
Ng -1
y[n]: 2 YDTFSI:k]e+j2nkn/NF - z YDTFSI:k]e+j2nkn/NF
k=(Ng) k=0

I
=z

+j2r 1 il ion
Y[n] = NFk; XDTFS[k:IHDTFSI:k:Ie jomkict 'EXN_ Z XDTFSI:k:IHDTFSI:k:Ie j2mkfot

‘. [T- DFT (x[n]) Ho - DFT (h[n)

N, ’ N

DFT (x[n]) DFT (n[n])

y[n]=N.xDFT * N

F

y[n]=x[n]eh[n]=DFT *(DFT (x[n])x DFT (h[n])) (.10

L-12
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L.9 Approximating Cross Correlation Using the DFT

Cross correlation has two definitions, one for energy signals and one for power
signals.

Energy Signals

R, (7) {x(t)y(m)dt

Using the definition of convolution,

X(t)*y(z)z}(f)y(t-r)df

it follows that

X(_t)*y(t)z];X(_T)y(f-f)df

and, making a change of variable, A = -7,

o

X(—t) & y(t) = j X(l)y(/l + t)dl = X(—T)*y(’[) = ]ix(t)y(t +T)dt =R, (T)

Therefore R | (‘L’) = X(—‘L’) * y(T) .

If both signals are causal and effectively time-limited to the time range 0<?<T,
we can write

and, using a result from L.5,
y(nT)=[x(t)+n(t)]  =T.xDFT (DFT (x(nT,))x DFT (n(nT,)))
and the fact that x(~7)«=—X"(f),

R, (nT,)=T,x DFT '{[DFT (x(nT))] x DFT (y(nTs)))

Some authors define cross correlation asR | (1’) = J X (t) y (t - T) dt. With that definition

R, (n7)=T,x DFT "(DFT (X(”Ts))X[DFT (y(nT))])

L-13
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Power Signals
R, (’L’) = E(X(t)y(t + ’L')) = lim — J X(t)y(t + T)dt
Using the definition of convolution,
X(t) * y(t) = J X(T)y(t— ’L’)d’c

it follows that
R, (‘L’) = (1 / TF)X(—T) * y(r)

where 7). is a finite time over which we sample the signal to make the estimate of their
cross correlation. Using a result from L.5

y(nT)=[x(t)+n(t)]  =T.xDFT (DFT (x(nT,))x DFT (n(nT,)))
and the fact that x(~7)«—=—X"(f),

R, (nT.)=(T./T.)x DFT '{[DFT (x(nTs))T x DFT (y(nTs)))

or
R, (nT.)=(1/N, )x DFT 1([ DFT (x(nT))] x DFT (y(nTs)))
_Some authors define cross correlation asR | (‘L’) = }gl}o % sz X(t) y(t - ‘L') dt. With |
that definition o

R, (nT)=(1/N,)x DFT "(DFT (x(n7))x[ DFT (y(nT,))T)

L.10 Examples of the Use of the Discrete Fourier
Transform

The following examples will illustrate some of the features and limitations of the
DFT as a Fourier analysis tool.

Example L-1 Comparing the DFT and CTFS of a bandlimited periodic signal sampled at
the Nyquist rate over one fundamental period

L-14
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The bandlimited, periodic signal X(t) =1+ COS(Sn't) + Sin(47rt) is sampled at the
Nyquist rate (Figure L-3).

()

N\

-1+

x[n]

29

| n
l 4
-1+
Figure L-3 A CT signal and a DT signal formed by sampling it at its Nyquist rate over
one fundamental period

Find the sample values over one fundamental period and find the DFT of the sample
values. Find the CTFS harmonic function of the signal.

The highest frequency present in the signal is f =4 Hz. Therefore the samples
must be taken at 8 Hz. The fundamental period of the signal is 0.5 seconds. Therefore 4

samples are required. Assuming that the first sample is taken at time t =0 the samples
are

{x[0].x[1].x[2] x[3]} ={21.2.-1.

From the DFT definition,

N -1

Ko [K]= 5 x[n e

n=0

3
Xoer I:O:I = Xl:n]:A' » Kogr [1:Izzx[n:|e_jﬂn/2 =2-j-2-j=-j2

3
n=0 n=0

3

X [2]:2x[n]e‘j”” =2-1+2+1=4

DFT
n=0

3

Xorr[3]= 2x[n]e ™ =24 j-2+ = j2

n=0

L-15
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Therefore the DFT is

{X e [0 X g [1]: X [ 2] X [3]} =44 12,4, 2.

The CTFT of the original signal is

X(1)=5(1) 5 o(r-a) o1+ a)] + J[o(r+2) - o(1-2)]

or, ordering the impulses with increasing frequency,
X(1)=35(r+4)+ do(r+2)+5(1) - Lo(1-2) + 25(r-4)

which is of the form
Ng /2

X(£)= Y X [K]8(f —KF,)

k=—N, /2

where XCTFS [k] is the CTFS harmonic function, f0 =1/ T, and T, is the fundamental

period of the signal. So the CTFS harmonic function of the bandlimited, periodic signal
from which samples (over one fundamental period) were taken is

(X (2] X [0 Ko [0 Ko [1] X 2] = {5, #4 1 2}

If we divide the DFT results by the number of points 4 we get

%{XDFT [OJ’XDFT [1]’XDFT [ZJ’XDFT [3]} i {1’_%’1,+%} |

Using the periodicity of the DFT we see that we get the correct values for

X cres [—1],XCTFS [0] and X cres [1] but not for X [2] and X cres [—2] . They are

wrong by a factor of two because of aliasing. We did not sample above the Nyquist rate,
we sampled at the Nyquist rate.

In the above example the signal was sampled at exactly the Nyquist rate for
exactly one fundamental period. What would happen if we sampled at twice the Nyquist
rate for exactly one fundamental period or at the Nyquist rate for exactly two fundamental
periods?

Example L-2 Comparing the DFT and CTFS of a bandlimited periodic signal sampled at
twice the Nyquist rate over one fundamental period

L-16
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The bandlimited periodic signal X (t) =1+cos (8711) +sin (475t) is sampled at twice
the Nyquist rate (Figure L-4).

()

%
Il

8

Figure L-4 ACT s1gnal and a DT signal formed by sarnphng it at twice its Nyquist rate
over one fundamental period

Find the sample values over one fundamental period and find the DFT of the sample
values. Also find the CTFS harmonic function of the signal.

The highest frequency present in the signal is f =4 Hz. Therefore the samples
must be taken at 16 Hz. The fundamental period of the signal is 0.5 seconds. Therefore 8

samples are required. Assuming that the first sample is taken at time t =0 the samples
are

(0] r{7]) =22 aae 3 22 1 a1

and the DFT of those samples is

{Xoer [0]- X o [7]} ={8.-14.4.0,0,0,4, j4} .

The CTFS harmonic function of the original signal is the same as in Example L-1,

{Xeres [2] Xeres [~1] Xeres [0 Xeres [1] Xeres [ 2]} = {% +% ! '_% | %}

and dividing the DFT result by the number of points 8,

L-17
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1 j 1 1]
o [0 [7] = fi-d 20003 42}

Using the periodicity of the DFT we see that these results agree. In this case, we sampled
twice as fast as in Example L-1. What we got for our trouble was information about
higher frequencies that might have been present in the signal and no aliasing because we
sampled above the Nyquist rate. Of course, since we used the same signal, there were not

any higher frequencies present and the extra X[k] ’s {XDFT [3] ' X oer [4] ' X oer [5]}
were all zero.

Example L-3 Comparing the DFT and CTFS of a bandlimited periodic signal sampled at
the Nyquist rate over two fundamental periods

The bandlimited periodic signal X(t) =1+ COS(87tt) + Sin(47rt) is sampled at the
Nyquist rate (Figure L-5).

X(t)

IAVAAYS
\V \V

-1+

x[n]

Hl ‘l‘ :
! l

8

-1+
Figure L-5 A CT signal and a DT signal formed by sampling it at its Nyquist rate over
two fundamental periods

Find the sample values over two fundamental periods, find the DFT of the sample values.
Also find the CTFS harmonic function of the signal.

The highest frequency present in the signal is f =4 Hz. Therefore the samples
must be taken at 8 Hz. The fundamental period of the signal is 0.5 seconds. Therefore 8

samples are required. Assuming that the first sample is taken at time t =0 the samples
are

{x[0]...x[7]} =212-1212-1}
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and the DFT of those samples is

{Xogr [0]- X o [7]} ={8.0.~14,0,8,0, 4,0} .

The CTFS harmonic function of the original signal is still the same as in Example L-1

{Xeres [72] Xerps [ 1] Xeres [0 Xerge [1]: Xers [ 2]} = {% +% 1 ’_% | %}

Comparing the CTFS harmonic function and the DFT,

%{XDFT (0] X [7]] ={1,0,—%,0,1,0,+%,0}.

The fundamental of the CTES corresponds to the second harmonic of the DFT because we
sampled over two fundamental periods. Therefore the results correspond correctly, again
except for the highest harmonic which is wrong because of aliasing. As in Example L-1
we sampled at the Nyquist rate instead of above it. As in Example L-2 we get extra
information about the signal. By sampling twice as long, we could recognize frequencies
twice as low (fundamental periods twice as long) that might have been present in the
signal. That made the lowest non-zero frequency in the DFT half what it was before.

Also, since X, [k] occurs at integer multiples of the lowest non-zero frequency, the

whole frequency-domain graph has twice the resolution it had in Example L-1 and
Example L-2. The sampling rate is the same as Example L-1, therefore the highest
frequency that can be found is the same as in Example L-1 and half that in Example L-2.

ExampleL-4 Effects of sampling rate and number of samples on the DFT as an
approximation to the CTFT of a truncated sinusoid

Sample the signal x (t) =5sin (ﬂt) rect ((t - 2) / 4) beginning at time t =0

(a) 16 times at 4 Hz, (b) 32 times at4 Hz (c) 64 times at 4 Hz
(d) 32 times at § Hz, and  (e) 64 times at 8 Hz.

In each case find the DFT of the samples and graph comparisons of the signal and its
samples in the time domain and of the magnitude of the CTFT of the signal and the

magnitude of the product of the DFT of the samples and the sampling interval T_.

The CTFT of x(t) is
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X( f) = le[SinC(4(f +1/ 2))e—j4n(f+1/2) —sinc(4( F_1/ 2))e—j4ﬂ(f—1/2):|
(a)
N_=16,f =4

X(t) and x[n]

My Ay
— N

(X(f)land T IXIK]|

4 1 for kfF

-4 4
Figure L-6 Signal sampled 16 times at 4 Hz

The DFT repeats periodically with fundamental period N_ =16 or, in terms of
frequency, with fundamental period f . =N_f_ Hz but in the frequency range

—f /2<f<f /2 the DFT (multiplied by the sampling interval T ) seems to
approximate samples of the CTFT at integer multiples of the fundamental frequency

f.=f /N_ of the DFT. The resolution of the DFT is not very good. Since all the

samples except two in the frequency range —f /2<f <f /2 occur at zeros of the

CTFT, if we just looked at the DFT result without knowing the CTFT, we would conclude
that the CTFT had two impulses at equal positive and negative frequencies and that,
therefore the original signal was a sinusoid. Remember that the DFT applies exactly to
periodic signals and the set of samples used here is from exactly two fundamental periods
of a sinusoid. In the absence of other information, the logical conclusion from the samples
is that the sample pattern repeats periodically and that the signal is therefore a sinusoid,
instead of the actual signal which is a time-limited version of a sinusoid. Taking more
samples will alleviate this problem.

(b)
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NF=32, fs=4

X(t) and x[n]

Wi e
A

[X(f)land T IXTK]|

for kf
4
Flgure L-7 Signal sampled 32 times at 4 Hz

Here twice as many samples were taken as in part (a). The extra samples were all
zero. This kind of extension of the sampling of a signal with extra zeros is called zero
padding. The inclusion of the extra zeros doubles the total sampling time and also
doubles the resolution of the DFT. Now we have DFT values that fall between zero
crossings of the CTFT and we can begin to see, by observing the DFT only, that the
original signal is not simply a sinusoid. The agreement between the DFT and the CTFT
seems very good at low frequencies, but notice that at frequencies close to the Nyquist
frequency, the agreement between the DFT and CTFT is not so good. This difference is
easier to see on a logarithmic magnitude graph (Figure L-8). The difference is caused by
aliasing. The original signal is not bandlimited so the aliases overlap and, in this case, that
causes a significant error near the Nyquist frequency.

IX(F)] and TX[Kl

ML T

Figure L-8 Logarithmic magnitude graph, signal sampled 32 times at 4 Hz
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(©

X(t) and x[n]

tornT
s

IX(f)land T IXIK]|

Here the number of samples was doubled again. This again doubles the resolution
of the DFT but does not really help the aliasing problem. A higher sampling rate would
reduce errors due to aliasing.
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(d)

N_=32,f =8
F S
X(t) and x[n]

tornT
s

IX(f)land T IXIK]|

10

for kf
-8 8 F
Figure L-10 Signal sampled 32 times at 8§ Hz

Here the sampling rate is doubled and the number of samples is the same as in part (b).
Again, as in part (a) the DFT seems to be indicating that the signal from which the
samples were taken was a pure sinusoid because exactly two cycles of a sinusoid were
sampled. If we now increase the number of samples at this sampling rate we will get
better frequency-domain resolution and have a reduced aliasing error.
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(e

tornT
10 s

IX(f)land T IXIK]|

10

for kf
8
Flgure L-11 Signal sampled 64 times at 8 Hz

Here we have sampled 64 times at 8 Hz. Aliasing error is reduced and the
frequency-domain resolution is good enough to see that the signal is not simply a sinusoid
(Figure L-12).

X(F)] and T XKl

|l| T ||r ||
[T st
.munnmmlﬂ | " l Nlllllllm
-50
Figure L-12 Logarithmic magnitude graph, signal sampled 64 times at 8 Hz

From this example we reinforce the general principle stated earlier that sampling
longer improves frequency-domain resolution and sampling at a higher rate reduces errors
due to aliasing. So a good general rule in using the DFT to approximate the CTFT is to
sample as fast as possible for as long as possible. In the theoretical limit in which we
sample infinitely fast for an infinite time, all the information in the CTFT is preserved in
the DFT. The DFT approaches the CTFT in that limit. Of course, in any practical
situation there are limits imposed by real samplers. Real samplers can only sample at a
finite rate and real DSP-system memories can only store a finite number of data values.

The previous examples analyzed samples from known mathematical functions to
demonstrate some features of the DFT. The next example is more realistic in that the
signal is not a known mathematical function.

Example L-5 DFT of samples from an unknown signal
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Suppose 16 samples are taken from a signal at 1 ms intervals and that the samples
are the ones graphed in Figure L-13 (with the usual assumption that the first sample occurs
attime t=0).

x[n]

13356

Il I
LA

Figure L-13 A DT signal formed by sampling an unknown CT signal for a finite time

The reason for taking the samples is to gain information about the signal that was
sampled. What do we know so far? We know the value of the signal at 16 points. If we
are draw any more conclusions than that we must have some other information or make
some assumptions.

What happened before the first sample and after the last sample? What would be
reasonable to assume? We could assume that the signal varies in a similar manner outside
this range of samples. That similar variation could take on many different forms. So this
assumption is not mathematically precise. One possible form might be the signal in
Figure L-14 (a).

@ x[n]
Eurq‘mﬂmwm‘ﬂ‘lwn‘wmr n
o) i
-32 48 L
© X[n]

2 4
Figure L.-14 Three possible extensions of the original samples

We could assume that the signal is zero outside this range of samples (Figure L-14 (b)).
But, if it is, we know that we cannot sample it adequately because a signal that is time
limited is not bandlimited. The usual assumption is that the set of samples we took is
reasonably representative of the total signal. (If that is not true the analysis won’t mean
much.) That is, that the signal outside this time range is similar to the signal inside this
time range. To make that assumption precise, we assume that the signal before and after
the samples is as similar to the signal during the sampling as possible. We assume that if
we sampled some more we would simply repeat the set of samples we got above, over and
over again (Figure L-14 (c)). That is very probably not exactly true. But what would be a
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better assumption? If the sample set we took is typical then the assumption that the signal
just keeps doing the same thing again and again is the best one we can make. Using that
assumption we can say that the samples we took are from one fundamental period of a
periodic signal. We assume that if we had kept sampling we would simply have repeated
the samples again and again.

The next logical question is “What happened between the samples?”. Again we
don’t really know. Below are some illustrations of what the signal that was sampled could
have looked like (Figure L-15).

l |l | |n il H\i l Bl “ L. n
ml P (T ﬂ!l! i ‘l i |w uu '1 t” Y T

Figure L-15 Three signals, all of which have the original sample values

In each of the three signals in Figure L-15, the sample values are exactly the same but the
signals are different. Unless we know something else about the signal that was sampled,
any of these signals could theoretically be the actual signal sampled. But if the signal was
properly sampled according to the sampling theorem (at a rate at more than twice its
maximum frequency) only one of these candidate signals could be the one sampled, the
last one in Figure L-15(c). So now we have narrowed down the possible signals from
which the samples could have come to only one, a bandlimited periodic signal which
passes through the points. We could now take the original set of samples and from it
make the best estimate (based on our assumptions) of the CT signal it came from. That is
exactly how the last CT signal in Figure L-15 (c) was created.

Instead of trying to reconstruct the original signal from its samples, it is more

common in signal analysis to use the DFT to look at the frequency content of signals. We
know how to find the CTFS harmonic function by using the DFT. What is the relation
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between the CTFS harmonic function and the CTFT of the original signal? It was shown
previously that
Ng /2

X(f)= D X [K]8(f -Kf,)

That is, the CTFT for the assumed bandlimited periodic signal is a finite set of impulses

spaced apart by the fundamental frequencyf . Using the relation between the CTFS
harmonic function and the DFT derived above for bandlimited periodic signals,

N, /2
x(f):i Y Xoe[K]8(f k) . —N_/2<k<N_ /2.
N|: k==N_/2

or

=0

+xDFT[ N, /2+1]8(f - (-N, /2+1)*,)
X(£)= o+ X [013( )+

+XDFT[N 12-1]8(t (N, 12-1)f,)
[N 12]8(f-(N.12)1,)

DFT

(Notice that the CTFS harmonic function components at harmonic numbers, —N_ /2 and

N_ /2, are always zero if the signal is properly sampled at more than twice the Nyquist
frequency because then there is no signal power at the Nyquist frequency. As the
sampling rate is increased more and more of the components near the Nyquist frequency
will also be zero.)

This result is based on an assumption that the samples came from one period of a
bandlimited periodic signal. If that assumption is correct the result is exact. If that
assumption is not correct, the result is an approximation.

Example L-6 DFT of a sinusoid sampled over an integer number of fundamental periods
above the Nyquist rate

Sample a sinusoidal function and find the DFT of the samples and the CTFS
harmonic function of the periodic repetition.

This problem description, like many real engineering problems, is ill defined. We
must make some reasonable choices for sampling rates and times so that the results will be
useful. Let the CT signal be a unit-amplitude cosine and let the fundamental period be 10
ms and the total sampling time 20 ms and take 32 samples in that time. The cosine is
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described by X(t)=cos(2007rt) and its CTFT is

X( f) = (1/ 2)[6( f - lOO) + 5( f+ 100)] . Since the cosine’s frequency is 100 Hz and the

sampling rate is 1.6 kHz, the signal will be oversampled and no aliasing will occur. The
results are illustrated in Figure L-16.

x(t) and x[n] Ng =32, f,= 1600

tor nTS ()

kf- (HZ
1600 F(H2)

-1600
Figure L-16 A cosine sampled over two fundamental periods and the magnitude of its
DFT, divided by the number of samples N_

In this case the signal is bandlimited and periodic and the sampling is done over an
integer number of fundamental periods. Therefore one should expect an exact
correspondence between the CTFT of the CT signal and DFT of the samples. The CTFT
of the original sinusoid has two impulses, one at +f and the other at —f, where f is the
cosine’s frequency. For a unit-amplitude sinusoid like this one the strengths of the
impulses should each be 1/ 2. The cosine’s frequency is 100 Hz. The frequency domain
resolution of the DFT is the sampling rate divided by the number of samples or 50 Hz.
Therefore the DFT should have non-zero values only at the second harmonic of 50 Hz,
which it does. When the DFT result is divided by the number of samples N_ the discrete-

harmonic-number impulses in the DFT have the same strength as the continuous-
frequency impulses in the CTFT of the CT sinusoid.

For the aperiodic, energy signal of Example L-4, the DFT was scaled by

multiplying by the sampling interval T, and the DFT of the samples approximated
samples of the CTFT of the CT signal that was sampled. For this periodic signal, the

scaling of the DFT was done by dividing it by the number of samples N_. Why are these
factors different?

First, realize that, since the CTFT of a periodic signal consists only of impulses, it
cannot be sampled in any meaningful sense. So the DFT of a periodic signal must be
scaled to yield the strengths of the impulses, not their amplitudes which are undefined. In
the case of aperiodic energy signals, the CTFT is a continuous-frequency function with no
impulses. In this case a correspondence must be made between the strengths of the DFT
impulses and the samples of the CTFT. One way to see the correspondence is to realize
that the CTFT is a spectral density function and therefore has the units of the signal being
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transformed, divided by frequency. For example, if the CT signal has units of volts (V) its

CTFT has units of V/Hz. The DFT is computed by forming various linear combinations
of samples of the CT function, therefore its units would be the same as the signal units, in
this case, just V. To convert that to an approximation of the CTFT we must divide by
some frequency to make the units right. But what frequency? If we equate the amplitude
in each resolution range of the DFT to the amplitude spectral density of the CTFT the

appropriate division factor is the resolution bandwidth of the DFT whichis f /N_. Soif
we take the dividing factor for periodic functions N_ and multiply it by f /N_ to form a
new dividing factor for aperiodic energy signals f_ the effect is the same as multiplying by

the sampling interval T_because f =1/T_.

In the case of finding the CTFS harmonic function of a periodic signal using the
DFT, the correspondence between them is different than the correspondence between the
CTFT and the DFT for aperiodic energy signals. When we find a CTFS harmonic
function we use the integral formula,

If x has units of volts, then X also has units of volts, not V/Hz as in the CTFT. So now we

simply divide by the number of points N_ (which is dimensionless) instead of the
resolution bandwidth.

Example L-7 Leakage caused by sampling over a non-integer number of fundamental
periods

Sample a sinusoid over a non-integer number of fundamental periods and observe
the effect on the DFT.

Let the sinusoid be a cosine whose fundamental period is 66 2/3 ms and sample it
32 times in 100 ms. The results are illustrated in Figure L-17.

L-29



©M. J. Roberts - 2/18/07
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Figure L-17 A cosine sampled over one and one-half fundamental periods and the
magnitude of its DFT, divided by the number of samples, N_

The original CT cosine has a CTFT with exactly two impulses at +15 Hz and -15
Hz. But the DFT has non-zero components at every harmonic of its fundamental

frequency which is 10 Hz ( fS / N_). Since 15 Hz is not an integer multiple of 10 Hz,
there is no resolved frequency component in the DFT at exactly the cosine’s frequency.
But the two strongest components are at 10 and 20 Hz, which bracket the actual cosine
frequency of 15 Hz. Therefore one could say that the DFT is in a sense attempting to
report the nature of the signal from which the samples came the best it can given the poor
sampling choice. This spreading of the signal’s power from the exact location into
adjacent locations is an example of leakage. That is, the power at 15 Hz has leaked into
components at 10 Hz, 20 Hz, 30 Hz, etc... because the original signal was not sampled
over an integer number of fundamental periods. This problem could be solved by
sampling over an integer number of fundamental periods. But it could also be greatly
reduced by sampling for a much longer time, even if that time is not an integer multiple of
the cosine’s fundamental period, because with a longer sampling time, the frequency-
domain resolution gets better and the bulk of the signal’s power can be placed much closer
to the actual frequency of 15 Hz. Figure L-18 shows the result of sampling over six and
one-half fundamental periods with all other parameters unchanged.
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N_=138,f =320
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x(t) and x[n]
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Figure L-18 A cosine sampled over six and one-half fundamental periods and the

magnitude of its DFT, divided by the number of samples, N_

Now, even though there is still not a resolved component at the frequency of the CT signal
15 Hz, because of the greater number of points and the consequent higher resolution of the
DFT there are components much closer to 15 Hz than in the previous case and the leakage
is spread less widely. An exact correspondence would exist if we sampled over an integer
number of periods. But often in practice we are sampling signals which are either not
periodic or whose period is unknown so we do not have enough information to sample
over an integer number of periods.

Example L-8 Approximating a CT convolution using the DFT

Find the convolution of

58 , O<t<2
x(t)= .
0 , otherwise

with h (t) =3e"u (t) using the DFT.

The CT signals and their exact CT convolution are illustrated in (Figure L-19).
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Figure L-19 Original CT signals and their exact CT convolution

Neither of these signals is bandlimited so we must find a sampling rate which will
make our approximation reasonable, knowing that it can never be exact. In cases like this
in which it is difficult to theoretically justify what the sampling rate should be, a strategy
of iteration is often effective. We can sample at what seems intuitively to be an adequate
rate, then try another rate, higher or lower, to see if it makes much difference. Once we
find that sampling at a higher rate makes very little difference in the results we can be
confident that the rate we have chosen is high enough. Let’s start by taking 50 samples

from X(t) over its non-zero range. That sets a sampling rate of 25 Hz. The time

constant of the exponential in h(t) i1s 0.25 s so we will be sampling about 6 times per

time constant which seems like a reasonable rate also. When we sample the signals this
way and use (L.6) to compute an approximation to the convolution we get the signals in
Figure L-20.

X(T)
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hT,)
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Figure L-20 Samples from two signals and a first approximation to their convolution
using the DFT
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Comparing this result with Figure L-19 it is obviously not an accurate
approximation to the CT convolution of the original CT signals. What is wrong? Even
though the signals are not bandlimited, the sampling rate seems intuitively high enough to
describe these signals with reasonable accuracy and we have sampled all the time range
for both of them in which they have any significant signal energy.

The problem lies in not realizing what the DFT actually does. The DFT relates a
set of samples from one period of a time-domain periodic signal to a set of samples from
one period of a frequency-domain periodic signal. So when we provide a set of samples
to the DFT, they are presumed to have come from one period of a periodic signal (Figure
L-21).

N

Figure L-21 Periodically repeated versions of x(nTS) and h(nTS)

But our signals are aperiodic. When we use the DFT to perform convolution we
are really doing periodic convolution. Remember that periodic convolution is the
aperiodic convolution of one period of either signal with the other signal. Imagine taking

only one period of h (nTS) , time inverting it and then shifting and looking at the sum of
the product as we shift h(nTS). The signal h(nTS) already overlaps the periodic

extension of X (nTS) . That is why the initial convolution value is wrong.

To avoid this problem we need to sample the signals so that we get a good
approximation to the aperiodic convolution we actually want. That means that we need
not only to sample the parts of the signals that have significant signal energy but also at
least some of the signal where it is zero. Then when we do a periodic convolution, the
convolution with the parts of the signals that are zero will also be done. We want to
include enough zeros so that the non-zero portion of one signal does not get convolved
with the non-zero part of the periodic repetition of the other signal. Let’s try doubling the
number of samples while leaving the sampling rate the same (Figure L-22).
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Figure L-22 Samples from two signals taken over twice the original time range and a
second, and much better, approximation to their convolution using the DFT

This is another example of zero padding which is a very common technique in numerical
approximations to DT operations using the DFT. By doubling the number of samples we
avoided the overlap of the non-zero parts of one signal and the non-zero parts of the
periodic extension of the other. This last approximation is much more accurate than the
first one. If we try to improve on this approximation by now doubling the original
sampling rate and quadrupling the original number of points leaving the total time of
sampling the same as in Figure L-22 we get another approximation (Figure L-23).
Comparing this approximation with the previous one shows that very little has been
gained by doubling the sampling rate. The results are almost identical.

X(nTy)
10
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h(nT;)
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7

Figure L-23 A third approximation to the convolution using twice the previous sampling
rate and the same total sampling time
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