
 

Find a general expression for the Laplace transform of
e− t /τ u t /τ( )  where τ  can be either positive or negative.
Start with 

                    e− t u t( ) L← →⎯ 1
s +1

  ,  σ > −1

Then, using the time scaling property of the bilateral 
Laplace transform, if t→ t /τ  then the Laplace transform
is multiplied by τ  and s→τ s.  Therefore

                e− t /τ u t /τ( ) L← →⎯ τ 1
τ s +1

=
τ /τ
s +1 /τ

  ,  τσ > −1

                e− t /τ u t /τ( ) L← →⎯ =
sgn τ( )
s +1 /τ

  ,  τσ > −1



 

e− t /τ u t /τ( ) L← →⎯ =
sgn τ( )
s +1 /τ

  ,  τσ > −1

Notice that if τ > 0,  then τσ > −1 and the ROC is σ > −1 /τ < 0,  to the 
right of the pole at s = −1 /τ .  If τ < 0 then τσ > −1and the ROC is 
σ < −1 /τ = 1 / τ > 0,  to the left of the pole at s = −1 /τ .

Now, find a general expression for 
                                   e− t /τ1 u t /τ1( )∗e− t /τ2 u t /τ 2( )
where τ1  and τ 2  can both be either positive or negative.
Using the previous result, and the Multiplication-Convolution
duality property of the bilateral Laplace transform,

e− t /τ1 u t /τ1( )∗e− t /τ2 u t /τ 2( ) L← →⎯
sgn τ1( )
s +1 /τ1

sgn τ 2( )
s +1 /τ 2

  ,  τ1σ > −1∩τ 2σ > −1



 

     e− t /τ u t /τ1( )∗e− t /τ2 u t /τ 2( ) L← →⎯
sgn τ1( )
s +1 /τ1

sgn τ 2( )
s +1 /τ 2

  ,  τ1σ > −1∩τ 2σ > −1

Case 1:  τ1 ≠ τ 2  
e− t /τ1 u t /τ1( )∗e− t /τ2 u t /τ 2( )

    L← →⎯ sgn τ1( )sgn τ 2( )
1

−1 /τ1 +1 /τ 2

s +1 /τ1

+

1
−1 /τ 2 +1 /τ1

s +1 /τ 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

  ,  τ1σ > −1∩τ 2σ > −1

e− t /τ1 u t /τ1( )∗e− t /τ2 u t /τ 2( )

    L← →⎯
sgn τ1( )sgn τ 2( )τ1τ 2

τ1 −τ 2

1
s +1 /τ1

− 1
s +1 /τ 2

⎛
⎝⎜

⎞
⎠⎟

  ,  τ1σ > −1∩τ 2σ > −1

If τ1 > 0 and τ 2 > 0, then

e− t /τ1 u t /τ1( )∗e− t /τ2 u t /τ 2( ) L← →⎯ τ1τ 2

τ1 −τ 2

1
s +1 /τ1

− 1
s +1 /τ 2

⎛
⎝⎜

⎞
⎠⎟

  ,  σ > −1 /τ1 ∩σ > −1 /τ 2

                        e− t /τ1 u t /τ1( )∗e− t /τ2 u t /τ 2( ) = τ1τ 2 e− t /τ1 − e− t /τ2( )u t( )
τ1 −τ 2



 

     e− t /τ1 u t /τ1( )∗e− t /τ2 u t /τ 2( ) L← →⎯
sgn τ1( )
s +1 /τ1

sgn τ 2( )
s +1 /τ 2

  ,  τ1σ > −1∩τ 2σ > −1

If τ1 > 0 and τ 2 < 0, then

e− t /τ1 u t /τ1( )∗e− t /τ2 u t /τ 2( ) L← →⎯ − τ1τ 2

τ1 −τ 2

1
s +1 /τ1

− 1
s +1 /τ 2

⎛
⎝⎜

⎞
⎠⎟

  ,  σ > −1 /τ1 ∩σ < −1 /τ 2

              e− t /τ1 u t /τ1( )∗e− t /τ2 u t /τ 2( ) = −
τ1τ 2 e− t /τ1 u t( ) + e− t /τ2 u −t( )⎡⎣ ⎤⎦

τ1 −τ 2

Generalizing, if τ1 ≠ τ 2

 e− t /τ u t /τ1( )∗e− t /τ2 u t /τ 2( ) = τ1τ 2

τ1 −τ 2

sgn τ1( )e− t /τ1 u t /τ1( )− sgn τ 2( )e− t /τ2 u t /τ 2( )⎡⎣ ⎤⎦

Case 2:  τ1 = τ 2 = τ

                     e− t /τ u t /τ( )∗e− t /τ u t /τ( ) L← →⎯
sgn τ( )
s +1 /τ

⎡
⎣⎢

⎤
⎦⎥

2

  ,  τσ > −1

                     e− t /τ u t /τ( )∗e− t /τ u t /τ( ) L← →⎯ 1
s +1 /τ( )2   ,  τσ > −1

                     e− t /τ u t /τ( )∗e− t /τ u t /τ( ) = sgn τ( )te− t /τ u t /τ( ) = t e− t /τ u t /τ( )



 

Convolve tri n / N( )  with u n[ ]  and express the result without using the "∗" operator.

tri n / N( )∗u n[ ] = ramp n + N[ ]− 2 ramp n[ ]+ ramp n − N[ ]( )∗u n[ ]

ramp n[ ]∗u n[ ] Z← →⎯ z
z −1( )2 ×

z
z −1

= z2

z −1( )3   ,  z >1

Using n2 u n[ ] Z← →⎯
z z +1( )
z −1( )3 ,

          ramp n[ ]∗u n −1[ ] Z← →⎯ z
z −1( )3   ,  z >1

ramp n[ ]∗u n[ ]+ ramp n[ ]∗u n −1[ ] Z← →⎯ z2

z −1( )3 +
z

z −1( )3 =
z z +1( )
z −1( )3   ,  z >1

ramp n[ ]∗ u n[ ]+ u n −1[ ]( ) = n2 u n[ ]  and

From a graph it is easy to show that u n[ ]+ u n −1[ ] = δ n[ ]+ 2u n −1[ ].  Therefore

ramp n[ ]∗ δ n[ ]+ 2u n −1[ ]( ) = n2 u n[ ]

ramp n[ ]∗u n −1[ ] = n
2 u n[ ]− ramp n[ ]

2
⇒ ramp n[ ]∗u n[ ] = n +1( )2 u n +1[ ]− ramp n +1[ ]

2



Two sinusoids are described by 
             x1 t( ) = cos 2π f1t( )  and x2 t( ) = cos 2π f2t( ).
Both are sampled at a rate fs  to form x1 n[ ]  and x2 n[ ].  What values 
of  fs  make x1 n[ ] = x2 n[ ]?
For equality cos 2π f1n / fs( ) = cos 2π f2n / fs( ).  Let f2 = f1 + Δf .  Then 

cos 2π f1n / fs( ) = cos 2π f1 + Δf( )n / fs( )
2π f1 + Δf( )n / fs − 2π f1n / fs = An integer multiple of 2π
2πΔfn / fs = An integer multiple of 2π
Δfn / fs = An integer
Since n is already an integer, and the product of any two integers is an
integer, Δf / fs  must be an integer.  In other words, Δf  must be an
integer multiple of fs .



 

If  2e− t /τ cos 4t( ) + 0.4 sin 4t( )⎡⎣ ⎤⎦u t( ) L← →⎯ 2s + A
s2 + s +16.25

find τ  and A.

2e− t /τ cos 4t( ) + 0.4 sin 4t( )⎡⎣ ⎤⎦u t( ) L← →⎯ 2 s +1 /τ
s +1 /τ( )2 +16

+ 0.4 4
s +1 /τ( )2 + B2

⎡

⎣
⎢

⎤

⎦
⎥

2 s +1 /τ
s +1 /τ( )2 +16

+ 0.4 4
s +1 /τ( )2 +16

⎡

⎣
⎢

⎤

⎦
⎥ =

2s + 2 /τ + 3.2
s2 + 2s /τ +1 /τ 2 +16

= 2s + A
s2 + s +16.25

2 /τ = 1⇒τ = 2  ,  1 /τ 2 +16 = 16.25  Check
2 /τ + 3.2 = A⇒ A = 3.2 +1= 4.2



What is the quickest way to determine whether a signal is bandlimited?      
1.    If it is time limited it is not bandlimited.
2.    If it contains impulses it is not bandlimited.
       sinc t( )δ10 t( )  contains impulses and is not bandlimited

       sinc t( )∗δ10 t( )  DOES NOT contain impulses, sinc t( )∗δ10 t( ) = sinc t −10k( )
k=−∞

∞

∑
       sinc t( )∗δ10 t( )  is bandlimited
3.    If the signal contains any discontinuities or any derivatives with discontinuities
       the signal is not bandlimited.
       rect t( )∗δ8 t( )  has discontinuities and tri t( )∗δ22 t( )  has a discontinuous first derivative
       Both are not bandlimited
       rect t( )∗δ1 t( )  and tri t( )∗δ1 t( )  do not have any discontinuities or any
        derivatives with discontinuities and ARE BANDLIMITED
4.     In any case you can always look at the magnitude of the CTFT to see whether
        it goes to zero at a finite frequency AND STAYS THERE.  If that happens, the
        the signal is bandlimited.
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What would be the best description of these filters, lowpass, highpass, 
bandpass or bandstop (even if the description is not exact)?

H z( ) = z2 −1
z2 + 0.81

⇒ Zeros at Ω = 0 and π  ,  poles at z = ± j0.9.⇒

        Zero response at very low and very high frequencies.  Large response
        at Ω = ±π .⇒ Bandpass

H z( ) = 1+ z−1 + z−2 ⇒ H z( ) = z2 + z +1
z2 ⇒ Zeros at − 0.5 ± j0.866

        Moving average filter ⇒ Approximately Lowpass

H z( ) = z2 +1.2728z + 0.81
z2 ⇒ Zeros at z = −0.639 ± j0.6338 = 0.9e± j2.36

        Very small response near the zeros ⇒ Approximately Bandstop

H z( ) = 1
z + 0.8

⇒One pole at z = −0.8.⇒  Response at Ω = 0 is 0.5556.

        Response at Ω = π  is 5.⇒Closest to highpass.



A mechanical system is described by the differential equation
                    ′′y t( ) +1.2 ′y t( ) + 3.8y t( ) = x t( )
where x t( )  is a force applied to the system in Newtons and y t( )  
is the position of a body in the system in meters.  What force 
would cause the greatest movement of the body?
The transfer function of this system is

                     H s( ) = Y s( )
X s( ) =

1
s2 +1.2s + 3.8

.

It has poles at s = −0.6 ± j1.8574.  The frequency response is

H jω( ) = Y jω( )
X jω( ) =

1
j1.2ω + 3.8 −ω 2 .  The square of the magnitude 

of the response is H jω( ) 2 = 1
j1.2ω + 3.8 −ω 2 ×

1
− j1.2ω + 3.8 −ω 2



                   H jω( ) 2 = 1
ω 4 − 6.16ω 2 +14.4

Set the derivative to zero to find the maximum value. 

                   d
dω

H jω( ) 2 = − 4ω 3 −12.32ω
ω 4 − 6.16ω 2 +14.4( )2 = 0

There are three solutions to 4ω 3 −12.32ω = 0,  ω = 0, ω = ±1.755.
The transfer function magnitude at ω = 0 is 0.2632.  At ω = ±1.755 it is
0.4493.  So the maximum response occurs at ω = ±1.755.  Notice that the
system poles are at s = −0.6 ± j1.8574.  The value of ω = ±1.755 is very
close to the imaginary part of s.  When we are on the ω  axis, the closest
approach to a pole occurs at ω = ±1.8574 and that is very close to the 
frequency for maximum response.  If we were to move the pole closer to
the ω  axis, the difference between these two values of ω  would be smaller. 



A system has a transfer function

                   H s( ) = 20 s + 5
s s2 +10s + 200( )

What is the slope of its magnitude Bode diagram at frequencies 
approaching zero and approaching infinity?
At very low frequencies

                   H jω( ) ≅ lim
ω→0

20 jω + 5
jω −ω 2 +10s + 200( ) =

1
j2ω

and the slope of the magnitude Bode diagram would be like an
integrator, − 20 dB/decade.
At very high frequencies

                   H jω( ) ≅ lim
ω→∞

20 jω + 5
jω −ω 2 +10s + 200( ) = − 20

ω 2

and the slope of the magnitude Bode diagram would be that due
to two real poles or − 40 dB/decade.


