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Web Appendix N - Derivations of the
Properties of the LaplaceTransform

N.1Linearity
Let Z(t) = ch(t) + ﬁy(t) where o and 3 are constants. Then

7(s)= j[ax(t)ﬂsy(t)}e—srdt:ajx(t)e—srm ﬁjy(t)e—srdt:ax(s)+ BY(s)

and the linearigy property is
ocx(t) +ﬁy(t)<;>ax(s) +[3Y(s) .
N.2 Time Shifting

Let z(t)=g(t~t,) , t, 20. Then

oo

2(s) :jz(t)e—stdt = [ofi-t)e

Let r:t—t0:>d1=dt. Then

():T (c)e gz = ¢ j()e—sm:e—stoe(s).

N.3 Complex-Frequency Shifting

Let s, be a complex constant. Then

=)

e®' g (t)% j e®' g (t)e‘“dt

N-1



©M. J. Roberts - 2/18/07

The complex-frequency-shifting property of the Laplace transform is

es°tg(t)%6(s—so)

N.4 Time Scaling

Let a be any positive real constant . Then the Laplace transform of g (at) is

g(at)%jg(at)e‘“dt
Let t=at and dr =adt O

g(at)%jg(r)e‘s”a% = é;g(r)e‘“’adr = éG (i} , a>0

g(at)@(l/ a)G(s/ a) , a>0

N.5 Frequency Scaling

(N.1)

(N.2)

Let a be any positive real constant. Then, using the time-scaling property of the

Laplace transform g(at)@(l/ a)G (s/ a) , a>0. Let b=1/a.

Then

g(t/b)<—=-bG(bs) , b>0 or (1/b)g(t/b)e-G(bs) , b>0 and the frequency-

scaling property of the Laplace transform is

(1/ a)g(t/a)@G(as) , a>0

N.6 First Time Derivative

The Laplace transform is defined by

=)

G (s) = jg(t)e‘“dt .

o

(N.3)

Evaluate the integral by parts using judv =uv— Ivdu and let u=g (t) and dv=e"dt.

Then
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and

(where it is understood that Re(s) =0 is chosen to make G (s) exist). Then

| l6l0)] = [ lot)ear=e (3 -s[o

and the first-time-derivative property of the Laplace transform is

%(g (t))%s@ (s) -g (0‘) : (N.4)

N.7 Nth Time Derivative

This property can be proven using the previous property for the first time

derivative and applying it to a first time derivative to form a second time derivative and
then generalizing the result to the Nth time derivative. The second time derivative of a

function g(t) is

Therefore, using

we get

| S {al) =56 - o(0 ) - ot

=56(5)-s0(0")~ 5 {olt)

t=0"

t=0"

The second-time-derivative property of the Laplace transform is
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j—;(g(t))@sz G (s) - sg(O‘) - %(g (t))t:o— '

After seeing the derivation of this property from the previous differentiation
property we can inductively generalize to the Nth derivative.

i%@a»e:ﬁ§w4q_§;wﬂ§g;@@»} ~S)

n=1 =0

N.8 Complex-Frequency Differentiation

Start with the definition of the Laplace transform

cﬂﬂ:;qqgmt

Differentiating with respect to s

(e ) =g [ a-

—3

%(g(t)e‘s‘)dt - OJ -tg(t)e d = L(-tg(t)

o

~tg(t) (6 (5) (N.6)

N.9 Multiplication-Convolution Duality

The convolution of g (t) with h (t) is

o

o(t)+h(t)= [ o(e)n{t—7)a.

—oo

Since ¢ (t) is zero for time t <0,
9(t)*h(t) = [o(z)h(t—7)dr.
b

From the definition of the Laplace transform,
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Lo()n()] = o)l

o) ()] Jale) [nl-cJcr

o

Since h (t) is zero for time t <0,

LetA=t—7 and dA=dt. Then

o) ()] = Jole) [ n{e)oz o

The time-domain convolution property of the Laplace transform is

o(t)h(t)e=>G(s)H(s) (N.7)

The Laplace transform of a product of time-domain functions is

o= s
L[g(t)h(t)}j[,L | G(W)ewrdW]h(t)e—stdt

O— joo

where ¢ is chosen to make G (s) and H (s) exist. Doing the 7 integration first,
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If H(s) exists then

and
L[o(gp(i]= 555 | 6 (o)m(s-viw
Therefore
aft)nft)s2 [ G (w)H (s w)w N8)

N.10Integration

The integration property is easy to prove, using the convolution property just
proven in the last section and the fact that

Therefore

Ojg(f)df%_e(s). N9)

N.11Initial Value Theorem

Start with the first-time-derivative property of the Laplace transform

| $l6l0)} = [Slol)ea=sc()-ol0)

Let S— 0. Then

i [ g (o()e"en = 6) -o(0")]
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Jiim{ o) o= <0 (5)o(0 )]

Casel. g (t) is continuous at t =0

If the Laplace transform of g(t) , which is G (s) , exists for Re(s) =0>0,, the

d
quantity a(g (t)) e~* approaches zero as s approaches infinity and

0=lim[6(5)-o(0")] = o(0") = limsG s
and, since g(t) is continuous at t =0, g(O’) = g(0+) and

g(O*)= IimsG(s).

S—oo

CaseIl. g (t) is discontinuous at t =0

In this case, the discontinuity of g(t) at t =0 means that the derivative of g(t)

has an impulse at t =0 and the strength of the impulse is g(0+)—g(07). Now the

integral lim J: %(g (t)) e *dt becomes

§—>00

i o) =1m [ {o(0") ) Jal)e e m o).

=0

and, using the sampling property of the impulse in the first integral ,
im | & (o(0)e ot = tim[o(0") ~o(0")] =0(0") (0
e
o(0)-ol0)= in[s6{5)-o(0 )] - msc 5-o[0

g(0")=1imsG(s) (N.10)

S—oo

Therefore,

or

and the result is the same as in Case 1.
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N.12Final Value Theorem

i [ (a(0)e o= im{s(s)-ofo )]
i o) far=tmfs0 (5o
Jlold)er= in[se(s)-(0 )]
im[o(t)-o(0")]= tim s6(s)-(0")

Then, if the limit lim __g (t) exists, the final value theorem of the Laplace transform is

!img(t) = LiirgsG(s). (N.11)
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