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Web Appendix N -  Derivations of the

Properties of the LaplaceTransform

N.1 Linearity

Let 
  
z t( ) = x t( ) + y t( )  where  and  are constants.  Then

  

Z s( ) = x t( ) + y t( ) e
st
dt

0

= x t( )e
st
dt

0

+ y t( )e
st
dt

0

= X s( ) + Y s( )

and the linearity property is

   
x t( ) + y t( ) L

X s( ) + Y s( )  .

N.2 Time Shifting

Let 
  
z t( ) = g t t

0( )   ,  t
0

0 .  Then

  

Z s( ) = z t( )e
st
dt

0

= g t t
0( )e

st
dt

0

 .

Let 
  

= t t
0

d = dt .  Then

  

Z s( ) = g( )e
s t

0( )
d

t
0

= e
st

0 g( )e
s

d

t
0

= e
st

0 G s( ) .

N.3 Complex-Frequency Shifting

Let 
  
s

0
 be a complex constant.  Then

   

e
s
0
t

g t( ) L
e

s
0
t

g t( )e
st
dt

0

   

e
s
0
t

g t( ) L
g t( )e

s s
0( )t

dt

0

= G s s
0( )
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The complex-frequency-shifting property of the Laplace transform is

   
e

s
0
t

g t( ) L
G s s

0( ) (N.1)

N.4 Time Scaling

Let a be any positive real constant .  Then the Laplace transform of 
  
g at( )  is

   

g at( ) L
g at( )e

st
dt

0

Let 
  

= at and d = adt

   

g at( ) L
g( )e

s / a
d

a
0

=
1

a
g( )e

s / a
d

0

=
1

a
G

s

a
, a > 0

   
g at( ) L

1 / a( )G s / a( ) , a > 0 (N.2)

N.5 Frequency Scaling

Let a be any positive real constant.  Then, using the time-scaling property of the

Laplace transform 
   
g at( ) L

1 / a( )G s / a( ) , a > 0 .  Let   b = 1 / a .  Then

   
g t / b( ) L

bG bs( ) , b > 0  or 
   
1 / b( )g t / b( ) L

G bs( ) , b > 0  and the frequency-

scaling property of the Laplace transform is

   
1 / a( )g t / a( ) L

G as( ) , a > 0 (N.3)

N.6 First Time Derivative

The Laplace transform is defined by

  

G s( ) = g t( )e
st
dt

0

.

Evaluate the integral by parts using  
 

udv = uv vdu  and let 
  
u = g t( ) and dv = e

st
dt .

Then
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du =

d

dt
g t( )( )dt and v =

1

s
e

st

and

  

g t( )e
st
dt

0

= g t( )
1

s
e

st

0

+
1

s

d

dt
g t( )( )e

st
dt

0

  

G s( ) =
1

s
g 0( ) +

1

s

d

dt
g t( )( )e

st
dt

0

(where it is understood that 
  
Re s( ) =  is chosen to make 

  
G s( )  exist).  Then

   

L
d

dt
g t( )( ) =

d

dt
g t( )( )e

st
dt

0

= sG s( ) g 0( )

and the first-time-derivative  property of the Laplace transform is

   

d

dt
g t( )( ) L

sG s( ) g 0( )   . (N.4)

N.7 Nth Time Derivative

This property can be proven using the previous property for the first time
derivative and applying it to a first time derivative to form a second time derivative and
then generalizing the result to the Nth time derivative.  The second time derivative of a

function 
  
g t( )  is

  

d
2

dt
2

g t( )( ) =
d

dt

d

dt
g t( )( )

Therefore, using

   

d

dt
g t( )( ) L

sG s( ) g 0( )
we get

   

L
d

2

dt
2

g t( )( ) = sL
d

dt
g t( )( )

d

dt
g t( )( )

t =0

   

L
d

2

dt
2

g t( )( ) = s sG s( ) g 0( ){ }
d

dt
g t( )( )

t =0

= s
2
G s( ) sg 0( )

d

dt
g t( )( )

t =0

The second-time-derivative  property of the Laplace transform is
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d
2

dt
2

g t( )( ) L
s

2
G s( ) sg 0( )

d

dt
g t( )( )

t =0
.

After seeing the derivation of this property from the previous differentiation
property we can inductively generalize to the Nth derivative.

   

d
N

dt
N

g t( )( ) L
s

N
G s( ) s

N n
d

n 1

dt
n 1

g t( )( )
t =0n=1

N

(N.5)

N.8 Complex-Frequency Differentiation

Start with the definition of the Laplace transform

  

G s( ) = g t( )e
st
dt

0

.

Differentiating with respect to s

   

d

ds
G s( )( ) =

d

ds
g t( )e

st
dt

0

=
d

ds
g t( )e

st( )dt

0

= t g t( )e
st
dt

0

= L t g t( )( )

   
t g t( ) L d

ds
G s( )( ) (N.6)

N.9 Multiplication-Convolution  Duality

The convolution of 
  
g t( )  with 

  
h t( )  is

  

g t( ) h t( ) = g( )h t( )d .

Since 
  
g t( )  is zero for time   t < 0 ,

  

g t( ) h t( ) = g( )h t( )d

0

.

From the definition of the Laplace transform,
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L g t( ) h t( ) = g( )h t( )d

0

e
st
dt

0

   

L g t( ) h t( ) = g( ) e
st h t( )dt

00

d .

Since 
  
h t( )  is zero for time   t < 0 ,

   

L g t( ) h t( ) = g( ) e
st h t( )dt d

0  

Let
  

= t and d = dt .  Then

   

L g t( ) h t( ) = g( ) e
s +( )

h( )d

00

d

    

L g t( ) h t( ) = e
s g( ) e

s h( )d

0

H s( )

0

d

    

L g t( ) h t( ) = H s( ) e
s g( )

0

d

=G s( )

= G s( )H s( )

The time-domain convolution property of the Laplace transform is

   
g t( ) h t( ) L

G s( )H s( ) (N.7)

The Laplace transform of a product of time-domain functions is

   

L g t( )h t( ) = g t( )h t( )e
st
dt

0

   

L g t( )h t( ) =
1

j2
G w( )ewtdw

j

+ j

h t( )e stdt

0

where  is chosen to make 
  
G s( )  and 

  
H s( )  exist.  Doing the t integration first,
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L g t( )h t( ) =
1

j2
G w( ) h t( )e

s w( )t
dt

0j

+ j

dw .

If 
  
H s( )  exists then

  

h t( )e
s w( )t

dt

0

= H s w( )

and

   

L g t( )h t( ) =
1

j2
G w( )H s w( )

j

+ j

dw .

Therefore

   

g t( )h t( ) L 1

j2
G w( )H s w( )

j

+ j

dw (N.8)

N.10 Integration

The integration property is easy to prove, using the convolution property just
proven in the last section and the fact that

  

g t( ) u t( ) = g( )u t( )d = g( )d

0

t

   
g t( ) u t( ) L

G s( )U s( ) = G s( ) / s

Therefore

   

g( )d

0

t

L 1

s
G s( ) . (N.9)

N.11 Initial Value Theorem

Start with the first-time-derivative  property of the Laplace transform

   

L
d

dt
g t( )( ) =

d

dt
g t( )( )e

st
dt

0

= sG s( ) g 0( ) .

Let  s .  Then

  

lim
s

d

dt
g t( )( )e

st
dt

0

= lim
s

sG s( ) g 0( )
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lim
s

d

dt
g t( )( )e

st
dt

0

= lim
s

sG s( ) g 0( ) .

Case I.
  
g t( )  is continuous at   t = 0

If the Laplace transform of 
  
g t( ) , which is 

  
G s( ) , exists for 

  
Re s( ) = >

0
, the

quantity 
  

d

dt
g t( )( )e

st approaches zero as s approaches infinity and

  
0 = lim

s

sG s( ) g 0( ) g 0( ) = lim
s

sG s( )

and, since 
  
g t( )  is continuous at   t = 0 , 

 
g 0( ) = g 0

+( )  and

  
g 0+( ) = lim

s

sG s( ) .

Case II. 
  
g t( )  is discontinuous at   t = 0

In this case, the discontinuity of 
  
g t( )  at   t = 0  means that the derivative of 

  
g t( )

has an impulse at   t = 0  and the strength of the impulse is 
 
g 0

+( ) g 0( ) .  Now the

integral 
  
lim
s

d

dt
g t( )( )e

st
dt

0
  becomes

   

lim
s

d

dt
g t( )( )e

st
dt

0

= lim
s

g 0+( ) g 0( ) t( )e
st
dt

0

0+

+ lim
s

d

dt
g t( )( )e

st
dt

0+

=0

.

and, using the sampling property of the impulse in the first integral ,

  

lim
s

d

dt
g t( )( )e

st
dt

0

= lim
s

g 0+( ) g 0( ) = g 0+( ) g 0( )

Therefore,

  
g 0+( ) g 0( ) = lim

s

sG s( ) g 0( ) = lim
s

sG s( ) g 0( )
or

  
g 0+( ) = lim

s

sG s( ) (N.10)

and the result is the same as in Case I.
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N.12 Final Value Theorem

From the first-time-derivative  property of the Laplace transform,

  

lim
s 0

d

dt
g t( )( )e

st
dt

0

= lim
s 0

sG s( ) g 0( )

  

lim
s 0

d

dt
g t( )( )e

st
dt

0

= lim
s 0

sG s( ) g 0( )

  

d

dt
g t( )( )dt

0

= lim
s 0

sG s( ) g 0( )

  
lim
t

g t( ) g 0( ) = lim
s 0

sG s( ) g 0( )

Then, if the limit 
  
lim

t
g t( )  exists, the final value theorem of the Laplace transform is

  
lim
t

g t( ) = lim
s 0

sG s( ) . (N.11)


