
Sampling and Signal 
Processing 



Sampling Methods 
•  Sampling is most commonly done with two 

devices, the sample-and-hold (S/H) and the 
analog-to-digital-converter (ADC) 

•  The S/H acquires a continuous-time signal at 
a point in time and holds it for later use 

•  The ADC converts continuous-time signal 
values at discrete points in time into 
numerical codes which can be stored in a 
digital system 



Sampling Methods 

During the clock c(t) 
aperture time, the response 
of the S/H is the same 
as its excitation.  At the 
end of that time, the 
response holds that value 
until the next aperture time. 

Sample-and-Hold 



Sampling Methods 
An ADC converts its input signal into a code.  The code can be  
output serially or in parallel. 



Sampling Methods 
Excitation-Response Relationship for an ADC 



Sampling Methods 



Sampling Methods 
Encoded signal samples can be converted back into a CT 
signal by a digital-to-analog converter (DAC). 
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Sampling

The fundamental 
consideration in 
sampling theory is 
how fast to sample a 
signal to be able to 
reconstruct the signal 
from the samples.

High Sampling Rate

Medium Sampling Rate

Low Sampling Rate

Signal to be Sampled
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Sampling

The “low” sampling rate on the previous slide 
might be adequate on a signal that varies more 
slowly.
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Claude Elwood Shannon
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Pulse Amplitude Modulation
Consider an approximation to the ideal sampler, a pulse
train p t( )  multiplying a signal x t( )  to produce a response y t( ).
                            p t( ) = rect t /w( )∗δTs t( )
The average value of y t( )  
during each pulse is approximately
the value of x t( )  at the time of 
the center of the pulse.  This is 
known as pulse amplitude 
modulation.
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Pulse Amplitude Modulation

The response of the pulse modulator is

            y t( ) = x t( )p t( ) = x t( ) rect t /w( )∗δTs t( )⎡⎣ ⎤⎦
and its CTFT is

                  Y f( ) = wfs sinc wkfs( )X f − kfs( )
k=−∞

∞

∑
where  fs = 1 /Ts
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Pulse Amplitude Modulation
The CTFT of the 
response is basically 
multiple replicas
of the CTFT of the 
excitation with 
different amplitudes,
spaced apart by
the pulse repetition 
rate.
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Pulse Amplitude Modulation

If the pulse train is modified to make the pulses have a constant
area instead of a constant height, the pulse train becomes

                         p t( ) = 1 /w( )rect t /w( )∗δTs t( )
and the CTFT of the modulated pulse train becomes

                        Y f( ) = fs sinc wkfs( )X f − kfs( )
k=−∞

∞

∑
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Pulse Amplitude Modulation

As the aperture time w of 
the pulses approaches zero 
the pulse train approaches 
a periodic impulse and the 
replicas of the original signal’s 
spectrum all approach the 
same size.  This limit is
called impulse sampling.



2/9/17 M. J. Roberts - All Rights Reserved 16

Sampling vs. Impulse Sampling
If we simply acquire the values of x t( )  at the sampling times

nTs  we form a discrete-time signal x n[ ] = x nTs( ).  This is 
known as sampling, in contrast to impulse sampling in which

we form the continuous-time signal xδ t( ) = x t( )δTs t( ).  These 
are two different ways of conceiving the sampling process but
they really contain the same information about the signal x t( ).
The two signals, x n[ ]  and xδ t( ), both consist only of impulses,
discrete-time in one case and continuous-time in the other case,
and the impulse strengths are the same for both at times that 
correspond through t = nTs .
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Aliasing
The CTFT of the impulse-sampled signal is
      Xδ f( ) = X f( )∗ 1 /Ts( )δ1/Ts

f( ) = fs X f( )∗δ fs
f( )

If the sampling rate is less 
than twice the highest
frequency of the original
continuous-time signal, 
the replicas, called aliases, 
overlap.



2/9/17 M. J. Roberts - All Rights Reserved 18

Aliasing
If the CTFT of the original continuous-time signal is bandlimited 
and the sampling rate is more than twice the highest frequency in 
the signal, the aliases are separated and the original signal could
be recovered by a lowpass filter that rejects the aliases.
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The Sampling Theorem

If a continuous-time signal is sampled for all time at a rate fs
that is more than twice the bandlimit fm  of the signal, the original 
continuous-time signal can be recovered exactly from the samples.

The frequency 2 fm  is called the Nyquist rate.  A signal sampled
at a rate less than the Nyquist rate is undersampled and a signal
sampled at a rate greater than the Nyquist rate is oversampled.
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Harry Nyquist

2/7/1889 - 4/4/1976
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Timelimited and Bandlimited 
Signals

•  The sampling theorem says that it is possible to 
sample a bandlimited signal at a rate sufficient to 
exactly reconstruct the signal from the samples.  

•  But it also says that the signal must be sampled for all 
time.  This requirement holds even for signals that are 
timelimited (non-zero only for a finite time).
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Timelimited and Bandlimited Signals
A signal that is timelimited 
cannot be bandlimited.  Let x t( )
be a timelimited signal.  Then

     x t( ) = x t( )rect t − t0
Δt

⎛
⎝⎜

⎞
⎠⎟

The CTFT of x t( )  is
X f( ) = X f( )∗Δt sinc Δtf( )e− j2π ft0
Since this sinc function of f  is not 
limited in f , anything convolved with 
it will also not be limited in f  and 
cannot be the CTFT of a bandlimited signal.

� 

rect t − t0
Δt

⎛ 
⎝ 

⎞ 
⎠ 
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Interpolation

 

The original continuous-time signal can be recovered 
(theoretically) from samples by a lowpass filter that passes 
the CTFT of the original continuous-time signal and rejects 
the aliases.

X f( )
CTFT of Original
Continuous-Time

Signal

! = Tsrect f / 2 fc( )
Ideal Lowpass Filter
" #$$ %$$

× Xδ f( )
CTFT of Impulse
Sampled Signal

"#%

               = Ts rect f / 2 fc( )× fs X f( )∗δ fs
f( )

Inverse transforming we get
             x t( ) = Ts fs

=1
!2 fc sinc 2 fct( )∗x t( ) 1 / fs( )δTs t( )

= 1/ fs( ) x nTs( )δ t−nTs( )
n=−∞

∞

∑
" #$$ %$$
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Interpolation
        x t( ) = 2 fc / fs( )sinc 2 fct( )∗ x nTs( )δ t − nTs( )

n=−∞

∞

∑

            x t( ) = 2 fc / fs( ) x nTs( )sinc 2 fc t − nTs( )( )
n=−∞

∞

∑
If  fc = fs / 2

                  x t( ) = x nTs( )sinc t − nTs( ) /Ts( )
n=−∞

∞

∑
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Practical Interpolation
Sinc-function interpolation is theoretically perfect but it 
can never be done in practice because it requires samples 
from the signal for all time.  Therefore real interpolation 
must make some compromises.  Probably the simplest 
realizable interpolation technique is what a DAC does.
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Practical Interpolation
The operation of a DAC can be mathematically modeled by a 
zero - order hold (ZOH), a device whose impulse response is a 
rectangular pulse whose width is the same as the time between samples.

                h t( ) = 1 , 0 < t < Ts
0 , otherwise

⎧
⎨
⎩

⎫
⎬
⎭
= rect t −Ts / 2

Ts

⎛
⎝⎜

⎞
⎠⎟
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Practical Interpolation
A natural idea would be to simply draw straight lines between 
sample values.  This cannot be done in real time because doing so 
requires knowledge of the next sample value before it occurs and 
that would require a non-causal system.  If the reconstruction is 
delayed by one sample time, then it can be done with a causal 
system.

Non-Causal First-
Order Hold

Causal First-
Order Hold
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Sampling Bandpass Signals
CTFT of a bandpass signal

CTFT of that bandpass signal impulse sampled at 20 kHz

The original signal could be recovered by a bandpass filter
even though the sampling rate is less than twice the highest
frequency.

......
20 40-20-40

Xδ f( )

f  kHz( )
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Sampling Bandpass Signals
CTFT of a bandpass signal

CTFT of that bandpass signal impulse sampled at 10 kHz

The original signal could still be recovered (barely) by an ideal
bandpass filter even though the sampling rate is half of  the 
highest frequency.
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Sampling Bandpass Signals

To be able to recover the original continuous-time signal from the 
samples k −1( ) fs + − fL( ) < fL ⇒ k −1( ) fs < 2 fL  and 

kfs + − fH( ) > fH ⇒ kfs > 2 fH .  Combining and simplifying we arrive 
at at the general requirement  for recovering the signal as

                                   fs,min >
2 fH
fH / B⎢⎣ ⎥⎦

where B is the bandwidth fH − fL( )  and ⋅⎢⎣ ⎥⎦  means "greatest integer
less than".
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Sampling a Sinusoid
Cosine sampled at twice its 
Nyquist rate.  Samples uniquely 
determine the signal.

Cosine sampled at exactly its 
Nyquist rate.  Samples do not 
uniquely determine the signal.

A different sinusoid of the same 
frequency with exactly the 
same samples as above.
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Sampling a Sinusoid
Sine sampled at its Nyquist rate.  
All the samples are zero.

Adding a sine at the 
Nyquist frequency 
(half the sampling 
rate) to any signal 
does not change the 
samples.
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Sampling a Sinusoid

Sine sampled slightly above 
its Nyquist rate

Two different sinusoids 
sampled at the same rate 
with the same samples

It can be shown that the samples from two sinusoids

x1 t( ) = Acos 2π f0t +θ( )         x2 t( ) = Acos 2π f0 + kfs( )t +θ( )
taken at the rate fs  are the same for any integer value of k.
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Bandlimited Periodic Signals
•  If a signal is bandlimited it can be properly 

sampled according to the sampling theorem.  
•  If that signal is also periodic its CTFT 

consists only of impulses.  
•  Since it is bandlimited, there is a finite 

number of (non-zero) impulses.  
•  Therefore the signal can be exactly 

represented by a finite set of numbers, the 
impulse strengths.
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Bandlimited Periodic Signals
•  If a bandlimited periodic signal is sampled above 

the Nyquist rate and at a rate which is an integer 
multiple of its fundamental frequency over exactly 
one fundamental period, that set of numbers is 
sufficient to completely describe it

•  If the sampling continued, these same samples 
would be repeated in every fundamental period

•  So the number of numbers needed to completely 
describe the signal is finite in both the time and 
frequency domains
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Bandlimited Periodic Signals
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The relation between
the CTFT of a continuous-
time signal and the DFT
of samples taken from it
will be illustrated in the
next few slides.  Let an
original continuous-
time signal x t( )  be
sampled N  times at
a rate fs .

CTFT-DFT Relationship
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CTFT-DTFT Relationship

 

Let x t( )  be a continuous-time signal and let

xδ t( ) = x t( )δTs t( ) = x nTs( )δ t − nTs( )
n=−∞

∞

∑ .  Also let xs n[ ] = x nTs( ).  

Then  Xδ f( ) = X f( )∗ fsδ fs
f( ) = x nTs( )e− j2π fnTs

n=−∞

∞

∑

and  Xδ fsF( ) = fs X fs F − k( )( )
k=−∞

∞

∑ = xs n[ ]e− j2πnF
n=−∞

∞

∑
=Xs F( )

! "## $##

Summarizing, if xδ t( ) = x t( )δTs t( )  and xs n[ ] = x nTs( )  then

Xs F( ) = Xδ fsF( ), Xδ f( ) = Xs f / fs( )  and Xs F( ) = fs X fs F − k( )( )
k=−∞

∞

∑

Xs e
jΩ( ) = Xδ fsΩ / 2π( ), Xδ f( ) = Xs f / fs( )  and Xs e

jΩ( ) = fs X fs Ω / 2π − k( )( )
k=−∞

∞

∑
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CTFT-DTFT Relationship
Sampling in time corresponds to periodic repetition in frequency.
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The sampled signal is
        xs n[ ] = x nTs( )
and its DTFT is 

Xs F( ) = fs X fs F − n( )( )
n=−∞

∞

∑

CTFT-DFT Relationship
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Only N  samples are
taken.  If the first sample
is taken at time t = 0 (the
usual assumption) that is
equivalent to multiplying
the sampled signal by the
window function

w n[ ] = 1  ,  0 ≤ n < N
0  ,  otherwise

⎧
⎨
⎩

CTFT-DFT Relationship
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CTFT-DFT Relationship

 

The DTFT of xsw n[ ]  is the periodic convolution of Xs F( )  with W F( ).
Xsw F( ) = W F( )!Xs F( )   ,  W F( ) = e− jπF N −1( )N drcl F,N( )
Xsw F( ) = fs e− jπF N −1( )N drcl F,N( )⎡⎣ ⎤⎦ ∗X fsF( )
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Sampling in Frequency
Let x n[ ]  be an aperiodic function with DTFT X F( )  and let
x p n[ ]  be a periodic extension of x n[ ]  with period Np  such

that x p n[ ] = x n − mNp⎡⎣ ⎤⎦
m=−∞

∞

∑ = x n[ ]∗δNp
n[ ].  Then

X p F( ) = X F( ) 1 / Np( )δ1/Np
F( ) = 1 / Np( ) X k / Np( )δ F − k / Np( )

k=−∞

∞

∑

and X p k[ ] = X k / Np( ).  Now let xswp n[ ] = xsw n − mN[ ]
m=−∞

∞

∑  with

period N .  Then Xswp k[ ] = Xsw k / N( ) , k an integer and

      Xswp k[ ] = fs e− jπF N −1( )N drcl F,N( )∗ X fsF( )⎡⎣ ⎤⎦F→k /N
.
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Sampling in Frequency
Sampling in frequency corresponds to periodic repetition in time.
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The last step in the process 
is to periodically repeat 
the time-domain signal. 
The corresponding effect 
in the frequency domain is 
sampling.  Then there are 
two periodic impulse 
signals which are related 
to each other through the 
DFT.  

CTFT-DFT Relationship
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The original signal and the final signal are related by

Xswp k[ ] = fs e− jπF N −1( )N drcl F,N( )∗X fsF( )⎡⎣ ⎤⎦F→k /N

W(F)

In words, the CTFT of the original signal is transformed by
replacing f  with fsF.  That result is convolved with the
DTFT of the window function.  Then that result is transformed
by replacing F  by k / N .  Then that result is multiplied by fs .

CTFT-DFT Relationship



CTFT-DFT Relationship
In moving from the CTFT of a continuous-time signal to the DFT of samples 
of the continuous-time signal taken over a finite time, we do the following.
In the time domain

    1. Sample the continuous time signal,
    2. Window the samples by multiplying them by a window function,

and     3. Periodically repeat the non-zero samples from step 2.
In the frequency domain

      1. Find the DTFT of the sampled signal which is a scaled-and-periodically-
      repeated version of the CTFT of the original signal.

      2. Periodically convolve the DTFT of the sampled signal with the DTFT of
 the window function,
 and 3. Sample in frequency the result of step 2.
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Approximating the CTFT with 
the DFT

 

If x t( )  is a causal energy signal then its CTFT can be 
approximated at discrete frequencies kfs / N ,  k  an integer, by

X kfs / N( ) ≅ Ts x nTs( )e− j2πkn /N

n=0

N−1

∑ ≅ Ts × DFT x nTs( )( )   ,  k << N

where N  is an integer and NTs  covers all or most of the energy
of x t( ).
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Approximating the Inverse 
CTFT with the DFT

  

If X kfs / N( )  is known in the range − N << −kmax ≤ k ≤ kmax << N

and if the magnitude of X kfs / N( )  is negligible outside that range
then the inverse CTFT of X can be approximated by 

              x nTs( ) ≅ 1 /Ts( )× DFT −1 Xext kfs / N( )( )
where 

           Xext kfs / N( ) = X kfs / N( )   ,  − kmax ≤ k ≤ kmax

0                 ,    kmax < k ≤ N / 2

⎧
⎨
⎪

⎩⎪
and
                   Xext kfs / N( ) = Xext k + mN( ) fs / N( )
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Approximating the DTFT with 
the DFT

 

If x n[ ]  is a causal energy signal its DTFT at discrete cyclic frequency
values k / N  can be computed by

                         X F( )F→k /N = X k / N( ) ≅ DFT x n[ ]( )  
or at discrete radian frequencies by

                        X e jΩ( )Ω→2πk /N
= X e j2πk /N( ) ≅ DFT x n[ ]( ).

If x n[ ]  is also time limited to a discrete time nmax < N ,  the computed
DTFT is exact at those frequency values.
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Approximating Continuous-Time 
Aperiodic Convolution with the DFT

 

If x t( )  and h t( )  are both aperiodic energy signals and 
y t( ) = x t( )∗h t( )  their aperiodic convolution at times nTs  
can be approximated by

y nTs( ) ≅ Ts × DFT -1 DFT x nTs( )( ) × DFT h nTs( )( )( )

for n << N .
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Approximating Continuous-Time 
Periodic Convolution with the DFT

  

If x t( )  and h t( )  are both periodic  signals with common period
T  sampled N  times at a rate which is an integer multiple of their
fundamental periods and above the Nyquist rate and y t( ) = x t( )! h t( )  
their periodic convolution at times nTs  can be approximated by

y nTs( ) ≅ Ts × DFT -1 DFT x nTs( )( ) × DFT h nTs( )( )( ).
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Approximating Discrete-Time 
Aperiodic Convolution with the DFT

 

If x n[ ]  and h n[ ]  are both energy signals and most or all of their 
energy occurs in the time range 0 ≤ n < N  and y n[ ] = x n[ ]∗h n[ ]
then

       y n[ ] ≅ DFT −1 DFT x n[ ]( ) × DFT h n[ ]( )( )

for n << N .
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Discrete-Time Periodic Convolution 
with the DFT

  

If x n[ ]  and h n[ ]  are both periodic  signals with common period
N  and y n[ ] = x n[ ]! h n[ ]  their periodic convolution at times n 
can be computed by

      y n[ ] = DFT −1 DFT x n[ ]( ) × DFT h n[ ]( )( )

using N  points in the DFT, and the computation is exact.
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Discrete-Time Sampling

A discrete-time signal x n[ ]  is sampled 
by multiplying it by a discrete-time 
periodic impulse to form xs n[ ]. The time 
between samples is the period of the 
periodic impulse Ns .
                xs n[ ] = x n[ ]δNs

n[ ]
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Discrete-Time Sampling

Aliases appear in the DTFT of the 
sampled signal and, if they do
not overlap, the original signal can 
be recovered from the samples.  The
minimum sampling rate for recovering
the signal is 2Fm , twice the highest 
discrete-time cyclic frequency in the 
signal.
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Discrete-Time Sampling

 

The original signal can be recovered from the samples by
interpolation using a lowpass digital filter.
          X F( ) = Xs F( )

DTFT of
Sampled
Signal

!"# × 1 / Fs( )rect F / 2Fc( )∗δ1 F( )
Lowpass Digital Filter

! "$$$$ #$$$$

A discrete-time sinc function is the ideal interpolating
function.
                      x n[ ] = xs n[ ]∗ 2Fc / Fs( )sinc 2Fcn( )
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Discrete-Time Sampling
When a discrete-time signal is sampled, all the values of the signal
not at the sample times are set to zero.  For efficient transmission
of the sampled signal these zero values are omitted and only the
sample values are transmitted.  This is decimation or downsampling.  
The decimated signal is xd n[ ] = xs Nsn[ ] = x Nsn[ ].  The DTFT of the 

decimated signal is Xd F( ) = xd n[ ]e− j2πFn
n=−∞

∞

∑ = xs Nsn[ ]e− j2πFn
n=−∞

∞

∑ .

Let m = Nsn.  Then 

            Xd F( ) = xs m[ ]e− j2πFm/Ns

m=−∞
m=integer

multiple of Ns

∞

∑ = Xs F / Ns( )

Decimation in time corresponds to expansion in frequency by a factor of Ns .
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Discrete-Time Sampling
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Discrete-Time Sampling
The opposite of decimation is interpolation or upsampling 
which is used to restore the original signal from the sampled-
and-decimated signal.  Let the decimated signal be x n[ ].  Then
the upsampled signal is 

               xs n[ ] = x n / Ns[ ] , n / Ns an integer
0     , otherwise

⎧
⎨
⎩

The zeros that were removed in decimation are restored.  The 
corresponding effect in the frequency domain of this expansion in 
the time domain is compression by a factor of Ns , Xs F( ) = X NsF( ).
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Discrete-Time Sampling

 

The next step is to lowpass filter the time-expanded signal xs n[ ]
to form xi n[ ].
                    Xi F( ) = Xs F( )

DTFT of
Time-

Expanded
Signal

!"# × rect NsF( )∗δ1 F( )
Lowpass Filter

! "$$$ #$$$

In the time domain
                        xi n[ ] = xs n[ ]∗ 1 / Ns( )sinc n / Ns( ).

Except for a gain factor, this is the same as the original signal that was
first sampled.
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Discrete-Time Sampling


