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Frequency Response

Human-Ear Perception of Loudness vs. Frequency
(Normalized to 4 kHz)
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Frequency Response
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Frequency Response

Frequency response magnitudes of the filters on the previous slide

Highpass Filter

Lowpass Filter
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Frequency Response

s*+20,5+ 0,0

Bandstop Filter H(s)= N
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Bandstop Filter
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Frequency Response

A biquadratic filter can be realized as a second-order system.
Adjusting the parameter 3 changes the nature of the frequency
response. It can emphasize or de-emphasize frequencies near

its center frequency.
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Frequency Response

A bank of cascaded biquadratic filters can be used as a
graphic equalizer
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Ideal Filters

e Filters separate what is desired from what is
not desired

* In the signals and systems context a filter
separates signals 1n one frequency range from
signals 1n another frequency range

* An ideal filter passes all signal power 1n its
passband without distortion and completely
blocks signal power outside its passband
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Distortion

e Distortion is construed in signal analysis to mean “changing
the shape” of a signal

e Multiplication of a signal by a constant (even a negative one)
or shifting it in time do not change its shape

No Distortion Distortion
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Distortion

Since a system can multiply by a constant or shift in time without
distortion, a distortionless system would have an impulse response

of the form
h(t)=AS(r-1,)

The corresponding
frequency response 1s

H(f)= Ae™/?"/

H(7)
R
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Filter Classifications

There are four commonly-used classification of filters, lowpass,
highpass, bandpass and bandstop.

Ideal Lowpass Filter Ideal Highpass Filter
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Filter Classifications

Ideal Bandpass Filter Ideal Bandstop Filter
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Bandwidth

e Bandwidth generally means “a range of

frequencies”

e This range could |
a filter passes or t|

be the range of frequencies
ne range of frequencies

present in a signal

e Bandwidth is traditionally construed to be
range of frequencies in positive frequency

space
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Bandwidth

Common Bandwidth Definitions
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Impulse Responses of Ideal Filters

Ideal Lowpass Ideal Bandpass
h{?) hr
‘-‘vmﬂ\’v’ ¢
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Ideal Highpass Ideal Bandstop
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t
!

[ 12/29/10 M. J. Roberts - All Rights Reserved 16 ]




Impulse Response and Causality

* All the impulse responses of 1deal filters
contain sinc functions, alone or in
combinations, which are infinite in extent

e Therefore all 1deal-filter impulse responses
begin before time 1 =0

e This makes i1deal filters non-causal

e Ideal filters cannot be physically realized, but
they can be closely approximated
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Impulse and Frequency Responses
of Causal Filters
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Impulse and Frequency Responses
of Causal Filters
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Impulse and Frequency Responses

of Causal Filters
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Impulse and Frequency Responses

of Causal Filters
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The Power Spectrum
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Noise Removal

A very common use of filters is to remove noise from a signal. If
the noise bandwidth is much greater than the signal bandwidth a
large improvement in signal fidelity 1s possible.

IX(f)I IH( f)
X(f),+ NCF) !

~f

| ~f
x<t>§+ L h@) -y
[PF b

n(?z)

INCA)I | of

~f

[ 12/29/10 M. J. Roberts - All Rights Reserved 23 ]




The Decibel

The bel (B)(named in honor of Alexander Graham Bell)is defined
as the common logarithm (base 10) of a power ratio. So if the excitation
of a system 1s X and the response 1s Y, the power gain of the system is
P, / P,. Expressed in bels that would be

(P, /Py), =log, (P, /P)=log, (Y2 /Xz) =2log,, (Y / X)
Since the prefix deci means one-tenth, that same power ratio expressed in
decibels (dB)would be

(P, /Py),, =10log,, (P, / P,)=20log, (¥ /X)
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The Decibel

If a frequency response magnitude is the magnitude of the ratio of a

system response to a system excitation

v [Y(o)
H(jo) = :
then that magnitude ratio, expressed in decibels, 1s
. . Y(jo . .
‘H(]w)‘d]g = 20 1Ogl() ‘H(]w)‘ = 20 loglo nga); = ‘Y(.]a))‘dB o ‘X(]w)‘d]g
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Log-Magnitude Frequency-
Response Plots

Consider the two (different) transfer functions,

1 30
H, (jo)= d H,(jo)=
(jo)=—20 and B (o) = e

H, (joo)! IHL joo)!
1

n >
‘ + y = V(D

207 207t

When plotted on this scale, these magnitude frequency response

-20m

plots are indistinguishable.
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Log-Magnitude Frequency-
Response Plots

When the magnitude frequency responses are plotted on
a logarithmic scale (in dB) the difference is visible.

IH (jw)l IH,(jw)l
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| e 61 i a6V
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Bode Diagrams

A magnitude-frequency-response Bode diagram is a graph of

the frequency response — . 0
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Bode Diagrams

Continuous-time LTI systems are described by equations

of the general form,
N dk M dk
a,—=y(t)=2 b —7x(1)
,Z; “Cdrt % “drt
The corresonding transfer function is

_bys" +b, s"T 4+ +bs+D,

H{s
(s) ays" +a, s"+-+as+b,

[ 12/29/10 M. J. Roberts - All Rights Reserved 29 ]




Bode Diagrams

The transfer function can be written in the form
(l—s/zl)(l—s/zz)---(l—S/ZM)

(l—s/pl)(l—s/pz)---(l—s/pN)
where the z’s are the values of s at which the frequency response

H(s):A

goes to zero and the p’s are the values of s at which the frequency
response goes to infinity. These z’s and p’s are commonly referred
to as the zeros and poles of the system. The frequency response is
(1-jo/z)(1-jo/z,)-(1- jo!z,)
(l—ja)/pl)(l—ja)/pz)---(l—ja)/pN)

H(jw)=A
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Bode Diagrams

From the factored form of the frequency response a system can

be conceived as the cascade of simple systems, each of which

has only one numerator factor or one denominator factor. Since
the Bode diagram is logarithmic, multiplied frequency responses

add when expressed in dB.

H(jw)
X(jw) | A ] 1- L2 P 12 D P L O
Z % ZM_‘:

[ 12/29/10 M. J. Roberts - All Rights Reserved




Bode Diagrams

System Bode diagrams are formed
by adding the Bode diagrams

of the simple systems which are in
cascade. Each simple-system
diagram is called a component

diagram.
One Real Pole
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Bode Diagrams

Let the frequency response
of a lowpass filter be
1
H(jo)=
o) 50%10°w+1
This can be written as

1
Jj
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Its Bode diagram has one corner
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Bode Diagrams

One Real Zero
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Bode Diagrams

17 jol
A
0.1 1 10
Integrator | —
(Pole at zero)
Slope of -6 dB/octave
or -20 dB/decade —
A1/ jo
A 0.1 1 10
| . % % — 0
H ( ]a)) =1/ jo
T
2

[ 12/29/10 M. J. Roberts - All Rights Reserved 35 ]




Bode Diagrams

|JOJ | Slope of 6 dB/octave
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Bode Diagrams

Al
Frequency-II.ldependent 20log (A) “
Gain &
> ()
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XA
(This phase plot is for A > 0. If I
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Bode Diagrams
Complex . 1 1
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Bode Diagrams
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Practical Passive Filters
R +o—(Z( jo) T o+

+ +
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Practical Passive Filters

H(jo)
N
R
+ o — ANV — °
L = 1
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Practical Active Filters
Operational Amplifiers

The 1deal operational amplifier has infinite input impedance,
zero output impedance, infinite gain and infinite bandwidth.

Inverting Amplifier Non-Inverting Amplifier
L.
/ (S) Zf(S)
L (s) ‘
to—— 7, ( S) -
V,(s) +
X |
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Practical Active Filters

Active Integrator

C
|{
A

1;,(0) R vx(zj
v, (D) :zo(z)
X 1 9
__1 V()
Vo)==~ jonf

Fourier transform
of integral of V;(f)
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Practical Active Filters
Active RC Lowpass Filter

V,(f) R 1

Vi(f) R j2rfCR,+1
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Practical Active Filters

Lowpass Filter

An integrator with feedback is a lowpass filter.

X(l);?— j - Y(O)

y'(1)+y(2)=x(1)
1
jo+1

H(jo)=
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Discrete Time
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Distortion

e Distortion means the same thing for discrete-time

signals as 1t does for continuous-time signals,
changing the shape of a signal

No Distortion Distortion
Original Signal Original Signal
x[n] x[n]
4 )
B W I.|||||,I 3
BN 2 "
Attenuated Signal Log-Amplified Signal
zlal xz] o
11' ilie o

1

hlml”ﬂﬂﬂ“
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Distortion

A distortionless system would
have an impulse response

of the form,
h[n]=Ad[n—n,|

The corresponding

transfer function 1s

H(ejg) = Ae /M

H(e”)
AA

.&H(ejg)

A

21 [\27{:

o \ N\ =0
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Filter Classifications

Ideal Lowpass Filter Ideal Highpass Filter
() ()
M- ...
2n-Q,[ Q 2x - <2 2-Q,| Q 2 =i
&H(ejg) AH(ejQ)

\

=27

I N
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Filter Classifications

Ideal Bandpass Filter Ideal Bandstop Filter
JjL jQ
H(e?) H(e”)

I' :'!> ‘% [>Q
22,1 | 192, 2, 21 Qi | T2, 2m
Q11" 1, —Q| ' |FQy
ACH(@’Q) .&H(e’g)

|
Aoy NN
o e X \ N e
\ v 27N 2 S
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Impulse Responses of Ideal Filters

Ideal Lowpass
h[n]

Ideal Highpass
h[]

B —

Ideal Bandpass
[z

%n

Ideal Bandstop

hfn]
n
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Impulse Response and Causality

e Discrete-time 1deal filters are non-causal for
the same reason that continuous-time i1deal
filters are non-causal
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Impulse and Frequency Responses
of Causal Filters

Causal Lowpass h[n] IH(e/?)|
h[l’lJ l |
_Q 25 n _FJT( ! " " h ﬁJ-,'t»- Q

X[n]

| Excitation AH(ei?)
A e
y[”lJ T t t t t t
Response g
5 25" ‘“
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Impulse and Frequency Responses

of Causal Filters

Causal Highpass h[n] IH(e/?)|
h{n] i

st

S5 25
061 -:: ; " } ; - Q

x|n]

] Excitation X H(e/?)
A
s pa—— 25" U
y [”l] L t + Lot
; Response e _
503 571 :
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Impulse and Frequency Responses
of Causal Filters

Causal Bandpass h[n] IH(e/)|
h[n] 1
0.25
-5 25 "
-0.2 = s Q2

x|n]

] Excitation XH(e/?)
hogen resssess 25 1
yln]

Response L U
50 5 1t T
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Impulse and Frequency

Responses

of Causal Filters

Causal Bandstop h[#n] |H(e,9 )
han
08
T |
0.6t —Jli b —t ;;Q
X[n] -
: Excitation £H(e?)
-0

ylnl

N 2* Response n
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Two-Dimensional Filtering of Images

. . Causal Lowpass .
=) Filtering =) |
of Rows 1n
. an Image .

. Causal Lowpass
- Filtering -
57|

of Columns in
an Image
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Two-Dimensional Filtering of Images
| ey |
Lowpass
Flltermg
N TEE
an Image
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Two-Dimensional Filtering of Images

Causal
Lowpass
Filtering =)

of Rows and
Columns 1n
an Image

““Non-Causal’’
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Discrete-Time Filters

Lowpass Filter

e —VU.

D
% IHS(eJQ)I
5
h[n]=(4/5) u[n] W
-2 23t=Q
i ()
S S
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Discrete-Time Filters

Comparison of a discrete-time lowpass filter impulse
response with an RC passive lowpass filter impulse

response
h[#]
F

5 20

RC
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Discrete-Time Filters

Discrete-time Lowpass Filter
Frequency Response

RC Lowpass Filter
Frequency Response

IH(e/®)| | H({'w ) |
5 l |
2
» (D
LTS
RC RC
7t T - XH(jw)
&H ejQ /
A( ) i 900
- N 4se
~ W
-7 /\ - -45° —
w2 -90°
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Discrete-Time Filters

Highpass
Kl —— @ | -@—yln]
D
o |
< -
Bandpass
Xl —D -BD—@
D D
a -1 B
< > < > y[n]
[ 12/29/10 M. J. Roberts - All Rights Reserved 63 ]




Discrete-Time Filters

Bandstop

D

o -1

) g C—:D—» yln]

!
D

X[n] —

B
B
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Discrete-Time Filters
Moving-Average Filter

g -ijan sin(NQ / 2)

(1] ~ i H(e™® )=
i . (") N sin(Q/2)
HP =" drel(Q/ 27, V)
9
Y + N e 4 N - 9
21D IH(e/@) IH(e/®)
4;6__) 1 1
Y K
} f = -Q Q
v-1lD =27 | 21 2% 21
£H(e/?) KH(e/?)

Always Stable
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Discrete-Time Filters
h[‘n]

—'011-;1*’-7-7-";-1:

...

h[n]
i
0.25+

IH(ei®)|
A

|

|

-

=21

21

Ideal Lowpass
Filter Impulse Response

Almost-Ideal Lowpass
Filter Impulse Response

n
64

Almost-Ideal Lowpass
Filter Magnitude Frequency
Response
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Discrete-Time Filters

Almost-Ideal Lowpass
Filter Magnitude Frequency
Response in dB

IH(e™)lgp

-100 +
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Advantages of Discrete-Time Filters

* They are almost insensitive to environmental effects

e Continuous-time filters at low frequencies may require very
large components, discrete-time filters do not

e Discrete-time filters are often programmable making them
easy to modity

e Discrete-time signals can be stored indefinitely on magnetic
media, stored continuous-time signals degrade over time

e Discrete-time filters can handle multiple signals by
multiplexing them
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