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System Descriptions	



•  Transfer functions of continuous-time 
systems can be found from analysis of 	


– Differential Equations	


– Block Diagrams	


– Circuit Diagrams	





12/29/10	

 M. J. Roberts - All Rights Reserved	

 3	



A circuit can be described by a system of differential equations	



−vg t( ) + R1 iL t( ) +C d
dt
vC t( )( )⎡

⎣⎢
⎤
⎦⎥
+ L d

dt
iL t( )( ) = 0

−L d
dt
iL t( )( ) + vC t( ) + R2C

d
dt
vC t( )( ) = 0

System Descriptions	
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−Vg s( ) + R1 IL s( ) + sCVC s( )⎡⎣ ⎤⎦ + sL IL s( ) = 0
−sL IL s( ) +VC s( ) + sR2CVC s( ) = 0

System Descriptions	


Using the Laplace transform, a circuit can be described by	


a system of algebraic equations 	
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A mechanical system can
be described by a system of differential equations
f t( )− Kd ′x1 t( )− Ks1 x1 t( )− x2 t( )⎡⎣ ⎤⎦ = m1 ′′x1 t( )
Ks1 x1 t( )− x2 t( )⎡⎣ ⎤⎦ − Ks2 x2 t( ) = m2 ′′x2 t( )
or a system of algebraic equations.
F s( )− KdsX1 s( )− Ks1 X1 s( )− X2 s( )⎡⎣ ⎤⎦ = m1s

2 X1 s( )
Ks1 X1 s( )− X2 s( )⎡⎣ ⎤⎦ − Ks2 X2 s( ) = m2s

2 X2 s( )

System Descriptions	
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The mechanical system can also be described by a block	


diagram.	



Time Domain	

 Frequency Domain	



System Descriptions	
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System Stability	



System stability is very important.  A continuous-time LTI system 
is stable if its impulse response is absolutely integrable.  This 
translates into the frequency domain as the requirement that all the 
poles of the system transfer function must lie in the open left half 
of the s plane (proven in the text).  “Open left half-plane” means 
not including the ω  axis.
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System Interconnections	


Cascade	



Parallel	
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Feedback	


System Interconnections	



E s( )   Error signal
H1 s( )   Forward path
transfer function of the
"plant"
H2 s( )  Feedback path
transfer function or the
"sensor".
T s( ) = H1 s( )H2 s( )
Loop transfer function 

                          

                   E s( ) = X s( )− H2 s( )Y s( )
                        Y s( ) = H1 s( )E s( )

                 H s( ) = Y s( )
X s( ) =

H1 s( )
1+ H1 s( )H2 s( )

                        T s( ) = H1 s( )H2 s( )

                             H s( ) = H1 s( )
1+ T s( )
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Analysis of Feedback Systems	


Beneficial Effects	



� 

H s( ) =
K

1+ KH2 s( )

If K  is large enough that  KH2 s( ) >> 1 then H s( ) ≈ 1
H2 s( ) .  

This means that the overall system is the approximate inverse 
of the system in the feedback path.  This kind of system can be 
useful for reversing the effects of another system.
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Analysis of Feedback Systems	


A very important example of feedback systems is an 
electronic amplifier based on an operational amplifier

Let the operational amplifier gain be

                        H1 s( ) = Vo s( )
Ve s( ) = − A0

1− s / p
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Analysis of Feedback Systems	


The amplifier can be modeled as a feedback system with this
block diagram.

The overall gain can be written as

             V0 s( )
Vi s( ) =

−A0 Z f s( )
1− s / p + A0( )Zi s( ) + 1− s / p( )Z f s( )
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Analysis of Feedback Systems	



If the operational amplifier low-frequency gain  A0  is very
large (which it usually is) then the overall amplifier gain 
reduces at low-frequencies to

                               
V0 s( )
Vi s( ) ≅ −

Z f s( )
Zi s( )

the gain formula based on an ideal operational amplifier.  
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Analysis of Feedback Systems	


Let Z f s( ) = 10 kΩ and let Zi s( ) = 1 kΩ for a nominal gain of -10.  

If A0 = 107 and p = −100 then H − j100( ) = −9.999989 + j0.000011
If A0 = 106 and p = −100 then H − j100( ) = −9.99989 + j0.00011
The change in overall system gain is about 0.001% for a change in 
open-loop gain of a factor of 10.  

The half-power bandwidth of the operational amplifier itself is 15.9 Hz  
(100/2π ).  The half-power bandwidth of the overall amplifier is 
approximately 14.5 MHz, an increase in bandwidth of a factor of 
approximately 910,000.
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Analysis of Feedback Systems	


Feedback can stabilize an unstable system.  Let a forward-path
transfer function be

                             H1 s( ) = 1
s − p

, p > 0

This system is unstable because it has a pole in the right half-plane.  
If we then connect feedback with a transfer function K , a constant, 
the overall system gain becomes

                                H s( ) = 1
s − p + K

and, if K  >  p, the overall system is now stable.
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Analysis of Feedback Systems	



Feedback can make an unstable system stable but it can also	


make a stable system unstable.  Even though all the poles	


of the forward and feedback systems may be in the open left	


half-plane, the poles of the overall feedback system can be	


in the right half-plane.	



A familiar example of this kind of instability caused by	


feedback is a public address system.  If the amplifier gain	


is set too high the system will go unstable and oscillate,	


usually with a very annoying high-pitched tone.	
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Analysis of Feedback Systems	


Public Address System	



As the amplifier gain is	


increased, any sound 
entering the microphone 
makes a stronger sound 
from the speaker until, at 
some gain level, the 
returned sound from the 
speaker is a large as the 
originating sound into the 
microphone.  At that point 
the system goes unstable.	





12/29/10	

 M. J. Roberts - All Rights Reserved	

 18	



Analysis of Feedback Systems	


Stable Oscillation Using Feedback	



Prototype 	


Feedback 	


System	



Feedback 	


System 	


Without 	



Excitation	
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Analysis of Feedback Systems	


Stable Oscillation Using Feedback	



Can the response be non-zero when the 
excitation is zero?  Yes, if the overall 
system gain is infinite.  If the system 
transfer function has a pole pair on the
ω  axis, then the transfer function is infinite 
at the frequency of that pole pair and there can be a response without 
an excitation.  In practical terms the trick is to be sure the poles stay 
on the ω  axis.  If the poles move into the left half-plane the response 
attenuates with time.  If the poles move into the right half-plane the 
response grows with time (until the system goes non-linear).
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Analysis of Feedback Systems	



A real example of a system that oscillates stably is a laser.  
In a laser the forward path is an optical amplifier.	



The feedback action is provided by putting mirrors at each 
end of the optical amplifier.	



Stable Oscillation Using Feedback	
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Analysis of Feedback Systems	



Laser action begins when a photon is spontaneously emitted from 
the pumped medium in a direction normal to the mirrors.	



Stable Oscillation Using Feedback	
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Analysis of Feedback Systems	



If the “round-trip” gain of the 
combination of pumped laser 
medium and mirrors is unity, 
sustained oscillation of light will 
occur.  For that to occur the 
wavelength of the light must fit into 
the distance between mirrors an 
integer number of times.	



Stable Oscillation Using Feedback	
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Analysis of Feedback Systems	



A laser can be modeled by  a block diagram in which the K’s 
represent the gain of the pumped medium or the reflection or 
transmission coefficient at a mirror, L is the distance between 
mirrors and c is the speed of light.	



Stable Oscillation Using Feedback	
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Analysis of Feedback Systems	


Root Locus	



Common Type of Feedback System	



System Transfer Function           H s( ) = KH1 s( )
1+ KH1 s( )H2 s( )

Loop Transfer Function                 T s( ) = KH1 s( )H2 s( )
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Analysis of Feedback Systems	


Root Locus	



Poles of H(s)          ⎯ →⎯⎯   Zeros of 1 + T(s)

T is of the form   ⎯→⎯   T s( ) = K P s( )
Q s( )

Poles of H(s)             ⎯ →⎯⎯   Zeros of 1 +K P s( )
Q s( )

Poles of H(s)              ⎯ →⎯⎯  
Q s( ) + K P s( ) = 0

Q s( ) / K + P s( ) = 0
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Analysis of Feedback Systems	



K  can range from zero to infinity.  For K  approaching zero, 
using Q s( ) + K P s( ) = 0,  the poles of H are the same as the zeros 
of Q s( ) = 0 which are the poles of T.  For K  approaching infinity, 
using Q s( ) / K + P s( ) = 0 the poles of H are the same as the zeros of 
P s( ) = 0 which are the zeros of T.  So the poles of H start on the 
poles of T and terminate on the zeros of T, some of which may 
be at infinity.  The curves traced by these pole locations as K  is varied 
are called the root locus.

Root Locus	
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Analysis of Feedback Systems	


Root Locus	



Root	


Locus	



Let  H1 s( ) = K
s +1( ) s + 2( )  and let H2 s( ) = 1.

Then T s( ) = K
s +1( ) s + 2( )

No matter how large K  gets
this system is stable because 
the poles always lie in the 
left half-plane (although for 
large K  the system may be
very underdamped).  



Root	


Locus	
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Analysis of Feedback Systems	


Root Locus	



Let H1 s( ) = K
s +1( ) s + 2( ) s + 3( )  

and let H2 s( ) = 1  
At some finite value of K  the system 
becomes unstable because two poles 
move into the right half-plane.
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The behavior of the zeros of polynomial equations as their coefficients 
vary has been studied by mathematicians and they have formulated 
rules obeyed by the movement of these zeros.  In our case, the zeros of 
the denominator polynomial of the transfer function are the system poles 
and the movement traces out the root locus.

Analysis of Feedback Systems	


Root Locus	
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Analysis of Feedback Systems	



Rules for Drawing a Root Locus	



Root Locus	



1. The number of branches in a root locus is the greater of the 
      degree of the numerator and the denominator of  T s( ).
2.   Each root-locus branch begins on a pole of T s( )  and terminates on a
      zero of T s( ).  (Some zeros may be at infinity.)
3. Any portion of the real axis for which the sum of the number of 
      real poles and/or real zeros lying to its right is odd, is a part of the 
      root locus.
4. The root locus is symmetrical about the real axis.
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Analysis of Feedback Systems	


Root Locus	



 

5. If the number of finite poles of T s( )  exceeds the number of finite 
      zeros of T s( )  by an integer m then m branches of the root locus 
      terminate on zeros of T s( )  which lie at infinity.  Each of these 
      branches approaches a straight-line asymptote and the angles of 
      these asymptotes are at the angles, 2k +1( )π /m , k = 0,1,m −1
      with respect to the positive real axis.  These asymptotes intersect on 
      the real axis at the location,

                    σ = 1
m

finite poles∑ − finite zeros∑( )
      called the centroid of the root locus.  (These are sums of all finite
      poles and all finite zeros, not just the ones on the real axis.)
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Analysis of Feedback Systems	


Root Locus	



6. The breakaway or break-in points where the root locus branches

      intersect occur where d
ds

1
T s( )

⎛
⎝⎜

⎞
⎠⎟
= 0.
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Analysis of Feedback Systems	


Root Locus Examples	



Let a feedback system have a loop transfer function

                         T s( ) = s + 4( ) s + 5( )
s +1( ) s + 2( ) s + 3( )

It has three finite poles at s = −1,−2 and − 3 and two finite 
zeros at s = −4 and − 5.  There are three root locus branches
(Rule 1).  The allowed regions on the real axis are − 2 < σ < −1, 
−4 < σ < −3 and σ < −5 (Rule 3).
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Analysis of Feedback Systems	


Root Locus Examples	



The root locus must begin on the poles at -1, -2 and -3 and 
terminate on zeros at -4, -5 and infinity (Rule 2).
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Analysis of Feedback Systems	


Root Locus Examples	



The two root locus branches beginning at -1 and -2 must move
toward each other to stay in an allowed range (Rule 3).  When 
they collide at a breakout point they both become complex and
must be complex conjugates (Rule 4).  The other branch beginning 
at -3 must move to the left to stay in an allowed range and can
only terminate on the zero at -4 to maintain the symmetry of
the root locus (Rules 3 and 4).
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Analysis of Feedback Systems	


Root Locus Examples	
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Analysis of Feedback Systems	


Root Locus Examples	



The other two root-locus branches must terminate on the zero at -5
and the zero at infinity.  To maintain symmetry and approach the
zeros in allowed regions, they must move to the allowed region on
the real axis to the left of -5 (Rules 3 and 4).  There is only one branch 
going to infinity and its angle is π  radians as it should be (Rule 5).  
The breakout and break-in points are found by solving 

                d
ds

1
T s( )

⎛
⎝⎜

⎞
⎠⎟
=
d
ds

s +1( ) s + 2( ) s + 3( )
s + 4( ) s + 5( )

⎡

⎣
⎢

⎤

⎦
⎥ = 0 (Rule 6).

The solutions are s = −9.47,  − 4.34, − 2.69 and −1.5.  So the 
breakout point is at −1.5 and the break-in point is at − 9.47.
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Analysis of Feedback Systems	


Root Locus Examples	



(The other solutions of d / ds( ) 1 / T s( )( ) = 0 are the breakout and break-in points 
of the complementary root locus found by letting K  approach negative infinity.)
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Analysis of Feedback Systems	


Root Locus Examples	
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Analysis of Feedback Systems	


Steady-State Tracking Errors in Unity-Gain Feedback Systems	



A very common type of feedback system is the unity-gain 
feedback connection.	



The aim of this type of  system is to make the response 
“track” the excitation.  When the error signal is zero, the 
excitation and response are equal.	
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Analysis of Feedback Systems	


Steady-State Tracking Errors in Unity-Gain Feedback Systems	



The Laplace transform of the error signal is

                                   E s( ) = X s( )
1+ H1 s( ) .

The steady-state value of this signal is (using the final-value theorem)

                   lim
t→∞

e t( ) = lim
s→0

sE s( ) = lim
s→0

s X s( )
1+ H1 s( )

If the excitation is the unit step u t( )  then the steady- state error is

                               lim
t→∞

e t( ) = lim
s→0

1
1+ H1 s( )

u t( )
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Analysis of Feedback Systems	


Steady-State Tracking Errors in Unity-Gain Feedback Systems	



 

If the forward transfer function is in the common form,

H1 s( ) = bNs
N + bN−1s

N−1 +b2s
2 + b1s + b0

aDs
D + aD−1s

D−1 +a2s
2 + a1s + a0

  then

lim
t→∞

 e t( ) = lim
s→0

1

1+ bNs
N + bN−1s

N−1 +b2s
2 + b1s + b0

aDs
D + aD−1s

D−1 +a2s
2 + a1s + a0

= a0

a0 + b0

If a0 = 0 and b0 ≠ 0 the steady-state error is zero and the forward 
transfer function can be written as

H1 s( ) = bNs
N + bN−1s

N−1 +b2s
2 + b1s + b0

s aDs
D−1 + aD−1s

D−2 +a2s + a1( )  which has a pole at s = 0.  
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Analysis of Feedback Systems	


Steady-State Tracking Errors in Unity-Gain Feedback Systems	



If the forward transfer function of a unity-gain feedback 
system has a pole at zero and the system is stable, the 
steady-state error with step excitation is zero.  This type 
of system is called a “type 1” system (one pole at s = 0 in 
the forward transfer function).  If there are no poles at 	


s = 0, it is called a “type 0” system and the steady-state 
error with step excitation is non-zero.	
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Analysis of Feedback Systems	


Steady-State Tracking Errors in Unity-Gain Feedback Systems	



The steady-state error with ramp excitation is	



	

Infinite for a stable type 0 system	



	

Finite and non-zero for a stable type 1 system	



	

Zero for a stable type 2 system (2 poles at s = 0 in 
	

the forward transfer function)	
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System Responses to Standard Signals	


Unit Step Response	



Let H s( ) = N s( )
D s( )  be proper in s.  Then the Laplace transform

of the unit-step response is

                Y s( ) = H−1 s( ) = N s( )
sD s( ) =

N1 s( )
D s( ) +

H 0( )
s

If the system is stable, the inverse Laplace transform of N s( )
D s( )

is called the transient response and the forced response is H 0( )
s

.
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System Responses to Standard Signals	



 

Let H s( ) = N s( )
D s( )  be proper in s.  Then the Laplace transform

of a general excitation is X s( )  and the Laplace transform of
the response is

       Y s( ) = N s( )
D s( ) X s( ) = N s( )

D s( )
Nx s( )
Dx s( ) =

N1 s( )
D s( )

same poles
as system


+

Nx1 s( )
Dx s( )
same poles

as excitation





12/29/10	

 M. J. Roberts - All Rights Reserved	

 47	



Unit Step Response	



Let H s( ) = A
1− s / p

.

Then the unit-step 
response is 

h−1 t( ) = A 1− ept( )u t( ).

System Responses to Standard Signals	
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System Responses to Standard Signals	



Let  

Η s( ) = Aω0
2

s2 + 2ζω0s +ω0
2

Unit Step Response	
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System Responses to Standard Signals	



Let Η s( ) = Aω0
2

s2 + 2ζω0s +ω0
2

Unit Step Response	
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System Responses to Standard Signals	



  

Let H s( ) = N s( )
D s( )  be proper in s.  If the excitation is a unit-amplitude

cosine applied to the system at time t = 0, the response is

                                Y s( ) = N s( )
D s( )

s
s2 +ω0

2

which can be reduced and inverse Laplace transformed into

       y t( ) = L−1 N1 s( )
D s( )

⎛
⎝⎜

⎞
⎠⎟
+ H jω0( ) cos ω0t +H jω0( )( )u t( )

If the system is stable, the steady-state response is a sinusoid of
same frequency as the excitation but, generally a different
magnitude and phase.
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Standard Realizations of Systems	



 

There are multiple ways of drawing a system block diagram
corresponding to a given transfer function of the form

H s( ) = Y s( )
X s( ) =

bks
k

k=0

N∑
aks

k
k=0

N∑
= bNs

N + bN−1s
N−1 ++ b1s + b0

aNs
N + aN−1s

N−1 ++ a1s + a0

(Here the numerator and denominator are both assumed to be 
of order N.  If the numerator order is less than N, some of the b’s 
are zero.)
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Standard Realizations of Systems	


Cascade Form	



 

The transfer function can be factored into the form,

H s( ) = A s − z1

s − p1

s − z2

s − p2


s − zM
s − pM

1
s − pM +1

1
s − pM +2


1

s − pN
and each factor can be realized in a small Direct Form II
subsystem of either of the two forms

and these subsystems can then be cascade connected.
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Standard Realizations of Systems	


Cascade Form	



A problem that arises in the cascade form is that some poles	


or zeros may be complex.  In that case, a complex conjugate	


pair can be combined into one second-order subsystem of the	


form	





12/29/10	

 M. J. Roberts - All Rights Reserved	

 54	



Standard Realizations of Systems	


Parallel Form	



 

The transfer function can be expanded in partial fractions of
the form

                H s( ) = K1

s − p1

+ K2

s − p2

++ KN

s − pN

Each of these terms describes a subsystem.  When all the
subsystems are connected in parallel the overall system is
realized.
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Standard Realizations of Systems	


Parallel Form	




