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Block Diagrams and Transfer 
Functions	


Just as with continuous-time systems, discrete-time systems are 
conveniently described by block diagrams and transfer functions 
can be determined from them.  For example, from this discrete-
time system block diagram the difference equation can be 
determined.	


y n[ ] = 2x n[ ]− x n −1[ ]− 1 / 2( )y n −1[ ]
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Block Diagrams and Transfer 
Functions	


Y z( ) = 2X z( )− z−1 X z( )− 1 / 2( )z−1 Y z( )

H z( ) = Y z( )
X z( ) =

2 − z−1

1+ 1 / 2( )z−1 =
2z −1
z +1 / 2

From a z-domain block diagram the transfer function can	

be determined.	
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System Stability	


A system is stable if its impulse response is 
absolutely summable.  That requirement 
translates into the z-domain requirement that 
all the poles of the transfer function must lie 
in the open interior of the unit circle.	
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System Interconnections	

Cascade	


Parallel	
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System Interconnections	


H z( ) = Y z( )
X z( ) =

H1 z( )
1+ H1 z( )H2 z( ) =

H1 z( )
1+ T z( )

                    T z( ) = H1 z( )H2 z( )

Feedback	
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Responses to Standard Signals	

If the system transfer function is H z( ) = N z( )

D z( )  the z transform 

of the unit-sequence response is H−1 z( ) = z
z −1

N z( )
D z( )  which 

can be written in partial-fraction form as

                               Y z( ) = zN1 z( )
D z( ) + H 1( ) z

z −1

If the system is stable the transient  term zN1 z( )
D z( )  dies out

and the forced response is H 1( ) z
z −1

.
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Responses to Standard Signals	


Let the system transfer function be H z( ) = Kz
z − p

.

Then Y z( ) = z
z −1

Kz
z − p

− K
1− p

z
z −1

− pz
z − p

⎛
⎝⎜

⎞
⎠⎟

and y n[ ] = K
1− p

1− pn+1( )u n[ ].

Let the constant K  be 1− p.  Then y n[ ] = 1− pn+1( )u n[ ].
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Responses to Standard Signals	

Unit Sequence Response	


One-Pole System	
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Responses to Standard Signals	

Unit Sequence Response	


Two-Pole System	
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Responses to Standard Signals	


  

If the system transfer function is H z( ) = N z( )
D z( )  the z transform

of the response to a cosine applied at time n = 0 is

                          Y z( ) = N z( )
D z( )

z z − cos Ω0( )⎡⎣ ⎤⎦
z2 − 2zcos Ω0( ) +1

Let p1 = e
jΩ0 .  Then the system response can be written as

y n[ ] = Z−1 zN1 z( )
D z( )

⎛
⎝⎜

⎞
⎠⎟
+ H p1( ) cos Ω0n +∠H p1( )( )u n[ ]

and, if the system is stable, the forced response is

                             H p1( ) cos Ω0n +H p1( )( )u n[ ]
a sinusoid with, generally, different magnitude and phase.                 
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z Transform - Laplace Transform 
Relationships	


Let a signal x(t) be sampled to form

                                    x n[ ] = x nTs( )
and impulse sampled to form

                                  xδ t( ) = x t( )δTs t( )
These two signals are equivalent in the sense that their 
impulse strengths are the same at corresponding times and
the correspondence between times is t = nTs .
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z Transform - Laplace Transform 
Relationships	


Let a discrete-time system have the impulse response h n[ ]  and let a
continuous-time system have the impulse response 

                                                  hδ t( ) = h n[ ]δ t − nTs( )n=0

∞∑  .If x n[ ]  is applied to the
discrete-time system and 
xδ t( )  is applied to the
continuous-time system,
their responses will be
equivalent in the sense
that the impulse strengths
are the same.
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z Transform - Laplace Transform 
Relationships	


The transfer function of the discrete-time system is

                                 H z( ) = h n[ ]z−n
n=0

∞

∑
and the transfer function of the continuous-time system is

                                Hδ s( ) = h n[ ]e−nTss
n=0

∞

∑
The equivalence between them can be seen in the transformation
                                 Hδ s( ) = H z( )

z→esTs
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z Transform - Laplace Transform 
Relationships	


Different contours in the s plane map into the same contour in 
the z plane.	


The relationship z = esTs  maps points in the s plane into 
corresponding points in the z  plane.
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z Transform - Laplace Transform 
Relationships	
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Simulating Continuous-Time 
Systems with Discrete-time Systems	


The ideal simulation of a continuous-time system by a discrete-time 
system would have the discrete-time system’s excitation and response 
be samples from the continuous-time system’s excitation and 
response.  But that design goal is never achieved exactly in real 
systems at finite sampling rates.	
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One approach to simulation is to make the impulse response of the 
discrete-time system be a sampled version of the impulse response 
of the continuous-time system.

                                       h n[ ] = h nTs( )

With this choice, the response of the discrete-time system to a discrete-
time unit impulse consists of samples of the response of the continuous-
time system to a continuous-time unit impulse.  This technique is called 
impulse - invariant  design.

Simulating continuous-time Systems 
with discrete-time Systems	
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When h n[ ] = h nTs( )  the impulse response of the discrete-time
system is a sampled version of the impulse response of the 
continuous-time system but the unit discrete-time impulse is not
a sampled version of the unit continuous-time impulse.
A continuous-time impulse cannot be sampled.  First, as a practical 
matter the probability of taking a sample at exactly the time of 
occurrence of the impulse is zero.  Second, even if the impulse were 
sampled at its time of occurrence what would the sample value be?  
The functional value of the impulse is not defined at its time of 
occurrence because the impulse is not an ordinary function.

Simulating continuous-time Systems 
with discrete-time Systems	
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In impulse-invariant design, even though the impulse response is a 
sampled version of the continuous-time system’s impulse response 
that does not mean that the response to samples from any arbitrary 
excitation will be a sampled version of the continuous-time 
system’s response to that excitation.	


All design methods for simulating continuous-time systems with 
discrete-time systems are approximations and whether or not the 
approximation is a good one depends on the design goals.	


Simulating continuous-time Systems 
with discrete-time Systems	
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Sampled-Data Systems	

Real simulations of continuous-time systems by discrete-time 
systems usually sample the excitation with an ADC, process 
the samples and then produce a continuous-time signal with a 
DAC.	
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Sampled-Data Systems	

An ADC simply samples a signal and produces numbers. A 
common way of modeling the action of a DAC is to imagine 
the discrete-time impulses in the discrete-time signal which 
drive the DAC are instead continuous-time impulses of the 
same strength and that the DAC has the impulse response of a 
zero-order hold.	
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Sampled-Data Systems	


The desired equivalence between a continuous-time and a 	

discrete-time system is illustrated below.	


The design goal is to make yd t( )  look as much like yc t( )  as
possible by choosing h n[ ]  appropriately.
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Sampled-Data Systems	

Consider the response of the continuous-time system not to the 
actual signal x(t) but rather to an impulse-sampled version of it    

xδ t( ) = x nTs( )δ t − nTs( )
n=−∞

∞

∑ = x t( )δTs t( )

The response is

y t( ) = h t( )∗xδ t( ) = h t( )∗ x m[ ]δ t − mTs( )
m=−∞

∞

∑ = x m[ ]h t − mTs( )
m=−∞

∞

∑
where x n[ ] = x nTs( )  and the response a the nth multiple of Ts

is y nTs( ) = x m[ ]h n − m( )Ts( )
m=−∞

∞

∑  .

The response of a discrete-time system with h n[ ] = h nTs( )  to the

excitation x n[ ] = x nTs( )  is y n[ ] = x n[ ]∗h n[ ] = x m[ ]h n − m[ ]
m=−∞

∞

∑  .
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Sampled-Data Systems	


The two responses are equivalent in the sense that the values 
at corresponding discrete-time and continuous-time times are 
the same. 	
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Sampled-Data Systems	

Modify the continuous-time system to reflect the last analysis.	


Then multiply the impulse responses of both systems by Ts
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Sampled-Data Systems	

       In the modified continuous-time system

y t( ) = xδ t( )∗Ts h t( ) = x nTs( )δ t − nTs( )
n=−∞

∞

∑⎡
⎣⎢

⎤
⎦⎥
∗h t( )Ts = x nTs( )h t − nTs( )Ts

n=−∞

∞

∑
In the modified discrete-time system

           y n[ ] = x m[ ]h n − m[ ]
m=−∞

∞

∑ = x m[ ]Ts h n − m( )Ts( )
m=−∞

∞

∑
where h n[ ] = Ts h nTs( )  and h t( )  still represents the impulse
response of the original continuous-time system.  Now let Ts
approach zero.

        lim
Ts→0

y t( ) = lim
Ts→0

x nTs( )h t − nTs( )Ts
n=−∞

∞

∑ = x τ( )h t −τ( )dτ
−∞

∞

∫
This is the response yc t( )  of the original continuous-time system.
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Sampled-Data Systems	

Summarizing, if the impulse response of the discrete-time 
system is chosen to be Ts h nTs( )  then, in the limit as the 
sampling rate approaches infinity, the response of the 
discrete-time system is exactly the same as the response 
of the continuous-time system.

Of course the sampling rate can never be infinite in practice.  
Therefore this design is an approximation which gets better 
as the sampling rate is increased. 
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Sampled-Data Systems	


  

A continuous-time system is characterized by the transfer function

                                     H s s( ) = 1
s2 + 40s + 300

 .

Design a discrete-time system to approximate this continuous-time
system.  Use two different sampling rates fs = 10 and fs = 100 and
compare step responses.

The impulse response of the continuous-time system is

                                       h t( ) = 1
20

e−10t − e−30t( )u t( )  .
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Sampled-Data Systems	


  

The discrete-time impulse response is

                                     h n⎡⎣ ⎤⎦ =
Ts

20
e−10nTs − e−30nTs( )u n⎡⎣ ⎤⎦

and the transfer function is its z  transform

                                   H z z( ) = Ts

20
z

z − e−10Ts
− z

z − e−30Ts

⎛
⎝⎜

⎞
⎠⎟

The step response of the continuous-time system is

                                    yc t( ) = 2 − 3e−10t + e−30t

600
u t( )

and the response of the discrete-time system to a unit sequence is

y n⎡⎣ ⎤⎦ =
Ts

20
e−10Ts − e−30Ts

1− e−10Ts( ) 1− e−30Ts( ) +
e−10Ts

e−10Ts −1
e−10nTs − e−30Ts

e−30Ts −1
e−30nTs

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

u n⎡⎣ ⎤⎦
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Sampled-Data Systems	

The response of the DAC is

                yd t( ) = y n[ ]rect t − Ts n +1 / 2( )
Ts

⎛
⎝⎜

⎞
⎠⎟n=0

∞

∑  .
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Standard Realizations	

•  Realization of a discrete-time system closely 

parallels the realization of a continuous-time system	

•  The basic forms, Direct Form II, cascade and 

parallel have the same structure	

•  A continuous-time system can be realized with 

integrators, summing junctions and multipliers	

•  A discrete-time system can be realized with delays, 

summing junctions and multipliers	
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Standard Realizations	


Direct Form II	
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Standard Realizations	

Cascade	
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Standard Realizations	


Parallel	



