
State Space Analysis	
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Continuous Time	
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State Variables	

Every system has an order.  If it is described by a single differential 
equation, the order of the system is the same as the order of the
differential equation.  If it is described by a system of differential
equations, the order of the system is the sum of the orders of the
differential equations.  State variables are a set of variables which are
sufficient to describe the state of the system at any time.  The number
of state variables required is the same as the order of the system.  The
state variables define a location in state space, a vector space of the same
dimension as the order of the system.  As a system changes state with
time it follows a trajectory through state space.
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State Variables	

Example

It is possible to specify the state of this system by two state
variables, the capacitor voltage vC t( )  and the inductor current iL t( ).
The forcing function iin t( )  and the initial state of the system determine 
how the system will move through state space and the state variables 
describe its position in state space as it follows that trajectory.
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State Variables	

The state-space description of a system has a standard form, the
system equations and the output  equations.  Each system equation
has on its left side the derivative of a state variable and on the right
side a linear combination of state variables and excitations.  For this
example the state equations are
                                 ′iL t( ) = 1 / L( )vC t( )
       ′vC t( ) = − 1 /C( ) iL t( ) − G /C( )vC t( ) + 1 /C( ) iin t( )
The output equations express the responses of the system as linear
combinations of the state variables and the excitations.  In this case
if we choose vout t( )  and iR t( )  as the responses the output equations are
                                     vout t( ) = vC t( )
                                       iR t( ) = G vC t( )     ,    G = 1 / R( )
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State Variables	

The system and output equations can be expressed in matrix form as

      
′iL t( )
′vC t( )

⎡

⎣
⎢

⎤

⎦
⎥ =

0 1 / L
−1 /C −G /C
⎡

⎣
⎢

⎤

⎦
⎥

iL t( )
vC t( )
⎡

⎣
⎢

⎤

⎦
⎥ +

0
1 /C
⎡

⎣
⎢

⎤

⎦
⎥ iin t( )⎡⎣ ⎤⎦

and

                 
vout t( )
iR t( )

⎡

⎣
⎢

⎤

⎦
⎥ =

0 1
0 G
⎡

⎣
⎢

⎤

⎦
⎥

iL t( )
vC t( )
⎡

⎣
⎢

⎤

⎦
⎥ +

0
0
⎡

⎣
⎢

⎤

⎦
⎥ iin t( )⎡⎣ ⎤⎦
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State Variables	

A block diagram description of the RLC  circuit can be drawn 
directly from the system and output equations.
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State Variables	

The vector of state variables will be designated by q t( )  and the
matrix that multiplies q t( )  in the system equations is designated
A.  The vector of excitations will be designated x t( )  and the
matrix that multiplies x t( )  is designated B.  The matrix that multiplies
q t( )  in the output equations is designated C and the matrix that
multiplies x t( )  in the output equations is designated D.  The vector
of responses is designated y t( ).  So the standard form of the system 
equations is ′q t( ) = Aq t( ) + Bx t( )  and the standard for of the output 
equations is y t( ) = Cq t( ) + Dx t( ).
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State Variables	


For the RLC  circuit example

           x t( ) = iin t( )⎡⎣ ⎤⎦   ,  q t( ) = iL t( )
vC t( )
⎡

⎣
⎢

⎤

⎦
⎥   ,  y t( ) = vout t( )

iR t( )
⎡

⎣
⎢

⎤

⎦
⎥

A =
0 1 / L

−1 /C −G /C
⎡

⎣
⎢

⎤

⎦
⎥   ,  B =

0
1 /C
⎡

⎣
⎢

⎤

⎦
⎥   ,  C =

0 1
0 G
⎡

⎣
⎢

⎤

⎦
⎥  and D =

0
0
⎡

⎣
⎢

⎤

⎦
⎥
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State Variables	

Techniques exist for solving the system and output equations in the
time domain, but the solution is generally easier using the Laplace
transform.  Laplace transforming the system  equation we get

                    sQ s( ) − q 0−( ) = AQ s( ) + BX s( )
or

                     sI − A[ ]Q s( ) = BX s( ) + q 0−( )
Solving for Q s( )
                   Q s( ) = sI − A[ ]−1 BX s( ) + q 0−( )⎡⎣ ⎤⎦
The matrix sI − A[ ]−1  is conventionally designated as Φ s( ).
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State Variables	


 

Q s( )  can now be expressed in the form

        Q s( ) = Φ s( ) BX s( ) + q 0−( )⎡⎣ ⎤⎦ = Φ s( )BX s( )
zero−state
response

   +Φ s( )q 0−( )
zero− input

response

  

To find the time-domain solution for the state variables we inverse
Laplace transform to get

                          q t( ) = φ t( )∗Bx t( )
zero−state
response

   + φ t( )q 0−( )
zero− input

response

  

and φ t( )  is called the state transition matrix because it describes
how the system transitions from one state to the next.
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State Variables	


 We can now finish the RLC  circuit example.  To make the example
concrete let i t( ) = Au t( ), let the initial conditions be 

q 0−( ) = iL 0−( )
vC 0−( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

0
1
⎡

⎣
⎢

⎤

⎦
⎥   and let R = 1 / 3 , C = 1 , L = 1.

Then

      Φ s( ) = sI − A( )−1 =
s −1 / L

1 /C s +G /C
⎡

⎣
⎢

⎤

⎦
⎥

−1

=

s +G /C −1 /C
1 / L s

⎡

⎣
⎢

⎤

⎦
⎥

T

s2 + G /C( )s +1 / LC
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State Variables	


Φ s( ) =

s +G /C 1 / L
−1 /C s

⎡

⎣
⎢

⎤

⎦
⎥

s2 + G /C( )s +1 / LC
 and Q s( ) = Φ s( ) BX s( ) + q 0−( )⎡⎣ ⎤⎦

Multiplying matrices, simplifying and substituting in numerical

component values we get. Q s( ) =

1
s s2 + 3s +1( ) +

1
s2 + 3s +1

1
s2 + 3s +1

+
s

s2 + 3s +1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.
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State Variables	

Expanding in partial fractions and combining like denominators

                    Q s( ) =
1
s
−

0.277
s + 2.62

−
0.723

s + 0.382
0.723
s + 2.62

+
0.277

s + 0.382

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Inverse Laplace transforming

                    q t( ) = 1− 0.277e−2.62t − 0.723e−0.382t

0.723e−0.382t + 0.277e−2.62t

⎡

⎣
⎢

⎤

⎦
⎥u t( )

Now that we have this solution we can immediately solve for the
responses also

y t( ) = 0 1
0 G
⎡

⎣
⎢

⎤

⎦
⎥q +

0
0
⎡

⎣
⎢

⎤

⎦
⎥x =

0 1
0 3
⎡

⎣
⎢

⎤

⎦
⎥

1− 0.277e−2.62t − 0.723e−0.382t

0.723e−0.382t + 0.277e−2.62t

⎡

⎣
⎢

⎤

⎦
⎥u t( )

                           y t( ) = 0.723e−0.382t + 0.277e−2.62t

2.169e−0.382t + 0.831e−2.62t

⎡

⎣
⎢

⎤

⎦
⎥u t( )
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Transfer Functions	


 

From the system equation

                     sQ s( ) − q 0−( ) = AQ s( ) + BX s( )
we can find the transfer function of the system.  Transfer functions

defined only for zero-state responses.  Therefore q 0−( ) = 0 and

                    Q s( ) = sI − A[ ]−1BX s( ) = Φ s( )BX s( )
and
Y s( ) = CQ s( ) + DX s( ) = CΦ s( )BX s( ) + DX s( ) = CΦ s( )B + D⎡⎣ ⎤⎦

H s( )
  

X s( )

Therefore H s( ) = CΦ s( )B + D = C sI − A[ ]−1B + D.  This is a vector
transfer function, valid for multiple-input-multiple-output systems.
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Alternate State Variables	


The choice of state variables is not unique.  The variables chosen as
state variables must be independent and the number of state variables
must be the same as the order of the system.  If an alternate set of state
variables is substituted for an original set the A matrix changes but 
the determinant sI − A  does not change.  This determinant says
something fundamental about the system and is not dependent on the
choice of state variables.
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Transformations of State Variables	

Any set of state variables can be transformed into another set
through a linear transformation.  Let an original state-variable
vector be q1 t( )  and let a new choice of state-variable vector be
q2 t( ) = Tq1 t( ).  Then
  ′q2 t( ) = T ′q1 t( ) = T A1q1 t( ) + B1x t( )( ) = TA1q1 t( ) + TB1x t( )
Also q1 t( ) = T−1q2 t( ).  Therefore 
         ′q2 t( ) = TA1T

−1q2 t( ) + TB1x t( ) = A2q2 t( ) + B2x t( )
and A2 = TA1T

−1  and B2 = TB1.  Also 
y t( ) = C1q1 t( ) + D1x t( ) = C1T

−1q2 t( ) + D1x t( ) = C2q2 t( ) + D2x t( )
and C2 = C1T

−1  and D2 = D1.
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Diagonalization	


 

If the eigenvalues of a system are distinct (no repetitions) it is
possible to choose the state variables in such a way that the system
matrix A is diagonal of the form

                           A =

a11 0  0
0 a22  0
   
0 0  aNN

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Then sI − A = s − a11( ) s − a22( ) s − aNN( )  and the elements on
the diagonal are the eigenvalues implying

                      A = Λ =

λ1 0  0
0 λ2  0
   
0 0  λN

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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Diagonalization	


If we have a system matrix A and we want to make a diagonal
system matrix Λ using a transformation matrix T, then Λ = TAT−1.
Postmultiplying both sides by T, ΛT = TA.  Since Λ and A are
known, this equation can be solved for T.  If we find a T that
solves this equation and muliply it by K  to form T2 = KT we can
say ΛT2 = ΛKT = KΛT and ΛT2 = KTA = T2A or simply
ΛT2 = T2A.  This shows that the solution is not unique.
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Diagonalization	


 

Once we have found a T to diagonalize a system matrix we can
then write

               

′q1 t( )
′q2 t( )

′qN t( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

λ1 0  0
0 λ2  0
   
0 0  λN

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

q1 t( )
q2 t( )


qN t( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+ Bx t( )

This is a set of N  uncoupled differential equations which could be
solved one at a time.  So diagonalization converts N  coupled 
differential equations into N  uncoupled or independent differential
equations which can be solved one at a time.
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Diagonalization	

Example

A system has A1 =
2 −1
−3 4
⎡

⎣
⎢

⎤

⎦
⎥  and B1 =

4 0
−2 1
⎡

⎣
⎢

⎤

⎦
⎥.  Find a matrix T that

diagonalizes the A matrix and the new state variables.
The eigenvalues are the solutions of sI − A = 0 or
s − 2 1

3 s − 4
= 0 ⇒λ1 = 1 , λ2 = 5.  To find T solve

ΛT = TA1 ⇒
1 0
0 5
⎡

⎣
⎢

⎤

⎦
⎥
t11 t12

t21 t22

⎡

⎣
⎢

⎤

⎦
⎥ =

t11 t12

t21 t22

⎡

⎣
⎢

⎤

⎦
⎥

2 −1
−3 4
⎡

⎣
⎢

⎤

⎦
⎥
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Diagonalization	

Example

From 
1 0
0 5
⎡

⎣
⎢

⎤

⎦
⎥
t11 t12

t21 t22

⎡

⎣
⎢

⎤

⎦
⎥ =

t11 t12

t21 t22

⎡

⎣
⎢

⎤

⎦
⎥

2 −1
−3 4
⎡

⎣
⎢

⎤

⎦
⎥  we get

                    
t11 = 2t11 − 3t12 , t12 = −t11 + 4t12

5t21 = 2t21 − 3t22 , 5t22 = −t21 + 4t22

and the top two equations both simplify to − t11 + 3t12 = 0 so they
are not linearly independent.  The same is true of the bottom two.
This means that we can arbitrarily choose two elements of T and
then solve for the other two.  Let t11 = a and t21 = b.  Then
t12 = a / 3
t22 = −b

⇒ T =
a a / 3
b −b
⎡

⎣
⎢

⎤

⎦
⎥
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Diagonalization	

Example

T =
a a / 3
b −b
⎡

⎣
⎢

⎤

⎦
⎥.  We could choose t11 = a = 3 and t21 = b = 1.  Then

T =
3 1
1 −1
⎡

⎣
⎢

⎤

⎦
⎥.  The state-variable vector corresponding to the new 

diagonalized A is q2 = Tq1 =
3 1
1 −1
⎡

⎣
⎢

⎤

⎦
⎥q1  and the new system equation

is ′q2 t( ) = TA1T
−1q2 t( ) + TB1x t( ) = A2q2 t( ) + B2x t( )  or

′q2 t( ) = 1 0
0 5
⎡

⎣
⎢

⎤

⎦
⎥q2 t( ) + 10 1

6 −1
⎡

⎣
⎢

⎤

⎦
⎥x t( ).
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Discrete Time	
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In continuous-time-system, state-space realization, the derivatives 
of the state variables are set equal to a linear combination of the state 
variables and the excitations.  In discrete-time system state-space 
realization, the next state-variable values are equated to a linear 
combination of the present state-variable values and the present 
excitations.
                              q n +1[ ] = Aq n[ ] + Bx n[ ]
                                 y n[ ] = Cq n[ ] + Dx n[ ]
The state variables are the responses of the delay blocks.  

State Variables	
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State Variables	


q n[ ] = q1 n[ ]
q2 n[ ]
⎡

⎣
⎢

⎤

⎦
⎥  , A =

1 / 3 1 / 4
1 / 2 0
⎡

⎣
⎢

⎤

⎦
⎥  , B =

1 0
0 1
⎡

⎣
⎢

⎤

⎦
⎥  , x n[ ] = x1 n[ ]

x2 n[ ]
⎡

⎣
⎢

⎤

⎦
⎥

                    y n[ ] = y n[ ]⎡⎣ ⎤⎦  , C = 2 3[ ]  , D = 0 0[ ]
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State Variables	


 

One way to solve the state equations is by recursion.  Let x n[ ] = u n[ ]
δ n[ ]
⎡

⎣
⎢

⎤

⎦
⎥

and let the system be initially at rest q 0[ ] = 0[ ]( ).  Then

n q1 n[ ] q2 n[ ] y n[ ]
0 0 0 0
1 1 1 5
2 1.5833 0.5 4.667
3 1.6528 0.7917 5.681
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State Variables	


 

The process of recursion is
q 1[ ] = Aq 0[ ] + Bx 0[ ]
q 2[ ] = Aq 1[ ] + Bx 1[ ] = A2q 0[ ] + ABx 0[ ] + Bx 1[ ]
q 3[ ] = Aq 2[ ] + Bx 2[ ] = A3q 0[ ] + A2Bx 0[ ] + ABx 1[ ] + Bx 2[ ]


q n[ ] = Anq 0[ ] + An−1Bx 0[ ] + An−2Bx 1[ ] ++ A1Bx n − 2[ ] + A0Bx n −1[ ]
and
y 1[ ] = Cq 1[ ] + Dx 1[ ] = CAq 0[ ] +CBx 0[ ] + Dx 1[ ]
y 2[ ] = Cq 2[ ] + Dx 2[ ] = CA2q 0[ ] +CABx 0[ ] +CBx 1[ ] + Dx 2[ ]
y 3[ ] = Cq 3[ ] + Dx 3[ ] = CA3q 0[ ] +CA2Bx 0[ ] +CABx 1[ ] +CBx 2[ ] + Dx 3[ ]


y n[ ] = CAnq 0[ ] +CAn−1Bx 0[ ] +CAn−2Bx 1[ ] ++CA0Bx n −1[ ] + Dx n[ ]
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State Variables	


 

                   q n[ ] = Anq 0[ ]
Zero-input
response

 + An−m−1Bx m[ ]
m=0

n−1

∑
Zero-State
Response

  

             q n[ ] = φ n[ ]q 0[ ]
zero-input
response

   + φ n −1[ ]u n −1[ ]∗Bx n[ ]
zero−state
response

  

where φ n[ ] = An  is the state transition matrix.  Similarly

         y n[ ] = CAnq 0[ ] +C An−m−1Bx m[ ]
m=0

n−1

∑ + Dx n[ ]
becomes
   y n[ ] = Cφ n[ ]q 0[ ] +Cφ n −1[ ]u n −1[ ]∗Bx n[ ] + Dx n[ ]
These are the discrete-time solutions of the system and output equations.
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State Variables	


  

Using the z transform
                   zQ z( ) − zq 0[ ] = AQ z( ) + BX z( )
Q z( ) = zI − A[ ]−1 BX z( ) + zq 0[ ]⎡⎣ ⎤⎦ = zI − A[ ]−1BX z( )

zero−state
response

   + z zI − A[ ]−1 q 0[ ]
zero− input

response

  

where φ n[ ] Z← →⎯ z zI − A[ ]−1 ⇒Φ z( ) = z zI − A[ ]−1 (analogous to the

continuous-time result Φ s( ) = sI − A[ ]−1).  With the same excitation and

initial conditions as before x n[ ] = u n[ ]
δ n[ ]
⎡

⎣
⎢

⎤

⎦
⎥  and q 0[ ] = 0[ ],

                   Q z( ) = z −1 / 3 −1 / 4
−1 / 2 z

⎡

⎣
⎢

⎤

⎦
⎥

−1 1 0
0 1
⎡

⎣
⎢

⎤

⎦
⎥

z
z −1

1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
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State Variables	


 Q z( ) =

z2 + z / 4 −1 / 4
z −1( ) z − 0.5575( ) z + 0.2242( )

z2 − 5z / 6 +1 / 3
z −1( ) z − 0.5575( ) z + 0.2242( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

1.846
z −1

−
0.578

z − 0.5575
−

0.268
z + 0.2242

0.923
z −1

−
0.519

z − 0.5575
+

0.596
z + 0.2242

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Inverse z transforming

            q n[ ] = 1.846 − 0.578 0.5575( ) n−1( ) − 0.268 −0.2242( ) n−1( )

0.923− 0.519 0.5575( ) n−1( ) + 0.596 −0.2242( ) n−1( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
u n −1[ ]

After solving for the states the response can be found in one simple step.

            y n[ ] = 6.461− 2.713 0.5575( ) n−1( ) +1.252 −0.2242( ) n−1( )⎡
⎣

⎤
⎦u n −1[ ]
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Transfer Functions	

 The system equation is 
                    zQ z( ) − zq 0[ ] = AQ z( ) + BX z( )
The initial conditions must be zero to find a transfer function.  Then,
solving for Q z( ),
            Q z( ) = zI − A[ ]−1BX z( ) = z−1Φ z( )BX z( ).
The response is 
     Y z( ) = CQ z( ) + DX z( ) = z−1CΦ z( )BX z( ) + DX z( )
and the transfer function is then

         H z( ) = z−1CΦ z( )B + D = C zI − A[ ]−1B + D
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Transformations of State Variables	


If q2 n[ ] = Tq1 n[ ]  and q1 n +1[ ] = A1q1 n[ ] + B1x n[ ]
then q2 n +1[ ] = A2q2 n[ ] + B2x n[ ]  where A2 = TA1T

−1  and
B2 = TB1.  Also y n[ ] = C2q2 n[ ] + D2x n[ ]  where C2 = C1T

−1

and D2 = D1.  These transformation relations are exactly the
same as in continuous-time.
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Use of MATLAB	


 

A system object described by a state-space model in MATLAB can
be formed using 
                           sys = ss(A,B,C,D,Ts) ;
where A, B, C and D are the A, B, C and D matrices and Ts is the 
time between samples.  The function ssdata extracts state space matrices
from a system object and the function ss2ss transforms one state-
space model into another.  (See the help files for more detail.)


