The z Transform



Generalizing the DTFT

oo

The forward DTFT is defined by X(e™*)= " x[n]e™™" in which

N=—o0

Q is discrete-time radian frequency, a real variable. The quantity ¢’
1s then a complex sinusoid whose magnitude is always one and whose

phase can range over all angles. It always lies on the unit circle in

the complex plane. If we now replace e’ with a variable z that can

oo

have any complex value we define the z transform X(z)= Y x[n]z

n=—oo

—n

The DTFT expresses signals as linear combinations of complex

sinusoids. The z transform expresses signals as linear combinations of

complex exponentials.
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Complex Exponential Excitation

Let the excitation of a discrete-time LTI system be a complex
exponential of the form Az" where 7 is, in general, complex and
A 1s any constant. Using convolution, the response y[n] of an LTI
system with impulse response h[n] to a complex exponential

excitation X [n] 1S

y[n]=h[n]*Az" =AY h[m]e ™ = A" Y h[m]c ™"

N=—o0 =X[n] n=—oo

The response 1s the product of the excitation and the z transform of

h[n] defined by H(z)= i h|n]z™.

nm=—oo
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The Transfter Function

If an LTI system with impulse response h|n] is excited by a signal,

x|n], the z transform Y(z) of the response y|n] is

(e o] (e ]

Y(z)= 2 y|n]z" = 2 (h[ ) ni 2 [n—m]™

- ih[mlix n-

Let g=n—m. Then

¥(2)= 3 h[m] ¥ x[qle " = 3 n[m]e™ 3 x[g]e

me—e g — s
=H(z) ~X(2)
Y(z)=H(z)X(z)
H(z) is the transfer function.
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Systems Described by Difference
Equations

The most common description of a discrete-time system 1s a

difference equation of the general form

gaky[n—k]zébkx[n—k].

It was shown in Chapter 5 that the transfer function for a system of

this type 1s
M b 7k -1 -2 -M
H o 2k% by+bz +b, 7" 4+ by, 2
(Z) N r -1 -2 -N
zkzoakz a,+az +a,z +--+ayz
or
M —k _
H(z) = bz _ m bz +bz" " +---+b, z+b,
-y —k a, 2" +az" "' +-+a,_z+a
Zk:OakZ 0% 1< N-1Z T dy
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Direct Form II Realization

Direct Form II realization of a discrete-time system 1s similar
in form to Direct Form II realization of continuous-time systems

A continuous-time system can be realized with integrators,
summing junctions and multipliers

A discrete-time system can be realized with delays, summing
junctions and multipliers
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Direct Form II Realization

1
X () — (D— Yo

1
L+ 3 < b,
(1)4 -« >

+ Y
1
+ 4 b,
= =
+
Y
+ Qg byi +
- -
+ Y +
p
4
Ay by;
< ' >
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The Inverse 7z Transtform

The inversion integral is

1 =
X|n|=—¢X(z)7" dz.
)= 5 X0
This 1s a contour integral in the complex plane and 1s beyond the

scope of this course. The notation x[n]<«Z— X(z) indicates that

x|n| and X(z) form a "z-transform pair".
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Existence of the z Transform

Time Limited Signals

x[n]

If a discrete-time signal X[n]
1s time limited and bounded,

the z transformation

summation i X[n]z " 1S

)

R
i’

finite and the z transform of
X[n] exists for any non-zero

value of 7.

|
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Existence of the z Transform

Right- and Left-Sided Signals

A right-sided signal x[n] is one for which x, [n|=0 for any
n < n, and a left-sided signal x,[n] is one for which x,[n]=0

for any n > n,.

X [n] X [n]
Ttee .0..“...0.
| $0005986956099000080 ) “ hT?m_, n
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Existence of the z Transform

Right- and Left-Sided Exponentials

x[n]=0"uln-n,| , aeC x[n]=B"u|n,—n| , BeC
X[“n] x[n]

vosososassoset 1 TTTN”HHHH” . HH“HHHTN Moo
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Existence of the z Transform

The z transform of x[n]=a"u[n-n,| , 0 eCis

oo

X(2)= Y, a"uln-n,]" =Y (az")’

n=—oco n=n

if the series converges and it converges

[z]

if |z| >|o|. The path of integration of
the inverse z transform must lie in the ROC -/ =,
. o (] Y
region of the z plane outside a circle of ) \ N
b ) /! Path of
radius |a | . = Integration
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Existence of the z Transform

The z transform of x[n|=f" u[no = n] , BeCis

nO [o%)

X(:)= Y B =Y (B = 3 (B2

if the series converges and it converges if |z| <|B|. The path

of integration of the inverse z transform

1zl

must lie in the region of the z plane inside

-_— -

a circle of radius |f]. SGIIRE

A /
Path of s
Integration
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Existence of the z Transform

x[n] = (1.2)"u[n] + 3)"u[-n-1]

10+

ROCiSL2<M<3

m”””

-12 12

x|n] = (0.85)"cos(2ntn/6)uln] + (0.9)"cos(2mn/6)u[-n-1]

ROC is 0.85 <|z| < 0.9

. I * [ -
lzlll lll BEEN e .,.12 :

x|n] = (0.95)"u[n] + (0.9)"u[-n-1]
A

4__

* ik No ROC

HHH["HHIHHHL

-12

x[n] = (1.1)"cos(2mn/6)uln] + (1.05)"cos(2mn/6)u[-n-1]

te ole ol¢ TT I‘
BPRR LS CO AR l 12

No ROC
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Some Common 7z Transform Pairs

S[n]«Z>1 , Allz
ulnfeo o el —u[mn-te T[4 <1
@l s s f>el ~aufn-te T [ <o
z—a -0z ¢ z—o 1-oz"!
z z 7 z Z
= >1 —nu|-n—1 = <1
nu[n] (2—1)2 (I—Z 1)2 |Z| nu[ n ] (Z_1)2 (1—Z 1)2 |Z|
oz oz’ - oz oz’
a’"u = 7> o —no"ul-n—1 = , |z <o
n [I’l] (Z—o()2 (]—(X 71)2 | | | | [ ] (Z_a)Z (l—azfl)z | | | |
. zsin(Q,) . z zsin(€, )
1 - Q —n—1 , 1
s1n(QOn)u[n] z2—21cos(Q0)+1 . 2| > sm( 0n)u[ n—1] zz—ZZcos(QO)+1 |2 <
z[2—cos(Q,)] - z[z—cos(Q,)]
- Q —n—lj«——= , 1
cos(Qon)u[n] z2—2zcos(90)+l , |7 >1 cos( On)u[ n—1] ZZ—ZZCOS(QO)+1 |z| <
. z(xsin(Qo) . 7 zocsin(QO)
" - Q —n—1 ,
o sin(Qyn)u[n] & —20zc0s(Q )+ ol l2[>le| . —a"sin(Qyn)u[-n-1] 2 —20zcos(Q,) + o 2] <ler
z| z— acos(Q ) ) z| z—acos(Q,)
o cos(Qyn)u[n] = —[Zazcos(g(z )03_](12 , 2 >le| , = cos(Qun)u[-n—1]«Z [ )] =, |2 <o
0

- 2azcos(QO)+ o

z—1

(X‘”‘ z Z_Za_z_za_l , |0£|<|Z|<‘05_1‘
ny—ng—1 ny—ny—2
u[n—no]—u[l’l—l’ll] z L(Z—nu_z—nl)zzl 0 +Zl n(l)il + +Z+1

, |z|>0
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z-Transform Properties

Given the z-transform pairs g[n|«Z—G(z) and h[n]«Z—H(z)
with ROC's of ROC,, and ROC,; respectively the following
properties apply to the z transform.

Linearity ag[n]+ Bh[n]«Z—>aG(z)+ BH(z)
ROC = ROC,, A ROC,

Time Shifting g [n —n, ]@z‘"o G(z)

ROC = ROC,; except perhaps z=0 orz = oo

Change of Scale in 7 o' g[n]«=%—>G(z/a)
ROC = |a|ROC,,
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z-Transform Properties

Time Reversal g[-n]«Z>G (z‘l)
ROC=1/ROC,
n/k| , n/k and integer
Time Expansion {g[ | . - }@G(zk)
0 , otherwise

ROC = (ROC,)"

Conjugation g [n]«Z>G (z*)
ROC=ROC(C,
R o z 4
z-Domain Differentiation —ng|n|< >Z 7 G(z)
Z
ROC=ROC(C,
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z-Transform Properties

Convolution

First Backward Difference

Accumulation

Initial Value Theorem

g[n]#h[n]«=—H(2)G(z)

g[n]—g[n— I]A(I—Z_I)G(z)
ROC 2 ROC, Nlz|>0

Y g[m]«Z— < G(z)

z—1

m=—oo

ROC 2 ROC, Nlz|>1

If g[n]=0,n<0 then g[0]=1im G(z)

7—>o°

Final Value Theorem If g[n]=0,n<0, lim g[n]= linll(z ~-1)G(z)
if lim g[n] exists.
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z-Transform Properties

For the final-value theorem to apply to a function G(z) all the
finite poles of the function (z—1)G(z) must lie in the open
interior of the unit circle of the z plane. Notice this does not
say that all the poles of G(z) must lie in the open interior of

the unit circle. G(z) could have a single pole at z =1 and the

final-value theorem could still apply.
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The Inverse 7z Transtorm

Synthetic Division

For rational z transforms of the form
b,z" +b, 7" +--+bz+b,

H(z)=
( ) a7 +a, 2" '+ +az+a,

we can always find the inverse z transtorm by synthetic

division. For example,

(z-12)(z+0.7)(z+04)
H(Z)_(Z—O.Z)(z—O.S)(z+O.5) ’

_z2-0.1z" -1.04z-0.336
2-0522-034z+0.08

z|>0.8

H(z)

z| >0.8

b
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The Inverse 7z Transtorm

Synthetic Division
1+04z" +0.577 -
=057 — O.34z+0.08>z3 —0.12> —1.04z—0.336

722 —0.572—0.347+0.08
04z°— 0.7z— 0.256
04z> —02z— 0.136-0.0327""
0.5z— 0.12+0.0327"

The inverse z transform i1s

5[n]+0.46[n-1]+0.56[n-2] - «Z—>1+04z"+05z7-
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The Inverse 7z Transtorm

Synthetic Division

We could have done the synthetic division this way.

—4.2-30.857—158.613z>---
0.08—0347—057> + z3>—0.336 —1.04z-0.12% + 2°

—0.336+1.428z+2.17>—4.27°
—24687—-227"+527
—2.4687+10.4897% +15.4257° — 30.857

~12.6897* —10.2257° +30.857*

—4.26[n]-30.858[n+1]-158.6136[n+2]---«Z—>-4.2-30.857-158.6137---

but with the restriction |z| > 0.8 this second form does not converge and is

therefore not the inverse z transform.
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The Inverse 7z Transtorm

Synthetic Division

We can always find the inverse z transform of a rational
function with synthetic division but the result is not in closed
form. In most practical cases a closed-form solution is

preferred.
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Partial Fraction Expansion

Partial-fraction expansion works for inverse z transforms the
same way it does for inverse Laplace transforms. But there is
a situation that is quite common 1in inverse z transforms which
deserves mention. It 1s very common to have z-domain
functions in which the number of finite zeros equals the
number of finite poles (making the expression improper in z)

with at least one zero at z=0.

MM(z-2)(z—2)(z—2y)

=)= y)
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Partial Fraction Expansion
Dividing both sides by z we get

H(z) 2" (z—2)(z—2)(z—2y)
: (z=p)z=ps)(z-py)
and the fraction on the right is now proper in z and can be

expanded in partial fractions.

HE)_ K K K,

2 z-p z2-p 2= Dy
Then both sides can be multiplied by z and the inverse transform

can be found.

H(z)=-K K L K

i—py <—D, Z— Py
h[n]:Klpl”u[n]+szgu[n]+---+KNp]”Vu[n]
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z-Transform Properties

An LTI system has a transfer function
Y(z) z-1/2
X(z) 22— z+2/9
Using the time-shifting property of the z transform draw a

H(z) =

z7|>21/3

9

block diagram realization of the system.
Y(z)(z2 —z+2/ 9) = X(Z)(Z -1/ 2)
2 Y(2)=2X(2) - (1/2)X(z)+2Y(2) - (2/9) Y(z)
Y(2)=2"X(2)=(1/2)z7 X(2)+27 Y(2)—=(2/9)z" Y(z)
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z-Transform Properties

Y(z)=7z"X(z)-(1/2)z7 X(z)+z" Y(2)-(2/9)z7 Y(z)
Using the time-shifting property

y[n] = X[n—l]—(l/2)X[n—2]+y[n—1]—(2/9)y[n—2]

X[n] 1 ~y|n]
Y
D D
@
Y Y
D D
1 LZ ;@1 2£9
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z-Transform Properties
z—1

Z— O.Se_j”/4)(z_ 0.86+j7r/4) . Draw a

Letg[n]@G(z)=(

pole-zero diagram for G(z) and for the z transform of ¢’™"'®

gn].
The poles of G(z) are at z=0.8¢"""* and its single finite zero is
at z=1. Using the change of scale property

Ze—jn’/S _1

(Ze—jn/8 _ O.Se_ﬂm )(Ze—jn/S _ 0.86+j7t/4 )
e—jn/S (Z _ ejn/S )

e—jﬂ/S (Z _ O.Se—jﬂ/S )e—jn/s (Z _ 0.86+j37t/8 )

ejnn/sg[n] E Z 5 G(Ze—jn/s):

G(Ze—jn/8):

Z_ej7t/8

(z—0.8¢7™%)(z—0.8¢""")

G(Ze—jn/S ) _ ejﬁ/S
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z-Transform Properties

G(ze‘j’”g) has poles at z=0.8¢™"*"° and 0.8¢"/°™° and a zero

jr/8

at z=¢’"". All the finite zero and pole locations have been

rotated in the z plane by /8 radians.

Pole-zero Plot of G(z) Pole-zero Plot of G(ze’*)

ACNa
SEANRNY

7
Y
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z-Transform Properties

T <

Using the accumulation property and u[n |« - z|>1
7
show that the z transform of nu|n] is le , |z|>1
7
nu[n]zEu[m—l]
m=0
z 1 < 1
uln-1j«=—z7"'—=——, |7>1
z—1 z—-1
n 1 z
= ) PR N ) = lzl>1
pulal=3ulm-1] (Z_l Sty
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Inverse z Transtorm Example

Find the inverse z transform of

< <
Xl(z)= — , 05 2
(Z) z—05 z+42 <|Z|<

Right-sided signals have ROC’s that are outside a circle and

left-sided signals have ROC’s that are inside a circle. Using

; Z 1
o' u[n]= ey i z|> e
n Z 1
—a"u[-n—-1]«Z St e z|<|ef
We get
(05) uln]+(=2) ul-n-1]eZoX () = ——-—= . 05 <[ <2
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Inverse z Transtorm Example

Find the inverse z transform of

Z Z
X(z)= — ;
(Z) z—05 z+2

In this case, both signals are right sided. Then using

z|>2

Z < 1

o"u|nl¢ Gmpvi sy i z|> ||
We get
n n 7 . < _ <
[(05)" = (=2) Ju[n]eT=X(d)=— s - [>2
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Inverse z Transtorm Example

Find the inverse z transform of

Z Z
X(z)= — ;
(Z) z—05 z+2

In this case, both signals are left sided. Then using

z|<0.5

1
—au[-n—1]Z 5= = ,
o"u|-n—1| v S—

2l <ol
We get

~[(05) ~(=2)" Ju[-n-1]eZ>X(2) = Z_ZO. - Zi >

z| <0.5
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The Unilateral z Transform

Just as 1t was convenient to define a unilateral Laplace transform it 1s

convenient for analogous reasons to define a unilateral z transform
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Properties of the Unilateral z
Transform

If two causal discrete-time signals form these transform pairs,
g[n]AG(z) and h[n]@H(z) then the following properties
hold for the unilateral z transform.

Time Shifting

Delay: g[n — no]@z_”o G(z),n,20
ny—1

Advance: g[n+no]@z”0 (G(z)— Zg[m]z’"] , g >0
m=0

Accumulation:
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Solving Difference Equations

The unilateral z transform 1s well suited to solving difference

equations with initial conditions. For example,
y[n+2]—§y[n+l]+%y[m]:(1/4)” , forn=>0

y[O]le and y[1]=4
z transforming both sides,

<

[Y(@)-y[0]-<"y[1]]-2 [ ¥(2)-y[0] ]+ ¥(2)=

the initial conditions are called for systematically.

z—1/4
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Solving Difference Equations

Applying initial conditions and solving,

16/3 4 2/3
Y(z)= + +
(Z) Z(Z—1/4 z—1/2 z—l)

y[n]{g(ij’;@lg}uw

This solution satisfies the difference equation and the initial

and

conditions.
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Pole-Zero Diagrams and
Frequency Response

For a stable system, the response to a sinusoid applied at
time ¢ = 0 approaches the response to a true sinusoid (applied

for all time). ylx] Response to a Sinusoid

Response to a Suddenly-Applied Sinusoid
yln]

O
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Pole-Zero Diagrams and
Frequency Response

Let the transfer function of a system be

4 4

H(Z):Zz_z/2+5/16:(z—l?1)(z_p2) ‘
vz 1-j2
P = 4 > P2 = 4
o
‘H(e )‘ ‘ejﬂ P1‘ ‘ejg —Pz‘
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Pole-Zero Diagrams and
Frequency Response

IH(*)l
'y
Closest Approach to a Pole \ 21 p Closest Approach to a Pole

N T\

2m

_211:\ 21
-TT1+
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Transtorm Method Comparison

<

A syst ith transfer function H(z)= , 12/>0.8

system with transfer function H(z) (2-03)(z1038)
1s excited by a unit sequence. Find the total response.
Using z-transform methods,

Z Z
Y(z)=H(z)X(z)= X ; > 1
(2)=H(z)X(z) (z-03)(z+08) z-1 ?
? _0.1169 03232 0.7937

Y(z)= < = o>1

(z=0.3)(z+0.8)(z—1)  z- 03 z+08 z—1
y[n]=]-0.1169(03)"" +03232(-0.8)"" +0.7937 |u[n 1]
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Transtorm Method Comparison

Using the DTFT,
H(e®)= = o.3€)j(gefﬁ +0.8)
{e) =) x(e) O;)J'(erg o) x(l_ L, (Q)j
| DT o a Ut s
Y(e")= (&7 - 0.3)(ef‘:2j0.8)(ef9 1) e 0.36)];@9 +0.8) ()
L T M (B (T
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Transtorm Method Comparison

Using the equivalence property of the impulse and the periodicity of
both &, (Q) and ¢
oy —0.1169¢7 0.3232¢7% 079377
Y(e)= 0 69?&2 40 = 4 ’ -
1-0.3¢e™’ 1+0.8¢™/ 1—e™
Then, manipulating this expression into a form for which the inverse
DTFT is direct

oy 0. P 0.3232¢7" .
Y(ejg): 0.1169¢ 0.3232¢ [ e )

+2.49336,_(Q)

— + — +(0.7937 — + 7110, (Q
1-03e7®  1+0.8e7 7 - 2 (Q)

~0.793775,_ (Q)+2.49335,_(Q)

~
=0

l—e
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Transtorm Method Comparison

oy —0.1169¢ 7 0.3232¢ e
¥(e®)= 0.1169¢ 7 0.3232¢ ( e ]

— 4 —+0.7937 —+ 10, (€2
1-03¢™  1+08e7" T+ 70, (Q)
Finding the inverse DTFT,

y[n]=]-0.1169(0.3)"" +0.3232(-0.8)"" +0.7937 |u[n 1]

l—e

The result 1s the same as the result using the z transform, but the effort

and the probability of error are considerably greater.
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System Response to a Sinusoid

A system with transfer function

Z
H(z)= ,
(Z) z—0.9

is excited by the sinusoid x|n]|=cos(27n/12). Find the response.

z|>09

The z transform of a true sinusoid does not appear in the table of z

transforms. The z transform of a causal sinusoid of the form

X[n] = cos(27n/ 12)u[n] does appear. We can use the DTFT to

find the response to the true sinusoid and the result is
y|n]=1.995cos(27zn/12-1.115).
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System Response to a Sinusoid

Using the z transform we can find the response of the system to a

causal sinusoid x|n]|=cos(27n/12)u[n| and the response is

y|n]=0.1217(0.9)" u|n]+1.995cos(2zn /12 —1.115)u|n]

Notice that the response consists of two parts, a transient response

0.1217(0.9)" u|n] and a forced response 1.995cos(27n/12—1.115)u|n]

that, except for the unit sequence factor, is exactly the same as the

forced response we found using the DTFT.
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System Response to a Sinusoid
This type of analysis is very common. We can generalize it to say that
N(z)
D(z)

if a system has a transfer function H(z)= that the response to a

causal cosine excitation cos(QOn)u_n] 18

y|n]= O‘Zl(le(Z)} +H(pl)‘cos(QOn+AH(pl))u[n]

J

e

~
N - v Forced Response
Natural or Transient Response

70

where p, = e . This consists of a natural or transient response and a

forced response. If the system is stable the transient response dies away
with time leaving only the forced response which, except for the u|n]
factor 1s the same as the forced response to a true cosine. So we can use

the z transform to find the response to a true sinusoid.
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