The z Transform

Generalizing the DTFT

The forward DTFT is defined by $\mathrm{X}\left(e^{j \Omega}\right)=\sum_{n=-\infty}^{\infty} \mathrm{x}[n] e^{-j \Omega n}$ in which
Ω is discrete-time radian frequency, a real variable. The quantity $e^{j \Omega n}$ is then a complex sinusoid whose magnitude is always one and whose phase can range over all angles. It always lies on the unit circle in the complex plane. If we now replace $e^{j \Omega}$ with a variable z that can have any complex value we define the z transform $\mathrm{X}(z)=\sum_{n=-\infty}^{\infty} \mathrm{x}[n] z^{-n}$. The DTFT expresses signals as linear combinations of complex sinusoids. The z transform expresses signals as linear combinations of complex exponentials.

Complex Exponential Excitation

Let the excitation of a discrete-time LTI system be a complex exponential of the form $A z^{n}$ where z is, in general, complex and A is any constant. Using convolution, the response $y[n]$ of an LTI system with impulse response $\mathrm{h}[n]$ to a complex exponential excitation $\mathrm{x}[n]$ is

$$
\mathrm{y}[n]=\mathrm{h}[n] * A z^{n}=A \sum_{m=-\infty}^{\infty} \mathrm{h}[m] z^{n-m}=\underbrace{A z^{n}}_{=\mathrm{x}[n]} \sum_{m=-\infty}^{\infty} \mathrm{h}[m] z^{-m}
$$

The response is the product of the excitation and the z transform of $\mathrm{h}[n]$ defined by $\mathrm{H}(z)=\sum_{m=-\infty}^{\infty} \mathrm{h}[n] z^{-n}$.

The Transfer Function

If an LTI system with impulse response $\mathrm{h}[n]$ is excited by a signal, $\mathrm{x}[n]$, the z transform $\mathrm{Y}(z)$ of the response $\mathrm{y}[n]$ is

$$
\begin{gathered}
\left.\mathrm{Y}(z)=\sum_{n=-\infty}^{\infty} \mathrm{y}[n] z^{-n}=\sum_{n=-\infty}^{\infty} \mathrm{h}[n] * \mathrm{x}[n]\right) z^{-n}=\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \mathrm{h}[m] \mathrm{x}[n-m] z^{-n} \\
\mathrm{Y}(z)=\sum_{m=-\infty}^{\infty} \mathrm{h}[m] \sum_{n=-\infty}^{\infty} \mathrm{x}[n-m] z^{-n}
\end{gathered}
$$

Let $q=n-m$. Then

$$
\begin{gathered}
\mathrm{Y}(z)=\sum_{m=-\infty}^{\infty} \mathrm{h}[m] \sum_{q=-\infty}^{\infty} \mathrm{x}[q] z^{-(q+m)}=\underbrace{\sum_{m=-\infty}^{\infty} \mathrm{h}[m] z^{-m}}_{=\mathrm{H}(z)} \underbrace{\sum_{q=-\infty}^{\infty} \mathrm{x}[q] z^{-q}}_{=\mathrm{X}(z)} \\
\mathrm{Y}(z)=\mathrm{H}(z) \mathrm{X}(z)
\end{gathered}
$$

$\mathrm{H}(z)$ is the transfer function.

Systems Described by Difference Equations

The most common description of a discrete-time system is a difference equation of the general form

$$
\sum_{k=0}^{N} a_{k} \mathrm{y}[n-k]=\sum_{k=0}^{M} b_{k} \mathrm{x}[n-k] .
$$

It was shown in Chapter 5 that the transfer function for a system of this type is

$$
\mathrm{H}(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}}=\frac{b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+\cdots+b_{M} z^{-M}}{a_{0}+a_{1} z^{-1}+a_{2} z^{-2}+\cdots+a_{N} z^{-N}}
$$

or

$$
\mathrm{H}(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}}=z^{N-M} \frac{b_{0} z^{M}+b_{1} z^{M-1}+\cdots+b_{M-1} z+b_{M}}{a_{0} z^{N}+a_{1} z^{N-1}+\cdots+a_{N-1} z+a_{N}}
$$

Direct Form II Realization

Direct Form II realization of a discrete-time system is similar in form to Direct Form II realization of continuous-time systems

A continuous-time system can be realized with integrators, summing junctions and multipliers

A discrete-time system can be realized with delays, summing junctions and multipliers

Direct Form II Realization

The Inverse z Transform

The inversion integral is

$$
\mathrm{x}[n]=\frac{1}{j 2 \pi} \oint_{\mathrm{C}} \mathrm{X}(z) z^{n-1} d z
$$

This is a contour integral in the complex plane and is beyond the scope of this course. The notation $\mathrm{x}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \mathrm{X}(z)$ indicates that $\mathrm{x}[n]$ and $\mathrm{X}(z)$ form a " z-transform pair".

Existence of the z Transform

Time Limited Signals
If a discrete-time signal $\mathrm{x}[n]$ is time limited and bounded, the z transformation
summation $\sum_{n=-\infty}^{\infty} \mathrm{x}[n] z^{-n}$ is
finite and the z transform of
$x[n]$ exists for any non-zero value of z.

Existence of the z Transform

Right- and Left-Sided Signals
A right-sided signal $\mathrm{x}_{r}[n]$ is one for which $\mathrm{X}_{r}[n]=0$ for any $n<n_{0}$ and a left-sided signal $\mathrm{x}_{l}[n]$ is one for which $\mathrm{x}_{l}[n]=0$ for any $n>n_{0}$.

Existence of the z Transform

Right- and Left-Sided Exponentials
$\mathrm{x}[n]=\alpha^{n} \mathrm{u}\left[n-n_{0}\right], \alpha \in \mathbb{C}$

$$
\mathrm{x}[n]=\beta^{n} \mathrm{u}\left[n_{0}-n\right], \beta \in \mathbb{C}
$$

$$
x[n]
$$

 n_{0}

Existence of the z Transform

The z transform of $\mathrm{x}[n]=\alpha^{n} \mathrm{u}\left[n-n_{0}\right], \alpha \in \mathbb{C}$ is

$$
\mathrm{X}(z)=\sum_{n=-\infty}^{\infty} \alpha^{n} \mathrm{u}\left[n-n_{0}\right] z^{-n}=\sum_{n=n_{0}}^{\infty}\left(\alpha z^{-1}\right)^{n}
$$

if the series converges and it converges
if $|z|>|\alpha|$. The path of integration of the inverse z transform must lie in the region of the z plane outside a circle of radius $|\alpha|$.

Existence of the z Transform

The z transform of $\mathrm{x}[n]=\beta^{n} \mathrm{u}\left[n_{0}-n\right], \beta \in \mathbb{C}$ is

$$
\mathrm{X}(z)=\sum_{n=-\infty}^{n_{0}} \beta^{n} z^{-n}=\sum_{n=-\infty}^{n_{0}}\left(\beta z^{-1}\right)^{n}=\sum_{n=-n_{0}}^{\infty}\left(\beta^{-1} z\right)^{n}
$$

if the series converges and it converges if $|z|<|\beta|$. The path of integration of the inverse z transform must lie in the region of the z plane inside a circle of radius $|\beta|$.

Existence of the z Transform

Some Common z Transform Pairs

$$
\begin{aligned}
& \delta[n] \stackrel{Z}{\longleftrightarrow} 1 \quad, \text { All } z \\
& \mathrm{u}[n] \stackrel{\mathcal{z}}{\longleftrightarrow} \frac{z}{z-1}=\frac{1}{1-z^{-1}},|z|>1 \\
& \alpha^{n} \mathrm{u}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z}{z-\alpha}=\frac{1}{1-\alpha z^{-1}},|z|>|\alpha| \\
& n \mathrm{u}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z}{(z-1)^{2}}=\frac{z^{-1}}{\left(1-z^{-1}\right)^{2}},|z|>1 \\
& n \alpha^{n} \mathrm{u}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{\alpha z}{(z-\alpha)^{2}}=\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)^{2}},|z|>|\alpha|, \\
& \sin \left(\Omega_{0} n\right) \mathrm{u}[n] \stackrel{\mathscr{Z}}{\longleftrightarrow} \frac{z \sin \left(\Omega_{0}\right)}{z^{2}-2 z \cos \left(\Omega_{0}\right)+1},|z|>1 \\
& \cos \left(\Omega_{0} n\right) \mathrm{u}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z\left[z-\cos \left(\Omega_{0}\right)\right]}{z^{2}-2 z \cos \left(\Omega_{0}\right)+1},|z|>1 \\
& -\mathrm{u}[-n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z}{z-1},|z|<1 \\
& -\alpha^{n} \mathrm{u}[-n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z}{z-\alpha}=\frac{1}{1-\alpha z^{-1}},|z|<|\alpha| \\
& -n \mathrm{u}[-n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z}{(z-1)^{2}}=\frac{z^{-1}}{\left(1-z^{-1}\right)^{2}},|z|<1 \\
& -n \alpha^{n} \mathrm{u}[-n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{\alpha z}{(z-\alpha)^{2}}=\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)^{2}},|z|<|\alpha| \\
& -\sin \left(\Omega_{0} n\right) \mathrm{u}[-n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z \sin \left(\Omega_{0}\right)}{z^{2}-2 z \cos \left(\Omega_{0}\right)+1},|z|<1 \\
& -\cos \left(\Omega_{0} n\right) \mathrm{u}[-n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow}=\frac{z\left[z-\cos \left(\Omega_{0}\right)\right]}{z^{2}-2 z \cos \left(\Omega_{0}\right)+1},|z|<1 \\
& \alpha^{n} \sin \left(\Omega_{0} n\right) \mathrm{u}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z \alpha \sin \left(\Omega_{0}\right)}{z^{2}-2 \alpha z \cos \left(\Omega_{0}\right)+\alpha^{2}},|z|>|\alpha|,-\alpha^{n} \sin \left(\Omega_{0} n\right) \mathrm{u}[-n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z \alpha \sin \left(\Omega_{0}\right)}{z^{2}-2 \alpha z \cos \left(\Omega_{0}\right)+\alpha^{2}},|z|<|\alpha| \\
& \alpha^{n} \cos \left(\Omega_{0} n\right) \mathrm{u}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z\left[z-\alpha \cos \left(\Omega_{0}\right)\right]}{z^{2}-2 \alpha z \cos \left(\Omega_{0}\right)+\alpha^{2}},|z|>|\alpha|,-\alpha^{n} \cos \left(\Omega_{0} n\right) \mathrm{u}[-n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z\left[z-\alpha \cos \left(\Omega_{0}\right)\right]}{z^{2}-2 \alpha z \cos \left(\Omega_{0}\right)+\alpha^{2}},|z|<|\alpha| \\
& \alpha^{|n|} \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z}{z-\alpha}-\frac{z}{z-\alpha^{-1}}, \quad|\alpha|<|z|<\left|\alpha^{-1}\right| \\
& \mathrm{u}\left[n-n_{0}\right]-\mathrm{u}\left[n-n_{1}\right] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z}{z-1}\left(z^{-n_{0}}-z^{-n_{1}}\right)=\frac{z^{n_{1}-n_{0}-1}+z^{n_{1}-n_{0}-2}+\cdots+z+1}{z^{n_{1}-1}},|z|>0
\end{aligned}
$$

z-Transform Properties

Given the z-transform pairs $\mathrm{g}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \mathrm{G}(z)$ and $\mathrm{h}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \mathrm{H}(z)$ with ROC's of $\mathrm{ROC}_{\mathrm{G}}$ and $\mathrm{ROC}_{\mathrm{H}}$ respectively the following properties apply to the z transform.

Linearity

$$
\begin{aligned}
& \alpha \mathrm{g}[n]+\beta \mathrm{h}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \alpha \mathrm{G}(z)+\beta \mathrm{H}(z) \\
& \mathrm{ROC}=\mathrm{ROC}_{\mathrm{G}} \cap \mathrm{ROC}_{\mathrm{H}}
\end{aligned}
$$

Time Shifting

$$
\begin{aligned}
& \mathrm{g}\left[n-n_{0}\right] \stackrel{\mathcal{Z}}{\longleftrightarrow} z^{-n_{0}} \mathrm{G}(z) \\
& \mathrm{ROC}=\mathrm{ROC}_{\mathrm{G}} \text { except perhaps } z=0 \text { or } z \rightarrow \infty
\end{aligned}
$$

Change of Scale in z

$$
\begin{aligned}
& \alpha^{n} \mathrm{~g}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \mathrm{G}(z / \alpha) \\
& \mathrm{ROC}=|\alpha| \mathrm{ROC}_{\mathrm{G}}
\end{aligned}
$$

z-Transform Properties

Time Reversal

$$
\begin{aligned}
& \mathrm{g}[-n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \mathrm{G}\left(z^{-1}\right) \\
& \mathrm{ROC}=1 / \operatorname{ROC}_{\mathrm{G}}
\end{aligned}
$$

$$
\left\{\begin{array}{ll}
\mathrm{g}[n / k], & n / k \text { and integer } \\
0 & , \text { otherwise }
\end{array}\right\} \stackrel{\mathcal{Z}}{\longleftrightarrow} \mathrm{G}\left(z^{k}\right)
$$

$$
\mathrm{ROC}=\left(\mathrm{ROC}_{\mathrm{G}}\right)^{1 / k}
$$

Conjugation

$$
\begin{aligned}
& \mathrm{g}^{*}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \mathrm{G}^{*}\left(z^{*}\right) \\
& \mathrm{ROC}=\operatorname{ROC}_{\mathrm{G}}
\end{aligned}
$$

z-Domain Differentiation $-n \mathrm{~g}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} z \frac{d}{d z} \mathrm{G}(z)$
$\mathrm{ROC}=\mathrm{ROC}_{\mathrm{G}}$

z-Transform Properties

Convolution

$$
\mathrm{g}[n] * \mathrm{~h}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \mathrm{H}(z) \mathrm{G}(z)
$$

First Backward Difference
$\mathrm{g}[n]-\mathrm{g}[n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow}\left(1-z^{-1}\right) \mathrm{G}(z)$
$\mathrm{ROC} \supseteq \mathrm{ROC}_{\mathrm{G}} \cap|z|>0$

Accumulation

$$
\begin{aligned}
& \sum_{m=-\infty}^{n} \mathrm{~g}[m] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z}{z-1} \mathrm{G}(z) \\
& \mathrm{ROC} \supseteq \mathrm{ROC}_{\mathrm{G}} \cap|z|>1
\end{aligned}
$$

Initial Value Theorem
Final Value Theorem
If $\mathrm{g}[n]=0, n<0$ then $\mathrm{g}[0]=\lim _{z \rightarrow \infty} \mathrm{G}(z)$
If $\mathrm{g}[n]=0, n<0, \lim _{n \rightarrow \infty} \mathrm{~g}[n]=\lim _{z \rightarrow 1}(z-1) \mathrm{G}(z)$
if $\lim _{n \rightarrow \infty} \mathrm{~g}[n]$ exists.

z-Transform Properties

For the final-value theorem to apply to a function $G(z)$ all the finite poles of the function $(z-1) \mathrm{G}(z)$ must lie in the open interior of the unit circle of the z plane. Notice this does not say that all the poles of $\mathrm{G}(z)$ must lie in the open interior of the unit circle. $\mathrm{G}(z)$ could have a single pole at $z=1$ and the final-value theorem could still apply.

The Inverse z Transform

Synthetic Division

For rational z transforms of the form

$$
\mathrm{H}(z)=\frac{b_{M} z^{M}+b_{M-1} z^{M-1}+\cdots+b_{1} z+b_{0}}{a_{N} z^{N}+a_{N-1} z^{N-1}+\cdots+a_{1} z+a_{0}}
$$

we can always find the inverse z transform by synthetic division. For example,

$$
\begin{aligned}
& \mathrm{H}(z)=\frac{(z-1.2)(z+0.7)(z+0.4)}{(z-0.2)(z-0.8)(z+0.5)},|z|>0.8 \\
& \mathrm{H}(z)=\frac{z^{3}-0.1 z^{2}-1.04 z-0.336}{z^{3}-0.5 z^{2}-0.34 z+0.08},|z|>0.8
\end{aligned}
$$

The Inverse z Transform

Synthetic Division

$$
\begin{array}{r}
z ^ { 3 } - 0 . 5 z ^ { 2 } - 0 . 3 4 z + 0 . 0 8 \longdiv { z ^ { 3 } - 0 . 1 z ^ { 2 } - 1 . 0 4 z - 0 . 3 3 6 } + 0 . 5 z ^ { - 2 } \cdots \\
\frac{z^{3}-0.5 z^{2}-0.34 z+0.08}{0.4 z^{2}-0.7 z-0.256} \\
\frac{0.4 z^{2}-0.2 z-0.136-0.032 z^{-1}}{0.5 z-0.12+0.032 z^{-1}}
\end{array}
$$

The inverse z transform is

$$
\delta[n]+0.4 \delta[n-1]+0.5 \delta[n-2] \cdots \stackrel{\mathcal{Z}}{\longleftrightarrow} 1+0.4 z^{-1}+0.5 z^{-2} \cdots
$$

The Inverse z Transform

Synthetic Division

We could have done the synthetic division this way.

$$
\begin{gathered}
-4.2-30.85 z-158.613 z^{2} \cdots \\
0.08-0.34 z-0.5 z^{2}+z^{3} \sqrt{-0.336-1.04 z-0.1 z^{2}+z^{3}} \\
\frac{-0.336+1.428 z+2.1 z^{2}-4.2 z^{3}}{-2.468 z-2.2 z^{2}+5.2 z^{3}} \\
\frac{-2.468 z+10.489 z^{2}+15.425 z^{3}-30.85 z^{4}}{-12.689 z^{2}-10.225 z^{3}+30.85 z^{4}} \\
\vdots \vdots \vdots \\
-4.2 \delta[n]-30.85 \delta[n+1]-158.613 \delta[n+2] \cdots \stackrel{z}{\longleftrightarrow}-4.2-30.85 z-158.613 z^{2} \cdots
\end{gathered}
$$

but with the restriction $|z|>0.8$ this second form does not converge and is therefore not the inverse z transform.

The Inverse z Transform

Synthetic Division

We can always find the inverse z transform of a rational function with synthetic division but the result is not in closed form. In most practical cases a closed-form solution is preferred.

Partial Fraction Expansion

Partial-fraction expansion works for inverse z transforms the same way it does for inverse Laplace transforms. But there is a situation that is quite common in inverse z transforms which deserves mention. It is very common to have z-domain functions in which the number of finite zeros equals the number of finite poles (making the expression improper in z) with at least one zero at $z=0$.

$$
\mathrm{H}(z)=\frac{z^{N-M}\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{M}\right)}{\left(z-p_{1}\right)\left(z-p_{2}\right) \cdots\left(z-p_{N}\right)}
$$

Partial Fraction Expansion

Dividing both sides by z we get

$$
\frac{\mathrm{H}(z)}{z}=\frac{z^{N-M-1}\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{M}\right)}{\left(z-p_{1}\right)\left(z-p_{2}\right) \cdots\left(z-p_{N}\right)}
$$

and the fraction on the right is now proper in z and can be expanded in partial fractions.

$$
\frac{\mathrm{H}(z)}{z}=\frac{K_{1}}{z-p_{1}}+\frac{K_{2}}{z-p_{2}}+\cdots+\frac{K_{N}}{z-p_{N}}
$$

Then both sides can be multiplied by z and the inverse transform can be found.

$$
\begin{gathered}
\mathrm{H}(z)=\frac{z K_{1}}{z-p_{1}}+\frac{z K_{2}}{z-p_{2}}+\cdots+\frac{z K_{N}}{z-p_{N}} \\
\mathrm{~h}[n]=K_{1} p_{1}^{n} \mathrm{u}[n]+K_{2} p_{2}^{n} \mathrm{u}[n]+\cdots+K_{N} p_{N}^{n} \mathrm{u}[n]
\end{gathered}
$$

z-Transform Properties

An LTI system has a transfer function

$$
\mathrm{H}(z)=\frac{\mathrm{Y}(z)}{\mathrm{X}(z)}=\frac{z-1 / 2}{z^{2}-z+2 / 9},|z|>2 / 3
$$

Using the time-shifting property of the z transform draw a block diagram realization of the system.

$$
\begin{gathered}
\mathrm{Y}(z)\left(z^{2}-z+2 / 9\right)=\mathrm{X}(z)(z-1 / 2) \\
z^{2} \mathrm{Y}(z)=z \mathrm{X}(z)-(1 / 2) \mathrm{X}(z)+z \mathrm{Y}(z)-(2 / 9) \mathrm{Y}(z) \\
\mathrm{Y}(z)=z^{-1} \mathrm{X}(z)-(1 / 2) z^{-2} \mathrm{X}(z)+z^{-1} \mathrm{Y}(z)-(2 / 9) z^{-2} \mathrm{Y}(z)
\end{gathered}
$$

z-Transform Properties

$$
\mathrm{Y}(z)=z^{-1} \mathrm{X}(z)-(1 / 2) z^{-2} \mathrm{X}(z)+z^{-1} \mathrm{Y}(z)-(2 / 9) z^{-2} \mathrm{Y}(z)
$$

Using the time-shifting property

$$
\mathrm{y}[n]=\mathrm{x}[n-1]-(1 / 2) \mathrm{x}[n-2]+\mathrm{y}[n-1]-(2 / 9) \mathrm{y}[n-2]
$$

z-Transform Properties

Let $\mathrm{g}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \mathrm{G}(z)=\frac{z-1}{\left(z-0.8 e^{-j \pi / 4}\right)\left(z-0.8 e^{+j \pi / 4}\right)}$. Draw a
pole-zero diagram for $\mathrm{G}(z)$ and for the z transform of $e^{j \pi n / 8} \mathrm{~g}[n]$. The poles of $\mathrm{G}(z)$ are at $z=0.8 e^{ \pm j \pi / 4}$ and its single finite zero is at $z=1$. Using the change of scale property

$$
\begin{gathered}
e^{j \pi n / 8} \mathrm{~g}[n] \stackrel{\mathcal{I}}{\longleftrightarrow} \mathrm{G}\left(z e^{-j \pi / 8}\right)=\frac{z e^{-j \pi / 8}-1}{\left(z e^{-j \pi / 8}-0.8 e^{-j \pi / 4}\right)\left(z e^{-j \pi / 8}-0.8 e^{+j \pi / 4}\right)} \\
\mathrm{G}\left(z e^{-j \pi / 8}\right)=\frac{e^{-j \pi / 8}\left(z-e^{j \pi / 8}\right)}{e^{-j \pi / 8}\left(z-0.8 e^{-j \pi / 8}\right) e^{-j \pi / 8}\left(z-0.8 e^{+j 3 \pi / 8}\right)} \\
\mathrm{G}\left(z e^{-j \pi / 8}\right)=e^{j \pi / 8} \frac{z-e^{j \pi / 8}}{\left(z-0.8 e^{-j \pi / 8}\right)\left(z-0.8 e^{+j 3 \pi / 8}\right)}
\end{gathered}
$$

z-Transform Properties

$\mathrm{G}\left(z e^{-j \pi / 8}\right)$ has poles at $z=0.8 e^{-j \pi / 8}$ and $0.8 e^{+j 3 \pi / 8}$ and a zero at $z=e^{j \pi / 8}$. All the finite zero and pole locations have been rotated in the z plane by $\pi / 8$ radians.

z-Transform Properties

Using the accumulation property and $\mathrm{u}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z}{z-1},|z|>1$ show that the z transform of $n u[n]$ is $\frac{z}{(z-1)^{2}},|z|>1$.

$$
\begin{gathered}
n \mathrm{u}[n]=\sum_{m=0}^{n} \mathrm{u}[m-1] \\
\mathrm{u}[n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow} z^{-1} \frac{z}{z-1}=\frac{1}{z-1},|z|>1 \\
n \mathrm{u}[n]=\sum_{m=0}^{n} \mathrm{u}[m-1] \stackrel{\mathcal{Z}}{\longleftrightarrow}\left(\frac{z}{z-1}\right) \frac{1}{z-1}=\frac{z}{(z-1)^{2}},|z|>1
\end{gathered}
$$

Inverse z Transform Example

Find the inverse z transform of

$$
X(z)=\frac{z}{z-0.5}-\frac{z}{z+2}, 0.5<|z|<2
$$

Right-sided signals have ROC's that are outside a circle and left-sided signals have ROC's that are inside a circle. Using

$$
\begin{gathered}
\alpha^{n} \mathrm{u}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z}{z-\alpha}=\frac{1}{1-\alpha z^{-1}},|z|>|\alpha| \\
-\alpha^{n} \mathrm{u}[-n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z}{z-\alpha}=\frac{1}{1-\alpha z^{-1}},|z|<|\alpha|
\end{gathered}
$$

We get

$$
(0.5)^{n} \mathrm{u}[n]+(-2)^{n} \mathrm{u}[-n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow} \mathrm{X}(z)=\frac{z}{z-0.5}-\frac{z}{z+2}, 0.5<|z|<2
$$

Inverse z Transform Example

Find the inverse z transform of

$$
X(z)=\frac{z}{z-0.5}-\frac{z}{z+2},|z|>2
$$

In this case, both signals are right sided. Then using

$$
\alpha^{n} \mathrm{u}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z}{z-\alpha}=\frac{1}{1-\alpha z^{-1}},|z|>|\alpha|
$$

We get
$\left[(0.5)^{n}-(-2)^{n}\right] \mathrm{u}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \mathrm{X}(z)=\frac{z}{z-0.5}-\frac{z}{z+2},|z|>2$

Inverse z Transform Example

Find the inverse z transform of

$$
X(z)=\frac{z}{z-0.5}-\frac{z}{z+2},|z|<0.5
$$

In this case, both signals are left sided. Then using

$$
-\alpha^{n} \mathrm{u}[-n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z}{z-\alpha}=\frac{1}{1-\alpha z^{-1}},|z|<|\alpha|
$$

We get
$-\left[(0.5)^{n}-(-2)^{n}\right] \mathrm{u}[-n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow} \mathrm{X}(z)=\frac{z}{z-0.5}-\frac{z}{z+2},|z|<0.5$

The Unilateral z Transform

Just as it was convenient to define a unilateral Laplace transform it is convenient for analogous reasons to define a unilateral z transform

$$
\mathrm{X}(z)=\sum_{n=0}^{\infty} \mathrm{x}[n] z^{-n}
$$

Properties of the Unilateral z Transform

If two causal discrete-time signals form these transform pairs, $\mathrm{g}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \mathrm{G}(z)$ and $\mathrm{h}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \mathrm{H}(z)$ then the following properties hold for the unilateral z transform.
Time Shifting
Delay:

$$
\mathrm{g}\left[n-n_{0}\right] \stackrel{\mathcal{I}}{\longleftrightarrow} z^{-n_{0}} \mathrm{G}(z), n_{0} \geq 0
$$

Advance: $\mathrm{g}\left[n+n_{0}\right] \stackrel{\mathcal{Z}}{\longleftrightarrow} z^{n_{0}}\left(\mathrm{G}(z)-\sum_{m=0}^{n_{0}-1} \mathrm{~g}[m] z^{-m}\right), n_{0}>0$
Accumulation:

$$
\sum_{m=0}^{n} \mathrm{~g}[m] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z}{z-1} \mathrm{G}(z)
$$

Solving Difference Equations

The unilateral z transform is well suited to solving difference equations with initial conditions. For example,

$$
\begin{gathered}
\mathrm{y}[n+2]-\frac{3}{2} \mathrm{y}[n+1]+\frac{1}{2} \mathrm{y}[n]=(1 / 4)^{n}, \text { for } n \geq 0 \\
\mathrm{y}[0]=10 \text { and } \mathrm{y}[1]=4
\end{gathered}
$$

z transforming both sides,

$$
z^{2}\left[\mathrm{Y}(z)-\mathrm{y}[0]-z^{-1} \mathrm{y}[1]\right]-\frac{3}{2} z[\mathrm{Y}(z)-\mathrm{y}[0]]+\frac{1}{2} \mathrm{Y}(z)=\frac{z}{z-1 / 4}
$$

the initial conditions are called for systematically.

Solving Difference Equations

Applying initial conditions and solving,

$$
\mathrm{Y}(z)=z\left(\frac{16 / 3}{z-1 / 4}+\frac{4}{z-1 / 2}+\frac{2 / 3}{z-1}\right)
$$

and

$$
\mathrm{y}[n]=\left[\frac{16}{3}\left(\frac{1}{4}\right)^{n}+4\left(\frac{1}{2}\right)^{n}+\frac{2}{3}\right] \mathrm{u}[n]
$$

This solution satisfies the difference equation and the initial conditions.

Pole-Zero Diagrams and Frequency Response

For a stable system, the response to a sinusoid applied at time $t=0$ approaches the response to a true sinusoid (applied for all time).

Response to a Suddenly-Applied Sinusoid

Pole-Zero Diagrams and Frequency Response

Let the transfer function of a system be

$$
\mathrm{H}(z)=\frac{z}{z^{2}-z / 2+5 / 16}=\frac{z}{\left(z-p_{1}\right)\left(z-p_{2}\right)}
$$

$p_{1}=\frac{1+j 2}{4}, p_{2}=\frac{1-j 2}{4}$
$\left|\mathrm{H}\left(e^{j \Omega}\right)\right|=\frac{\left|e^{j \Omega}\right|}{\left|e^{j \Omega}-p_{1}\right|\left|e^{j \Omega}-p_{2}\right|}$

Pole-Zero Diagrams and Frequency Response

Transform Method Comparison

A system with transfer function $\mathrm{H}(z)=\frac{z}{(z-0.3)(z+0.8)},|z|>0.8$ is excited by a unit sequence. Find the total response.
Using z-transform methods,

$$
\begin{gathered}
\mathrm{Y}(z)=\mathrm{H}(z) \mathrm{X}(z)=\frac{z}{(z-0.3)(z+0.8)} \times \frac{z}{z-1},|z|>1 \\
\mathrm{Y}(z)=\frac{z^{2}}{(z-0.3)(z+0.8)(z-1)}=-\frac{0.1169}{z-0.3}+\frac{0.3232}{z+0.8}+\frac{0.7937}{z-1},|z|>1 \\
\mathrm{y}[n]=\left[-0.1169(0.3)^{n-1}+0.3232(-0.8)^{n-1}+0.7937\right] \mathrm{u}[n-1]
\end{gathered}
$$

Transform Method Comparison

Using the DTFT,

$$
\begin{gathered}
\mathrm{H}\left(e^{j \Omega}\right)=\frac{e^{j \Omega}}{\left(e^{j \Omega}-0.3\right)\left(e^{j \Omega}+0.8\right)} \\
\mathrm{Y}\left(e^{j \Omega}\right)=\mathrm{H}\left(e^{j \Omega}\right) \mathrm{X}\left(e^{j \Omega}\right)=\frac{e^{j \Omega}}{\left(e^{j \Omega}-0.3\right)\left(e^{j \Omega}+0.8\right)} \times \underbrace{\left(\frac{1}{1-e^{-j \Omega}}+\pi \delta_{2 \pi}(\Omega)\right.}_{\text {DTFT of a Unit Sequence }}) \\
\mathrm{Y}\left(e^{j \Omega}\right)=\frac{e^{j \Omega \Omega}}{\left(e^{j \Omega}-0.3\right)\left(e^{j \Omega}+0.8\right)\left(e^{j \Omega}-1\right)}+\pi \frac{e^{j \Omega}}{\left(e^{j \Omega}-0.3\right)\left(e^{j \Omega}+0.8\right)} \delta_{2 \pi}(\Omega) \\
\mathrm{Y}\left(e^{j \Omega}\right)=\frac{-0.1169}{e^{j \Omega}-0.3}+\frac{0.3232}{e^{j \Omega}+0.8}+\frac{0.7937}{e^{j \Omega}-1}+\frac{\pi}{(1-0.3)(1+0.8)} \delta_{2 \pi}(\Omega)
\end{gathered}
$$

Transform Method Comparison

Using the equivalence property of the impulse and the periodicity of both $\delta_{2 \pi}(\Omega)$ and $e^{j \Omega}$

$$
\mathrm{Y}\left(e^{j \Omega}\right)=\frac{-0.1169 e^{-j \Omega}}{1-0.3 e^{-j \Omega}}+\frac{0.3232 e^{-j \Omega}}{1+0.8 e^{-j \Omega}}+\frac{0.7937 e^{-j \Omega}}{1-e^{-j \Omega}}+2.4933 \delta_{2 \pi}(\Omega)
$$

Then, manipulating this expression into a form for which the inverse DTFT is direct

$$
\begin{aligned}
\mathrm{Y}\left(e^{j \Omega}\right)= & \underbrace{\frac{-0.1169 e^{-j \Omega}}{1-0.3 e^{-j \Omega}}+\frac{0.3232 e^{-j \Omega}}{1+0.8 e^{-j \Omega}}+0.7937\left(\frac{e^{-j \Omega}}{1-e^{-j \Omega}}+\pi \delta_{2 \pi}(\Omega)\right)}_{=0} \\
& \underbrace{-0.7937 \pi \delta_{2 \pi}(\Omega)+2.4933 \delta_{2 \pi}(\Omega)}
\end{aligned}
$$

Transform Method Comparison

$$
\mathrm{Y}\left(e^{j \Omega}\right)=\frac{-0.1169 e^{-j \Omega}}{1-0.3 e^{-j \Omega}}+\frac{0.3232 e^{-j \Omega}}{1+0.8 e^{-j \Omega}}+0.7937\left(\frac{e^{-j \Omega}}{1-e^{-j \Omega}}+\pi \delta_{2 \pi}(\Omega)\right)
$$

Finding the inverse DTFT,
$\mathrm{y}[n]=\left[-0.1169(0.3)^{n-1}+0.3232(-0.8)^{n-1}+0.7937\right] \mathrm{u}[n-1]$
The result is the same as the result using the z transform, but the effort and the probability of error are considerably greater.

System Response to a Sinusoid

A system with transfer function

$$
\mathrm{H}(z)=\frac{z}{z-0.9},|z|>0.9
$$

is excited by the sinusoid $\mathrm{x}[n]=\cos (2 \pi n / 12)$. Find the response.

The z transform of a true sinusoid does not appear in the table of z transforms. The z transform of a causal sinusoid of the form $\mathrm{x}[n]=\cos (2 \pi n / 12) \mathrm{u}[n]$ does appear. We can use the DTFT to find the response to the true sinusoid and the result is
$\mathrm{y}[n]=1.995 \cos (2 \pi n / 12-1.115)$.

System Response to a Sinusoid

Using the z transform we can find the response of the system to a causal sinusoid $\mathrm{x}[n]=\cos (2 \pi n / 12) \mathrm{u}[n]$ and the response is

$$
\mathrm{y}[n]=0.1217(0.9)^{n} \mathrm{u}[n]+1.995 \cos (2 \pi n / 12-1.115) \mathrm{u}[n]
$$

Notice that the response consists of two parts, a transient response $0.1217(0.9)^{n} \mathrm{u}[n]$ and a forced response $1.995 \cos (2 \pi n / 12-1.115) \mathrm{u}[n]$ that, except for the unit sequence factor, is exactly the same as the forced response we found using the DTFT.

System Response to a Sinusoid

This type of analysis is very common. We can generalize it to say that if a system has a transfer function $\mathrm{H}(z)=\frac{\mathrm{N}(z)}{\mathrm{D}(z)}$ that the response to a causal cosine excitation $\cos \left(\Omega_{0} n\right) \mathrm{u}[n]$ is

$$
\mathrm{y}[n]=\underbrace{\mathscr{Z}^{-1}\left(z \frac{\mathrm{~N}_{1}(z)}{\mathrm{D}(z)}\right)}_{\text {Natural or Transient Response }}+\underbrace{\left|\mathrm{H}\left(p_{1}\right)\right| \cos \left(\Omega_{0} n+\measuredangle \mathrm{H}\left(p_{1}\right)\right) \mathrm{u}[n]}_{\text {Foreed Response }}
$$

where $p_{1}=e^{j \Omega_{0}}$. This consists of a natural or transient response and a forced response. If the system is stable the transient response dies away with time leaving only the forced response which, except for the $\mathrm{u}[n]$ factor is the same as the forced response to a true cosine. So we can use the z transform to find the response to a true sinusoid.

