Angle CW Modulation



Phase and Frequency Modulation

Consider a signal of the form x_(¢)= A, cos(wct + q)(t)) where A, and @, are constants.
The envelope is a constant so the message cannot be in the envelope. It must instead

lie in the variation of the cosine argument with time. Let 6, (¢)= @ ¢+ ¢(¢) be the

instantaneous angle. Then
x,(t)= A, cos(6,(t))= A, Re(ejec(t)).
6_(¢) contains the message and this type of modulation is called angle or exponential
modulation. If ¢(¢)=¢, x(¢) with ¢, <180° so that x_(t) = A,_cos(@.t +¢, x(t))
the modulation is called phase modulation (PM) where ¢, is the phase modulation

index.



Phase and Frequency Modulation

Think about what it means to modulate the phase of a cosine. The total argument

of the cosine is @ ¢+ ¢(¢), an angle with units of radians (or degrees). When

¢(¢)=0, we simply have a cosine and the angle ¢ is a linear function of time.

Think of this angle as the angle of a phasor rotating at a constant angular velocity.
Now add the effect of the phase modulation ¢(¢). The modulation adds a "wiggle"

to the rotating phasor with respect to its position when it is unmodulated. The message
1s in the variation of the phasor's angle with respect to the constant angular velocity

of the unmodulated cosine.

Unmodulated Cosine Modulated Cosine

A




Phase and Frequency Modulation

The total argument of an unmodulated cosine is 6. (¢)= w, ¢ in which @, is a radian
frequency. The time derivative of _ t i1s @.. We could also express the argument in

cyclic frequency form as 0, (1) =27 f.¢. Its time derivative is 27 f.. Therefore one way

1 d
of defining the cyclic frequency of an unmodulated cosine is as 2_5(@ (t)) Now let's
T

apply this same idea to a modulated cosine whose argument is 6. (¢) =27 f.t + ¢(¢).

: L. d .
Its time derivative is 27 f. + d—((p(t)) Now we define instantaneous frequency as
4

s 1 d

1 d 1 d ..
()2 -4 (0,(1)) = %[m r +E(¢(t))}: fo+ 2L p(0). s important o draw

a distinction between instantaneous frequency f(#) and spectral frequency f. They are

definitely not the same. Letx,(¢)= cos(27t fr+ q)(t)). It has a Fourier transform X_( f).

Spectral frequency f is the independent variable in X_(f) but f(¢)= f. + %%(qﬁ(t))
T

Some Fourier transforms of phase and frequency modulated signals later will make this

distinction clearer.



Phase and Frequency Modulation

Phase—Modulating Signal
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Phase and Frequency Modulation

Phase—Modulating Signal

8 10 12 14 16 18 20
Time, t (us)
Phase-Modulated Signal - ¢, =5
1 T T T T T
S| ]
<
_1 | | | | | 1 |
0 2 4 6 8 10 12 14 16 18 20
Time, t (us)
Phase in Radians
200 T T T \ T
=< e
~o 100 B
® f
G | | | | | | | 1 |
0 2 4 6 8 10 12 14 16 18 20
Time, t (us)
Instantaneous Frequency in MHz
1 .5 T T T g T T
= 1
05 1 1 | | | 1
0 2 4 6 8 10 12 14 16 18 20
Time, t (us)



Phase and Frequency Modulation

T
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8 10
Time, ¢ (us)
Frequency-Modulated Signal - f, = 500,000

IR AT

Time, ¢ (us)

Phase in Radians

T T T T

0 2 4 6 8 10 12 14 16
Time, t (us)

Instantaneous Frequency in MHz
T

(5

8 10 12 14

20
Time, t (us)




Phase and Frequency Modulation

Frequency—Modulating Signal
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Phase and Frequency Modulation

Frequency-Modulated Signal - f, = 500,000

1 I I I I I
=0 |
<
_1 [ | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20

Time, ¢ (us)

Instantaneous Frequency in MHz

T I I

8 10 12 14 16 18 20
Time, t (us)

X (f)

0.2

0.15

0.1
‘0.05
L.

BN A

; f(MHz)



Phase and Frequency Modulation

If we make the variation of the instantaneous frequency of a sinusoid be directly
proportional to the message we are doing frequency modulation (FM). In frequency
modulation f(t) = f. + f,x(¢) , f, <f. wheref, is the modulation index for

frequency modulation. Typically f, << f. because we desire to transmit a bandpass

signal. In frequency modulation %((p(t)) =2n f, x(t), therefore

(1) = [2rfux()dr + 0(1) | 121,

and

x,(t)=A, cos[a)ct + ZﬂfAj.X(/l)d/l + gb(to )]

lo
So PM and FM are very similar. The difference is between integrating the message

signal before phase modulating or not integrating it.



Phase and Frequency Modulation

X(1) Message X(?) Message

Xc(f) Phase-Modulated Carrier Xc(t) Frequency-Modulated Carrier
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Phase and Frequency Modulation

x(f) Message X(1) Message

Xc(t ) Phase-Modulated Carrier Xc(t ) Frequency-Modulated Carrier
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Phase and Frequency Modulation

For phase modulation x_(¢)=A, cos(a)ct +0, X(t))

For frequency modulation x _(¢)= A, cos(a)ct +21 fAJX()L)d l]

)

There 1s no simple expression for the Fourier transforms of these signals

in the general case. Usmg cos(x+y)= )cos(y)—sin(x)sin(y)

)=c
we can write for PM x _(7)=A [cos(a) coS (Z)A )— sin(a)ct)sin((PA X(f))]

c

and for FM x_(¢)= [cos Wt cos[Zﬁ ]—sin(oo;)sin{anAjx(/l)dlﬂ
)

)

(under the assumption that q) =0



Phase and Frequency Modulation

If ¢, and f, are small enough, cos(¢, x(¢))=1 and sin(¢, x()) = ¢, x(¢)

and cos[27rfAJx(/'L)d/'L] =1 and sin[zanjx(/l)d/’L] = 27rfij(/’L)d/’L.

Iy ) Iy

Then for PM x,(t)= Ac[cos(a)ct)—(bAX(t)sin(a)ct)]

and forFM  x_(t)= A, [cos(a)ct) -2r sin(a)ct)fij(QL)dl]

These approximations are called narrowband PM and narrowband FM and we

can find their Fourier transforms.

For PM, X, (f)= (A, /2){[8(f - £)+8(f+ £)]-jon [ X(F+ £)-X(f-£)]}

ForFM,Xc(f)z(Ac/2){[5(f—fc)+6(f+fc)]—f{ (f+f X;ff }}

(under the assumption that the average value of x(¢) is Zero)



Phase and Frequency Modulation

If the information signal is a sinusoid x(¢)=A, cos(a)mt) =A cos(27r fmt)

then X(f)=(A, /2)[5(f —f.)+6(f+ fm)] and, in the narrowband approximation,
For PM,

x,(t)= A, [cos(wct) -0,A cos(wmt)sin(a) t):l

X (f)=(4 /2{[5f Fyea(seg))- {(fﬂ” f)+5(f+f+f)”

S(f=f.—=1)=6(f—1.+ 1)
For FM,

()24, cos(00)- 5sin(01)n(o,1)|

m

2 f

- CVas( )] Ak | S S )-8+ St S,)
XC(f)ZMC/z){[(S(f frotre £l [—5(f—ﬁ—fm)+5(f—ﬁ+fm)}}



Phase and

Frequency Modulation
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Phase and Frequency Modulation

Unmodulated Carrier,Ac =1, fL = 100000000
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Phase and Frequency Modulation
Narrowband PM and FM Spectra

for Tone Modulation
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Phase and Frequency Modulation

If the information signal is a sinc, x(z)=sinc(2W¢) then X(f)=(1/2W )rect(f/2W)
and, in the narrowband approximation,
For PM,

Xc(f)z(Ac/2){[5(]‘—fc)+5(f+fc)]—j2¢—€v[rect((f+fc)/2W)—rect((f—fc)/2W):|}
For FM,

Xc(f)E(AC/2){[5(f_ﬁ)+5(f+ﬁ)]_§1‘)]‘} rect((];-:j;z)&W)_rect((];—_];ic)/ZW)]}



Phase and Frequency Modulation
Narrowband PM and FM Spectra

for a Sinc Message
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Phase and Frequency Modulation

If the narrowband approximation is not adequate we must deal
with the more complicated wideband case. In the case of tone
modulation we can handle PM and FM with basically the same

analysis technique if we use the following conventions:

{Am sin(a)mt) , PM

x(1)=

A cos(a)mt) , FM

For FM, ¢(t) = 2anjX(l)dl = 2anjAm cos(w, A)d A
o(1)= 2%%@ sin(@,t) = %fA sin(, 1)

m m

A
Then, for PM and FM, ¢(¢)= Bsin(w, ) , where 2 {¢A "

, PM

(A, /f.)f, » IM

Then x_(t)=A, [cos( ,Bsin(a)mt))cos(a)ct) — sin(ﬁ sin(a)mt))sin(a)ct)]



Phase and Frequency Modulation
Inx_ (t)=A, [cos( ﬁsin(a)mt))cos(a)ct) — sin(ﬁ sin(a)mt))sin(a)ct)]

cos( B sin(a)mt)) and sin( B sin(a)mt)) are periodic with fundamental
period 27 /@, . We can now use two useful results from applied

mathematics (Abramowitz and Stegun, page 361)

[e e}

cos(zsin(6))=1 +22J2k cos(2k8)=17,(z)+2 D, J,(z)cos(k0)

[e e}

sin(zsin(0))=2>_7,,,, (z)sin((2k +1) ):ZZJ )sin (k)

k=0
k odd

Adapting them to our case

(e ]

cos(Bsin(w,t))=T,(B)+2 Y, I, (B)cos(ko, 1)

k=1
k even

sin(z sin(a)mt)) =2 g J, (ﬁ)sin(ka)mt)

k odd



Phase and Frequency Modulation
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Phase and Frequency Modulation

A =1, f =10 MHz
A, =1,f=10° ,f, =2x10°=p =2

Jo(B)

/0.2239cos(2 x107mt)

~0.5767 cos(1.98 x 107z ) 08 1 (p) | —05767cos(2.02x10nt)
0.6} J ]
4 J3( J4(B
0.3528 cos(1.96x 107m) , I /—»0.3528cos(2.04 x107mt)

—0.1289003(1.94x107m) \i\o A’

00340 cos (192 x 107t ) — 028

-0.007 cos(1.9 X 107m) /0: 5

| S— 0.1289 cos(2.06 x 107z )

T 0.0340cos(2.08 x 10777

. 0.007 cos(2.1x 10"z

10



Phase and Frequency Modulation

A =1, f =10 MHz
A =1.f =10° . f, =2x10° =P =2
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Phase and Frequency Modulation

x (f)=A - Jo(ﬁ)+zg 3, (B)cos(ka, 1) |cos(a,1)—| 2 ng(,B)sin(ka)mt) sin(a,1)
(Jo(ﬂ)cos(a)ct)+2 g J, (ﬁ)cos(a)ct)cos(ka)mt)\
. (t)=A < ) k even >
-2 Z’ J,(B)sin(w.t)sin(kw, 1)
(Jo(ﬁ)cos(a)ct)+ g Jk(ﬁ)[cos((a)c—ka)m)t)+cos((a)c+ka)m)t)]\
X (l‘):Ac< ) k even [
— gf Jk(ﬁ)[cos((a)c — ka)m)t)—cos((coC +ka)m)t)]

(e o]

This can also be written in the more compact form, x_(z)= A, 2 J, ( ﬁ)cos((a)c +kw,, )t)

k=—o0




Phase and Frequency Modulation

Now, to find the spectrum of x,(¢) take the Fourier transform of x_(z).

(oo}

X (£)=(4.12) X 1B 8(f~(f.+ )+ (f +(f, +K,))]

k=—o0

The impulses in the spectrum extend in frequency all the way to infinity. But beyond
Bf, the impulse strengths die rapidly. For practical purposes the bandwidth is
approximately 23f .



Phase and Frequency Modulation

Wideband FM Spectrum

for Cosine-Wave Modulation
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Phase and Frequency Modulation
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Transmission Bandwidth and Distortion

The bandwidth required for transmitting an FM signal is theoretically

infinite. That is, an infinite bandwidth would be required to transmit an

FM signal perfectly, even if the modulating signal is bandlimited. Fortunately,
in practical systems, perfection is not required and we can get by with a

finite bandwidth. With tone modulation, the bandwidth required depends on

the modulation index 3. The spectral line magnitudes fall off rapidly at positive

frequencies for which | f—f.|>Bf,- So for tone modulation the bandwidth
required for transmission would be approximately 237, . In the narrowband case
when f is very small we cannot exactly follow this rule because we would have

no modulation at all. So there is a "floor" of at least 2f



Transmission Bandwidth and Distortion

In determining bandwidth what really matters is the worst case and how much
distortion we can tolerate. Suppose we agree that any spectral lines of magnitude

less than € can be omitted. Of course the value of € depends on the application.
Typical values lie in the range 0.01 <€ <0.1. If |JM (ﬁ)| > ¢ and |JM+1 ([)’)| <&
then the bandwidth for transmitting that tone modulation would be B=2M () f,

and we put a lower limit M (3) > 1 to account for the bandwidth floor in the

narrowband case.



Bandwidth and Distortion
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Bandwidth and Distortion
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Transmission Bandwidth and Distortion

In determining bandwidth what really matters is the worst case and how much
distortion we can tolerate. Suppose we agree that any spectral lines of magnitude
less than € can be omitted. Of course the value of € depends on the application.
Typical values lie in the range 0.01 <€ <0.1. If |JM ([3)| > € and |JM+1 (ﬁ)| <&
then the bandwidth for transmitting that tone modulation would be B=2M () f,
and we put a lower limit M () > 1 to account for the bandwidth floor in the

narrowband case.

20

10f




Transmission Bandwidth and Distortion
In the equation B=2M () f,,, if we substitute S+ 2 for M () we get

B=2(B+2)f, = Z[A;—][A+2jfm =2(A, f,+2f,). To estimate the actual

m

required bandwidth for transmission of FM we take the worst case and set

A =landf =W. Then B = 2( fat 2W) for B> 2. This estimate of required
transmission bandwidth is based on tone modulation but it can be shown that

it is a reasonable estimate for any general modulation of the same bandwidth.
The deviation ratio is defined by D = f, /W. It is the maximum phase deviation
under worst case conditions. It serves the same purpose for general modulation that
B does for tone modulation. Then B, =2M (D)W and we can use the same
relationship between M and J3 used earlier to find M (D). Carson's rule is a
handy approximation based on these principles that says B, =2(D+1)W for
either D >>1 or D << 1. But for the more common case of 2 < D <10 a better
approximation is B, =2(D+2)W ,2 < D<10.



Generation and Detection of FM and PM

The most direct and straightforward way of generating FM 1is to use a

device known as a voltage-to-frequency converter (VCO). One way this
can be done is by varying with time the capacitance in an LC parallel resonant
oscillator. Let the capacitance be the capacitance of a varactor diode in
parallel with another capacitor forming C(¢)=C, — C x(t). The time-varying
LC resonant frequency is

1 d d ! ! 1
((0)=5, 4 6(0)= - (6(1))= LC(t):\/LCo\/ ¢

1——X(t)

0

We can use the formula (Abramowitz and Stegun, page 15),

(1+x)a=1+ax+@x2+a(a_13)'(a_2)x3+---




Generation and Detection of FM and PM

If Cx(t) is "small enough", then i(@(t)) : {1+%£x(t)} and

dt JLC, )

< 1] 'x(1)dA. This is in the form of FM with f, = ¢
2€, 2C,

Since |X(t)| <1, the approximation is good to within one percent if C/C, <0.013.

I

0(1)=2nft+2r f.

So, taking that as an upper limit, f, = ((/; f.<0.006f,. This is a practical result

0
that usually causes no design problems.

Tuned
N:1 RFC DC ]|3/10Ck Circuit
+ | 4 4
MVV I\ +
x|\ 7 i~
( ) xc (t) —<C, S|L X, (z) Oscillator
_ =V Varactor 3
T O O




Generation and Detection of FM and PM

Another method for generating FM is to use a phase modulator, which
produces PM, but integrate the message before applying it to the phase

modulator. A narrowband phase modulator can be made by simulating

the narrowband approximation x,(¢) = A, cos(w.t)— A0, x()sin(@.z).

() —(%) () .0
| =

—A_sin oot

A cos((x)ct)



Generation and Detection of FM and PM

A third method for generating FM is called indirect FM. First, integrate

1
the message x (7). Then use the integral of the message T

J.tx(l)d/l as the

input signal to a narrowband phase modulator with a carrier frequency f,,. This

produces a signal with instantaneous frequency f, ()= f., + 2¢AT x(t).
T

Narrowband Frequency Modulator

i |

1 Phase
T Modulator

>
—_
~
~
|
Y

Frequency
Multiplier

Xn

RF
Power X, ([)



Generation and Detection of FM and PM

Next frequency-multiply the narrowband FM signal by a factor of n. This moves

the carrier frequency to nf,,, creating a signal with instantaneous frequency

f,(t)=nf, +n 2¢AT x(t). The effective value of the frequency deviation is now
T

P,
=n

Ja 2nT
frequency variation. Then, if needed, shift the entire FM spectrum to whatever

. This changes the range of frequency variation but not the rate of

carrier frequency is required and amplify for transmission.

Narrowband Frequency Modulator

f (¢) | Frequency | £ (s (¢) | RF

) f
2
Multiplier —»@—» Power x,(7)

Xn Amp

1 Phase
T Modulator

>
—_
~
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|
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Generation and Detection of FM and PM

There are four common methods of detecting FM:

1. FM-to-AM Conversion Followed by Envelope Detection
2. Phase-Shift Discrimination

3. Zero-Crossing Detection

4. Frequency Feedback

FM-to-AM conversion can be done by time-differentiating the modulated signal.
Letx_ (1)=A, cos(@c (t)) with O(t)= 2%[]‘6 + /A X(t)]. Then
x.(t)=-A0(t)sin(6,(¢))=27A.[ £.+ f,x(¢)]sin(6, () £ 180°).

The message can then be recovered by an envelope detector.
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Generation and Detection of FM and PM

The "differentiator" in FM-to-AM detection need not be a true
differentiator. All that is really needed is a frequency response
magnitude that has a linear (or almost linear) slope over the bandwidth
of the FM signal. Just below and just above resonance a tuned circuit
resonator has an almost linear magnitude dependence on frequency.

This type of detection is commonly called slope detection.

'H (f ) | Almost Linear Slope

A




Generation and Detection of FM and PM

The linearity of slope detection can be improved by using two
resonant circuits instead of only one. This type of circuit is called

a balanced discriminator.
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Interference

Let the total received signal at a receiver be

v(t)=A, cos(a)ct) + A, cos((a)c + o, )t + (])l.)
where the first term represents the desired signal and the second term represents
interference. Also define p= A, /A, and 6,(1)= @t +¢,. Then

COS(a)ct)COS(Hi (t)) ”

—sin(a)ct)sin(Gl. (t))

v(t)=A, {[1 + pcos(Ql. (t))}cos(a)ct) — psin(Ql. (t))sin(a)ct)}

The in-phase component is A, [1 + pcos (Gl. (t))] coS (a)ct) and the quadrature component is

v(t)=A, [cos(a)ct) + pcos(a)ct + Oi)] =A, {cos((oct) + p[

—A.p sin(Gi (t))sin(a)ct). The envelope is

A, (t)= Ac\/[l + /ocos(é?i)]2 +p’ sin(@l. (t) =A \/1 +p’+ 2pcos(9l. (t)) The phase relative

to the desired signal is ¢, (¢) = tanl[ P sm( ’(t)) ]
1+ pcos(@ )

l



Interference

The envelope and phase of the total received signal

psin (91. (1 ))
1+ pcos(@i (t))
show that the effect of the interference on the received signal is to create both amplitude

A, (1)= Ac\/l +p* +2pcos(6,(7)) and ¢, (¢)= tan_l[

and phase modulation. If p <<1, then

A, (t)= AC\/I +2pcos(6,(t)) = A.|1+pcos(6,(¢))] and ¢, (r) = tan™ (p sin(), (t))) = psin(6, (7))

or

A ()= A, [1 + pcos(wt+¢, )] and ¢, (1) = psin(w,t +¢,)
This result has the form of AM tone modulation with 1 = p and simultaneous PM or FM
tone modulation with B = p. If p >>1, then

A, (1)= pAc\/l +2p "' cos(w;t +¢,) = pA, [1+ p' cos(w +¢,.)] and ¢, (1)= w1t +¢.




Interference

In the weak interference case
A ()= A, [1 + pcos(a)it + 0. )] and ¢, (¢)= psin(a)l.t + q)l.)
if we demodulate with an envelope, phase or frequency demodulator we get
(with ¢, =0)
Envelope Detector: K, [1 + pcos (a)l.t):|
Phase Detector: K, psin (a)it)

Frequency Detector: K, pf; cos (a)it)

For AM or PM demodulation the demodulated signal strength is proportional to
p. For FM demodulation the demodulated signal strength is porportional to the
product of p and f;.
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Interference

The effects of interference on FM signals increases with frequency. So

one way to reduce the effect is to lowpass filter the demodulated output.

Of course this also lowpass filters the message, an undesirable outcome.

To avoid the lowpass filtering effect on the message a technique called
preemphasis is often used. The higher frequency parts of the message

are preemphasized before transmission by passing them through a preemphasis

filter with frequency response H , (f) that amplifies the higher frequencies

more than the lower frequencies. Then, after transmission and frequency
demodulation, the demodulated signal is passed through a deemphasis filter
1

H, (f)

whose frequency response is H , ( f ) =



Interference

1
= n
1+ jf /B,

which B, is less than the cutoff frequency of the normal sharp-cutoff lowpass

A typical deemphasis filter has a frequency response H,, (f)

filter that determines the bandwidth. That makes the corresponding preemphasis

filter have a frequency response H , (f)=1+ jf / B,,.



Interference

A phenomenon that most people have experienced in receiving FM signals

1s the so-called capture effect. Suppose there are two FM stations, both
transmitting in the same bandwidth and of approximately equal signal strength
at the receiver. Their signal strengths will fluctuate some causing one to be
stronger for a time and then the other. The stronger signal will "capture" the
receiver for a short time and will dominate the demodulated signal. But then
later the other signal will dominate and capture the receiver. The two stations
switch back and forth and the listener hears a time-multiplexed version of both
signals. To keep the math simple, assume we have one unmodulated carrier
and one modulated carrier. This is exactly the "interfering sinusoid" case we

analyzed earlier with the results

1+ pcos(@i (t))
with 0,(¢)=¢,(t), the phase modulation of the interfering signal.

psin(@l. (t)) ]

A, (1)= Ac\/l +p’ +2pcos(6,(7)) and ¢, (¢) = tan{



Interference

Av(t):Ac\/1+p2 +2pc08(9,~(t)) and ¢, (¢) = tan 1(15;1:;(8(9 (Z)))

The demodulated signal is then

) d L psm( )
yp(t)=9,(1)= E(taﬂ (1+pCOS(¢ (f))n

d 1
Using —(tan™'(z))=
sing dZ( an (Z)) 142

1 o [1+PCOS(¢1'(t)ﬂpcos(q)i(t>)¢(t)+p3in(¢i (t))psin((bi(t))gb(t)

1+( psm( ) j [1+pcos(¢i(t))]2

1+pcos(¢ (t))
peos(@,(1))+p
[1+pcos( )] + p’sin (q)i(t))
pLp+cos(9.(1))]
1+ p* +2pcos (¢, (¢
[p+cos ]

1+ p? +2pcos(¢ (t))

- and the chain rule of differentiation,

YD(t):

y,(t)=

yp(t)=

))¢(t) = a(p>¢i)¢(t)

where Ot(p,gbi)



Interference

Yp (Z) = a(p’¢i)¢(t)

The ¢(¢) factor suggests that the interference may be intelligible if a( p,(/’)i)
is relatively constant with time. If p >>1, then OC( p,(])l.) =landy,(t)=¢(z).
But we wish to examine the case in which the two signals are approximately
equal in strength, implying that p=1.

(p/(1+p) , ¢,=0+2nx

<

= pz/(1+p2) , ¢, =7 /2+nm , n aninteger

~ pI:p+COS(¢i(t)):|
o(p.9,)= 1+ p* +2pcos(¢, (1))

—-p/(1-p) ., ¢=7m+2nm




Interference

1o()=alp )il . alpa)= L DL
Asp—1,a—05andy,(t)—0.50(t).

For p <1, the strength of the demodulated interference depends mostly on the

peak-to-peak value of &

o, = a(p.0)-a(p.)-

The interference effect is small-to-negligible for p < 0.7 and the interference

captures the demodulated output signal when p >0.7.

.O‘(p"".)
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