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Phase and Frequency Modulation

 

Consider a signal of the form xc t( ) = Ac cos ω ct +φ t( )( )  where Ac  and ω c  are constants.  
The envelope is a constant so the message cannot be in the envelope.  It must instead 
lie in the variation of the cosine argument with time.  Let θc t( ) ω ct +φ t( )  be the 
instantaneous angle.  Then 

                                    xc t( ) = Ac cos θc t( )( ) = Ac Re e jθc t( )( ).
θc t( )  contains the message and this type of modulation is called angle or exponential 
modulation.  If φ t( ) = φΔ x t( )  with φΔ ≤180° so that xc t( ) = Ac cos ω ct +φΔ x t( )( )
the modulation is called phase modulation PM( )  where φΔ  is the phase modulation 
index.  



Phase and Frequency Modulation
Think about what it means to modulate the phase of a cosine.  The total argument
of the cosine is ω ct +φ t( ),  an angle with units of radians (or degrees).  When 
φ t( ) = 0, we simply have a cosine and the angle ω ct  is a linear function of time.
Think of this angle as the angle of a phasor rotating at a constant angular velocity.  
Now add the effect of the phase modulation φ t( ).  The modulation adds a "wiggle" 
to the rotating phasor with respect to its position when it is unmodulated.  The message 
is in the variation of the phasor's angle with respect to the constant angular velocity 
of the unmodulated cosine.
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The total argument of an unmodulated cosine is θc t( ) =ω ct  in which ω c  is a radian 
frequency.  The time derivative of ω ct  is ω c .  We could also express the argument in 
cyclic frequency form as θc t( ) = 2π fct.  Its time derivative is 2π fc .  Therefore one way 

of defining the cyclic frequency of an unmodulated cosine is as 1
2π

d
dt

θc t( )( ).  Now let's 

apply this same idea to a modulated cosine whose argument is θc t( ) = 2π fct +φ t( ).

Its time derivative is 2π fc +
d
dt

φ t( )( ).  Now we define instantaneous frequency as

f t( )  1
2π

d
dt

θc t( )( ) = 1
2π

2π fc +
d
dt

φ t( )( )⎡
⎣⎢

⎤
⎦⎥
= fc +

1
2π

d
dt

φ t( )( ).  It is important to draw

a distinction between instantaneous frequency f t( )  and spectral frequency f .  They are
definitely not the same.  Let xc t( ) = cos 2π fct +φ t( )( ).  It has a Fourier transform Xc f( ).

Spectral frequency f  is the independent variable in Xc f( )  but f t( ) = fc +
1

2π
d
dt

φ t( )( ).
Some Fourier transforms of phase and frequency modulated signals later will make this
distinction clearer.
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Phase and Frequency Modulation
If we make the variation of the instantaneous frequency of a sinusoid be directly
proportional to the message we are doing frequency modulation FM( ).  In frequency 
modulation f t( )  = fc + fΔ x t( )   ,  fΔ < fc  where fΔ  is the modulation index for 
frequency modulation.  Typically fΔ << fc  because we desire to transmit a bandpass 

signal.  In frequency modulation d
dt

φ t( )( ) = 2π fΔ x t( ), therefore

                                    φ t( ) = 2π fΔ x λ( )dλ
t0

t

∫  + φ t0( )   ,  t ≥ t0

and

                              xc t( ) = Ac cos ω ct + 2π fΔ x λ( )dλ
t0

t

∫  + φ t0( )
⎛

⎝
⎜

⎞

⎠
⎟ .

So PM and FM are very similar.  The difference is between integrating the message
signal before phase modulating or not integrating it.
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For phase modulation xc t( ) = Ac cos ω ct +φΔ x t( )( )

For frequency modulation xc t( ) = Ac cos ω ct + 2π fΔ x λ( )dλ
t0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟

There is no simple expression for the Fourier transforms of these signals
in the general case.  Using cos x+y( ) = cos x( )cos y( )− sin x( )sin y( )
we can write for PM xc t( ) = Ac cos ω ct( )cos φΔ x t( )( )− sin ω ct( )sin φΔ x t( )( )⎡⎣ ⎤⎦

and for FM xc t( ) = Ac cos ω ct( )cos 2π fΔ x λ( )dλ
t0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ − sin ω ct( )sin 2π fΔ x λ( )dλ

t0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

under the assumption that φ t0( ) = 0( ).

Phase and Frequency Modulation



If φΔ  and fΔ  are small enough, cos φΔ x t( )( ) ≅ 1 and sin φΔ x t( )( ) ≅ φΔ x t( )

and cos 2π fΔ x λ( )dλ
t0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ ≅ 1 and sin 2π fΔ x λ( )dλ

t0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ ≅ 2π fΔ x λ( )dλ

t0

t

∫ .

Then for PM         xc t( ) ≅ Ac cos ω ct( )−φΔ x t( )sin ω ct( )⎡⎣ ⎤⎦

and for FM      xc t( ) ≅ Ac cos ω ct( )− 2π sin ω ct( ) fΔ x λ( )dλ
t0

t

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

These approximations are called narrowband PM and narrowband FM and we 
can find their Fourier transforms.

For PM, Xc f( ) ≅ Ac / 2( ) δ f − fc( ) +δ f + fc( )⎡⎣ ⎤⎦ − jφΔ X f + fc( )− X f − fc( )⎡⎣ ⎤⎦{ }
For FM, Xc f( ) ≅ Ac / 2( ) δ f − fc( ) +δ f + fc( )⎡⎣ ⎤⎦ − fΔ

X f + fc( )
f + fc

−
X f − fc( )
f − fc

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

under the assumption that the average value of x t( )  is zero( )  
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If the information signal is a sinusoid  x t( ) = Am cos ωmt( ) = Am cos 2π fmt( )
then X f( ) = Am / 2( ) δ f − fm( ) +δ f + fm( )⎡⎣ ⎤⎦  and, in the narrowband approximation,
For PM,

xc t( ) ≅ Ac cos ω ct( )−φΔAm cos ωmt( )sin ω ct( )⎡⎣ ⎤⎦

Xc f( ) ≅ Ac / 2( ) δ f − fc( ) +δ f + fc( )⎡⎣ ⎤⎦ −
jAmφΔ

2
δ f + fc − fm( ) +δ f + fc + fm( )
−δ f − fc − fm( )−δ f − fc + fm( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
For FM, 

xc t( ) ≅ Ac cos ω ct( )− fΔAm
fm

sin ω ct( )sin ωmt( )⎡

⎣
⎢

⎤

⎦
⎥

Xc f( ) ≅ Ac / 2( ) δ f − fc( ) +δ f + fc( )⎡⎣ ⎤⎦ −
Am fΔ
2 fm

δ f + fc − fm( )−δ f + fc + fm( )
−δ f − fc − fm( ) +δ f − fc + fm( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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Phase and Frequency Modulation
Narrowband PM and FM Spectra

for Tone Modulation



If the information signal is a sinc,  x t( ) = sinc 2Wt( )  then X f( ) = 1 / 2W( )rect f / 2W( )  
and, in the narrowband approximation,
For PM, 

Xc f( ) ≅ Ac / 2( ) δ f − fc( ) +δ f + fc( )⎡⎣ ⎤⎦ − j φΔ

2W
rect f + fc( ) / 2W( )− rect f − fc( ) / 2W( )⎡⎣ ⎤⎦

⎧
⎨
⎩

⎫
⎬
⎭

For FM, 

Xc f( ) ≅ Ac / 2( ) δ f − fc( ) +δ f + fc( )⎡⎣ ⎤⎦ −
fm fΔ
2W

rect f + fc( ) / 2W( )
f + fc

−
rect f − fc( ) / 2W( )

f − fc

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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Phase and Frequency Modulation
Narrowband PM and FM Spectra

for a Sinc Message



 

If the narrowband approximation is not adequate we must deal
with the more complicated wideband case.  In the case of tone
modulation we can handle PM and FM with basically the same 
analysis technique if we use the following conventions:

                            x t( ) =
Am sin ωmt( )   ,  PM

Am cos ωmt( )   ,  FM

⎧
⎨
⎪

⎩⎪

 For FM, φ t( ) = 2π fΔ x λ( )dλ
t0

t

∫ = 2π fΔ Am cos ωmλ( )dλ
t0

t

∫

             φ t( ) = 2π Am
ωm

fΔ sin ωmt( ) = Am
fm

fΔ sin ωmt( )

Then, for PM and FM, φ t( ) = β sin ωmt( )  , where β 
φΔAm             ,  PM
Am / fm( ) fΔ   ,  FM

⎧
⎨
⎩

Then xc t( ) = Ac cos β sin ωmt( )( )cos ω ct( )− sin β sin ωmt( )( )sin ω ct( )⎡⎣ ⎤⎦
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In xc t( ) = Ac cos β sin ωmt( )( )cos ω ct( )− sin β sin ωmt( )( )sin ω ct( )⎡⎣ ⎤⎦
cos β sin ωmt( )( )   and sin β sin ωmt( )( )  are periodic with fundamental
period 2π /ωm .  We can now use two useful results from applied 
mathematics  Abramowitz and Stegun, page 361( )

            cos zsin θ( )( ) = J0 z( ) + 2 J2k z( )cos 2kθ( )
k=1

∞

∑ = J0 z( ) + 2 Jk z( )cos kθ( )
k=1
k  even

∞

∑

            sin zsin θ( )( ) = 2 J2k+1 z( )sin 2k +1( )θ( )
k=0

∞

∑ = 2 Jk z( )sin kθ( )
k=1
k  odd

∞

∑

Adapting them to our case

            cos β sin ωmt( )( ) = J0 β( ) + 2 Jk β( )cos kωmt( )
k=1
k  even

∞

∑

            sin zsin ωmt( )( ) = 2 Jk β( )sin kωmt( )
k=1
k  odd

∞

∑

Phase and Frequency Modulation
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   xc t( ) = Ac J0 β( ) + 2 Jk β( )cos kωmt( )
k=1
k  even

∞

∑
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

cos ω ct( )− 2 Jk β( )sin kωmt( )
k=1
k  odd

∞

∑
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
sin ω ct( )

⎧

⎨
⎪

⎩⎪

⎫

⎬
⎪

⎭⎪

   xc t( ) = Ac

J0 β( )cos ω ct( ) + 2 Jk β( )cos ω ct( )cos kωmt( )
k=1
k  even

∞

∑

−2 Jk β( )sin ω ct( )sin kωmt( )
k=1
k  odd

∞

∑

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

   xc t( ) = Ac

J0 β( )cos ω ct( ) + Jk β( ) cos ω c − kωm( )t( ) + cos ω c + kωm( )t( )⎡⎣ ⎤⎦
k=1
k  even

∞

∑

− Jk β( ) cos ω c − kωm( )t( )− cos ω c + kωm( )t( )⎡⎣ ⎤⎦
k=1
k  odd

∞

∑

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

This can also be written in the more compact form, xc t( ) = Ac Jk β( )cos ω c + kωm( )t( )
k=−∞

∞

∑

Phase and Frequency Modulation



   Now, to find the spectrum of xc t( )  take the Fourier transform of xc t( ).

        Xc f( ) = Ac / 2( ) Jk β( ) δ f − fc + kfm( )( ) +δ f + fc + kfm( )( )⎡⎣ ⎤⎦
k=−∞

∞

∑

The impulses in the spectrum extend in frequency all the way to infinity.  But beyond 
β fm  the impulse strengths die rapidly.  For practical purposes the bandwidth is 
approximately 2β fm .

Phase and Frequency Modulation



Phase and Frequency Modulation
Wideband FM Spectrum

for Cosine-Wave Modulation
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Transmission Bandwidth and Distortion

The bandwidth required for transmitting an FM signal is theoretically
infinite.  That is, an infinite bandwidth would be required to transmit an 
FM signal perfectly,  even if the modulating signal is bandlimited.  Fortunately, 
in practical systems, perfection is not required and we can get by with a 
finite bandwidth.  With tone modulation, the bandwidth required depends on 
the modulation index β.  The spectral line magnitudes fall off rapidly at positive 
frequencies for which f − fc > β fm .  So for tone modulation the bandwidth 
required for transmission would be approximately 2β fm .  In the narrowband case 
when β  is very small we cannot exactly follow this rule because we would have 
no modulation at all.  So there is a "floor" of at least 2fm.



Transmission Bandwidth and Distortion

In determining bandwidth what really matters is the worst case and how much
distortion we can tolerate.  Suppose we agree that any spectral lines of magnitude
less than ε  can be omitted.  Of course the value of ε  depends on the application.
Typical values lie in the range 0.01< ε < 0.1.  If JM β( ) > ε  and JM +1 β( ) < ε
then the bandwidth for transmitting that tone modulation would be B = 2M β( ) fm  
and we put a lower limit M β( ) ≥1 to account for the bandwidth floor in the 
narrowband case.



Transmission Bandwidth and Distortion
ε = 0.1 Case



Transmission Bandwidth and Distortion
ε = 0.01 Case



Transmission Bandwidth and Distortion
In determining bandwidth what really matters is the worst case and how much
distortion we can tolerate.  Suppose we agree that any spectral lines of magnitude
less than ε  can be omitted.  Of course the value of ε  depends on the application.
Typical values lie in the range 0.01< ε < 0.1.  If JM β( ) > ε  and JM +1 β( ) < ε
then the bandwidth for transmitting that tone modulation would be B = 2M β( ) fm
and we put a lower limit M β( ) ≥1 to account for the bandwidth floor in the 
narrowband case.
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In the equation B = 2M β( ) fm ,  if we substitute β + 2 for M β( )  we get 

B ≅ 2 β + 2( ) fm = 2 Am fΔ
fm

+ 2
⎛
⎝⎜

⎞
⎠⎟
fm = 2 Am fΔ + 2 fm( ).  To estimate the actual

required bandwidth for transmission of FM we take the worst case and set 
Am = 1 and fm =W .  Then B ≅ 2 fΔ + 2W( )  for β > 2.  This estimate of required
transmission bandwidth is based on tone modulation but it can be shown that
it is a reasonable estimate for any general modulation of the same bandwidth.
The deviation ratio is defined by D  fΔ /W .  It is the maximum phase deviation
under worst case conditions.  It serves the same purpose for general modulation that 
β  does for tone modulation.  Then BT = 2M D( )W  and we can use the same
relationship between M  and β  used earlier to find M D( ).  Carson 's rule is a
handy approximation based on these principles that says BT ≅ 2 D +1( )W  for 
either D >>1 or D <<1.  But for the more common case of 2 < D <10 a better 
approximation is BT ≅ 2 D + 2( )W  , 2 < D <10.



Generation and Detection of FM and PM

 

The most direct and straightforward way of generating FM is to use a
device known as a voltage-to-frequency converter (VCO).  One way this 
can be done is by varying with time the capacitance in an LC  parallel resonant 
oscillator.  Let the capacitance be the capacitance of a varactor diode in
parallel with another capacitor forming C t( ) = C0 −C x t( ).  The time-varying
LC  resonant frequency is 

        f t( ) = 1
2π

d
dt

θ t( )( )⇒ d
dt

θ t( )( ) = 1
LC t( )

= 1
LC0

1

1− C
C0

x t( )

We can use the formula (Abramowitz and Stegun, page 15),

            1+ x( )α = 1+αx + α α −1( )
2!

x2 +
α α −1( ) α − 2( )

3!
x3 +

to write

d
dt

θ t( )( ) = 1
LC0

1− C
C0

x t( )⎡

⎣
⎢

⎤

⎦
⎥

−1/2

= 1
LC0

1+ 1
2
C
C0

x t( ) + 3
8

C
C0

x t( )⎛
⎝⎜

⎞
⎠⎟

2

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥



Generation and Detection of FM and PM
If C x t( )  is "small enough", then d

dt
θ t( )( ) ≅ 1

LC0

1+ 1
2
C
C0

x t( )⎡

⎣
⎢

⎤

⎦
⎥  and 

θ t( ) = 2π fct + 2π C
2C0

fc x λ( )dλt

∫ .  This is in the form of FM with fΔ =
C

2C0

fc .  

Since x t( ) ≤1, the approximation is good to within one percent if C /C0 < 0.013.  

So, taking that as an upper limit,  fΔ =
C

2C0

fc ≤ 0.006 fc .  This is a practical result 

that usually causes no design problems.



Generation and Detection of FM and PM

Another method for generating FM is to use a phase modulator, which
produces PM, but integrate the message before applying it to the phase
modulator.  A narrowband phase modulator can be made by simulating
the narrowband approximation xc t( ) = Ac cos ω ct( )− AcφΔ x t( )sin ω ct( ).



Generation and Detection of FM and PM

A third method for generating FM is called indirect  FM.  First, integrate

the message x t( ).  Then use the integral of the message 1
T

x λ( )dλ  
t

∫ as the 

input signal to a narrowband phase modulator with a carrier frequency  fc1.  This 

produces a signal with instantaneous frequency f1 t( ) = fc1 +
φΔ

2πT
x t( ).  



Generation and Detection of FM and PM
Next frequency-multiply the narrowband FM signal by a factor of n.  This moves 
the carrier frequency to nfc1, creating a signal with instantaneous frequency 

f2 t( ) = nfc1 + n
φΔ

2πT
x t( ).  The effective value of the frequency deviation is now 

fΔ = n
φΔ

2πT
.  This changes the range of frequency variation but not the rate of 

frequency variation.  Then, if needed, shift the entire FM spectrum to whatever 
carrier frequency is required and amplify for transmission.



Generation and Detection of FM and PM

 

There are four common methods of detecting FM:
1.    FM-to-AM Conversion Followed by Envelope Detection
2.    Phase-Shift Discrimination
3.    Zero-Crossing Detection
4.    Frequency Feedback
FM-to-AM conversion can be done by time-differentiating the modulated signal.
Let xc t( ) = Ac cos θc t( )( )  with θ t( ) = 2π fc + fΔ x t( )⎡⎣ ⎤⎦.  Then 

xc t( ) = −Ac θ t( )sin θc t( )( ) = 2πAc fc + fΔ x t( )⎡⎣ ⎤⎦sin θc t( ) ±180°( ).
The message can then be recovered by an envelope detector.



Generation and Detection of FM and PM
The "differentiator" in FM-to-AM detection need not be a true
differentiator.  All that is really needed is a frequency response 
magnitude that has a linear (or almost linear) slope over the bandwidth 
of the FM signal.  Just below and just above resonance a tuned circuit 
resonator has an almost linear magnitude dependence on frequency.
This type of detection is commonly called slope detection.



Generation and Detection of FM and PM
The linearity of slope detection can be improved by using two
resonant circuits instead of only one.  This type of circuit is called
a balanced discriminator.



Interference

 

Let the total received signal at a receiver be

               v t( ) = Ac cos ω ct( ) + Ai cos ω c +ω i( )t +φi( )
where the first term represents the desired signal and the second term represents 
interference.  Also define  ρ  Ai / Ac  and θi t( ) ω it +φi .  Then 

 v t( ) = Ac cos ω ct( ) + ρ cos ω ct +θi( )⎡⎣ ⎤⎦ = Ac cos ω ct( ) + ρ
cos ω ct( )cos θi t( )( )
− sin ω ct( )sin θi t( )( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

               v t( ) = Ac 1+ ρ cos θi t( )( )⎡⎣ ⎤⎦cos ω ct( )− ρ sin θi t( )( )sin ω ct( ){ }
The in-phase component is Ac 1+ ρ cos θi t( )( )⎡⎣ ⎤⎦cos ω ct( )  and the quadrature component is

−Acρ sin θi t( )( )sin ω ct( ).  The envelope is 

Av t( ) = Ac 1+ ρ cos θi( )⎡⎣ ⎤⎦
2
+ ρ2 sin θi t( )( ) = Ac 1+ ρ2 + 2ρ cos θi t( )( ).  The phase relative 

to the desired signal is φv t( ) = tan−1 ρ sin θi t( )( )
1+ ρ cos θi t( )( )

⎛

⎝⎜
⎞

⎠⎟
.



Interference

The envelope and phase of the total received signal   

            Av t( ) = Ac 1+ ρ2 + 2ρ cos θi t( )( )  and φv t( ) = tan−1 ρ sin θi t( )( )
1+ ρ cos θi t( )( )

⎛

⎝⎜
⎞

⎠⎟

show that the effect of the interference on the received signal is to create both amplitude 
and phase modulation.  If ρ <<1, then

Av t( ) ≅ Ac 1+ 2ρ cos θi t( )( )  ≅ Ac 1+ ρ cos θi t( )( )⎡⎣ ⎤⎦  and φv t( ) ≅ tan−1 ρ sin θi t( )( )( ) ≅ ρ sin θi t( )( )
or

          Av t( ) ≅ Ac 1+ ρ cos ω it +φi( )⎡⎣ ⎤⎦  and φv t( ) ≅ ρ sin ω it +φi( )
This result has the form of AM tone modulation with µ = ρ and simultaneous PM or FM
tone modulation with β = ρ.  If ρ >>1,  then

            Av t( ) = ρAc 1+ 2ρ−1 cos ω it +φi( ) ≅ ρAc 1+ ρ−1 cos ω it +φi( )⎡⎣ ⎤⎦  and φv t( ) =ω it +φi  



Interference
In the weak interference case

           Av t( ) ≅ Ac 1+ ρ cos ω it +φi( )⎡⎣ ⎤⎦  and φv t( ) ≅ ρ sin ω it +φi( )
if we demodulate with an envelope, phase or frequency demodulator we get
with φi = 0( )

Envelope Detector:    KD 1+ ρ cos ω it( )⎡⎣ ⎤⎦
Phase Detector:          KDρ sin ω it( )
Frequency Detector:  KDρ fi cos ω it( )
For AM or PM demodulation the demodulated signal strength is proportional to
ρ.  For FM demodulation the demodulated signal strength is porportional to the 
product of ρ and fi .



Interference

The effects of interference on FM signals increases with frequency.  So
one way to reduce the effect is to lowpass filter the demodulated output.
Of course this also lowpass filters the message, an undesirable outcome.
To avoid the lowpass filtering effect on the message a technique called
preemphasis is often used.  The higher frequency parts of the message
are preemphasized before transmission by passing them through a preemphasis
filter with frequency response H pe f( )  that amplifies the higher frequencies 
more than the lower frequencies.  Then, after transmission and frequency
demodulation, the demodulated signal is passed through a deemphasis filter

whose frequency response is Hde f( ) = 1
H pe f( ) .



Interference

A typical deemphasis filter has a frequency response  Hde f( ) = 1
1+ jf / Bde

 in 

which Bde  is less than the cutoff frequency of the normal sharp-cutoff lowpass 
filter that determines the bandwidth.  That makes the corresponding preemphasis
filter have a frequency response H pe f( ) = 1+ jf / Bde.



Interference
A phenomenon that most people have experienced in receiving FM signals
is the so-called capture effect.  Suppose there are two FM stations, both 
transmitting in the same bandwidth and of approximately equal signal strength
at the receiver.  Their signal strengths will fluctuate some causing one to be
stronger for a time and then the other.  The stronger signal will "capture" the 
receiver for a short time and will dominate the demodulated signal.  But then 
later the other signal will dominate and capture the receiver.  The two stations 
switch back and forth and the listener hears a time-multiplexed version of both 
signals.  To keep the math simple, assume we have one unmodulated carrier
and one modulated carrier.  This is exactly the "interfering sinusoid" case we
analyzed earlier with the results

            Av t( ) = Ac 1+ ρ2 + 2ρ cos θi t( )( )  and φv t( ) = tan−1 ρ sin θi t( )( )
1+ ρ cos θi t( )( )

⎛

⎝⎜
⎞

⎠⎟

with θi t( ) = φi t( ), the phase modulation of the interfering signal.
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Av t( ) = Ac 1+ ρ2 + 2ρ cos θi t( )( )  and φv t( ) = tan−1 ρ sin θi t( )( )
1+ ρ cos θi t( )( )

⎛

⎝⎜
⎞

⎠⎟

The demodulated signal is then

                    yD t( ) = φv t( ) = d
dt

tan−1 ρ sin φi t( )( )
1+ ρ cos φi t( )( )

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ .

Using d
dz

tan−1 z( )( ) = 1
1+ z2  and the chain rule of differentiation,

yD t( ) = 1

1+
ρ sin φi t( )( )

1+ ρ cos φi t( )( )
⎛

⎝⎜
⎞

⎠⎟

2 ×
1+ ρ cos φi t( )( )⎡⎣ ⎤⎦ρ cos φi t( )( ) φ t( ) + ρ sin φi t( )( )ρ sin φi t( )( ) φ t( )

1+ ρ cos φi t( )( )⎡⎣ ⎤⎦
2

yD t( ) = ρ cos φi t( )( ) + ρ2

1+ ρ cos φi t( )( )⎡⎣ ⎤⎦
2
+ ρ2 sin2 φi t( )( )

φ t( )

yD t( ) = ρ ρ + cos φi t( )( )⎡⎣ ⎤⎦
1+ ρ2 + 2ρ cos φi t( )( )

φ t( ) =α ρ,φi( ) φ t( )

where α ρ,φi( ) = ρ ρ + cos φi t( )( )⎡⎣ ⎤⎦
1+ ρ2 + 2ρ cos φi t( )( )
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yD t( ) =α ρ,φi( ) φ t( )
The φ t( )  factor suggests that the interference may be intelligible if α ρ,φi( )  
is relatively constant with time.  If ρ >>1,  then α ρ,φi( ) ≅ 1 and yD t( ) ≅ φ t( ).
But we wish to examine the case in which the two signals are approximately
equal in strength, implying that ρ ≅ 1.

α ρ,φi( ) = ρ ρ + cos φi t( )( )⎡⎣ ⎤⎦
1+ ρ2 + 2ρ cos φi t( )( ) =

ρ / 1+ ρ( )        ,  φi = 0 + 2nπ

ρ2 / 1+ ρ2( )   ,  φi = π / 2 + nπ

−ρ / 1− ρ( )    ,  φi = π + 2nπ

⎧

⎨
⎪

⎩
⎪

  ,  n an integer
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            yD t( ) =α ρ,φi( ) φ t( )   ,  α ρ,φi( ) = ρ ρ + cos φi t( )( )⎡⎣ ⎤⎦
1+ ρ2 + 2ρ cos φi t( )( )

As ρ→1 , α → 0.5 and yD t( )→ 0.5 φ t( ).
For ρ <1, the strength of the demodulated interference depends mostly on the
peak-to-peak value of α

                          α p− p =α ρ,0( ) −α ρ,π( ) = 2ρ
1− ρ( )2

The interference effect is small-to-negligible for ρ < 0.7 and the interference 
captures the demodulated output signal when ρ > 0.7.


