
Angle Modulation



Phase and Frequency Modulation

 

Consider a signal of the form xc t( ) = Ac cos 2π fct +φ t( )( )  where Ac  and fc  are constants.  
The envelope is a constant so the message cannot be in the envelope.  It must instead 
lie in the variation of the cosine argument with time.  Let θi t( ) ! 2π fct +φ t( )  be the 
instantaneous phase.  Then 

                                    xc t( ) = Ac cos θi t( )( ) = Ac Re e jθi t( )( ).
θi t( )  contains the message and this type of modulation is called angle or exponential 

modulation.  If φ t( ) = kp m t( )  so that xc t( ) = Ac cos 2π fct + kp m t( )( )  the modulation

 is called phase modulation PM( )  where kp  is the deviation constant  or phase 
modulation index.  



Phase and Frequency Modulation
Think about what it means to modulate the phase of a cosine.  The total argument
of the cosine is 2π fct +φ t( ),  an angle with units of radians (or degrees).  When 
φ t( ) = 0, we simply have a cosine and the angle 2π fct  is a linear function of time.
Think of this angle as the angle of a phasor rotating at a constant angular velocity.  
Now add the effect of the phase modulation φ t( ).  The modulation adds a "wiggle" 
to the rotating phasor with respect to its position when it is unmodulated.  The message 
is in the variation of the phasor's angle with respect to the constant angular velocity 
of the unmodulated cosine.

2πfct

Unmodulated Cosine Modulated Cosine

φ t( )
2πfct
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The total argument of an unmodulated cosine is θc t( ) = 2π fct  in which fc  is a cyclic 
frequency.  The time derivative of 2π fct  is 2π fc .  We could also express the argument in 
radian frequency form as θc t( ) =ω ct.  Its time derivative is ω c .  Therefore one way 

of defining the cyclic frequency of an unmodulated cosine is as 1
2π

d
dt

θc t( )( ).  Now let's 

apply this same idea to a modulated cosine whose argument is θc t( ) = 2π fct +φ t( ).

Its time derivative is 2π fc +
d
dt

φ t( )( ).  Now we define instantaneous frequency as

f t( ) ! 1
2π

d
dt

θc t( )( ) = 1
2π

2π fc +
d
dt

φ t( )( )⎡
⎣⎢

⎤
⎦⎥
= fc +

1
2π

d
dt

φ t( )( ).  It is important to draw

a distinction between instantaneous frequency f t( )  and spectral frequency f .  They are

definitely not the same.  Let xc t( ) = cos 2π fct +φ t( )( ).  It has a Fourier transform Xc f( ).

Spectral frequency f  is the independent variable in Xc f( )  but f t( ) = fc +
1

2π
d
dt

φ t( )( ).
Some Fourier transforms of phase and frequency modulated signals later will make this
distinction clearer.



Phase and Frequency Modulation
If we make the variation of the instantaneous frequency of a sinusoid be directly
proportional to the message we are doing frequency modulation FM( ).  If 
dφ
dt

= k f m t( )  then k f  is the frequency deviation constant  in radians/second per

unit of m t( ).  In frequency modulation f t( )  = fc + fd m t( )   ,  where fd =
k f
2π

 is

the frequency deviation constant in Hz per unit of m t( ).  In frequency modulation 

                φ t( ) = k f m λ( )dλ
t0

t

∫  + φ t0( ) = 2π fd m λ( )dλ
t0

t

∫  + φ t0( )   ,  t ≥ t0
therefore

                              xc t( ) = Ac cos 2π fct + 2π fd m λ( )dλ
t0

t

∫  + φ t0( )
⎛

⎝
⎜

⎞

⎠
⎟ .

So PM and FM are very similar.  The difference is between integrating the message
signal before phase modulating or not integrating it.  
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For phase modulation xc t( ) = Ac cos 2π fct + kp m t( )( )
For frequency modulation xc t( ) = Ac cos 2π fct + 2π fd m λ( )dλ

t0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟

There is no simple expression for the Fourier transforms of these signals
in the general case.  Using cos x+y( ) = cos x( )cos y( )− sin x( )sin y( )
we can write for PM xc t( ) = Ac cos 2π fct( )cos kp m t( )( )− sin 2π fct( )sin kp m t( )( )⎡⎣ ⎤⎦

and for FM xc t( ) = Ac cos 2π fct( )cos 2π fd m λ( )dλ
t0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ − sin 2π fct( )sin 2π fd x λ( )dλ

t0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

under the assumption that φ t0( ) = 0( ).
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If kp  and fd  are small enough, cos kp m t( )( ) ≅ 1 and sin kp m t( )( ) ≅ kp m t( )

and cos 2π fd m λ( )dλ
t0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ ≅ 1 and sin 2π fd m λ( )dλ

t0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ ≅ 2π fd m λ( )dλ

t0

t

∫ .

Then for PM         xc t( ) ≅ Ac cos 2π fct( )− kp m t( )sin 2π fct( )⎡⎣ ⎤⎦

and for FM      xc t( ) ≅ Ac cos 2π fct( )− 2π fd sin 2π fct( ) m λ( )dλ
t0

t

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

These approximations are called narrowband PM and narrowband FM.
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If the information signal is a sinusoid  m t( ) = Am cos 2π fmt( )
then M f( ) = Am / 2( ) δ f − fm( ) +δ f + fm( )⎡⎣ ⎤⎦  and, in the narrowband approximation,

For PM,

xc t( ) ≅ Ac cos 2π fct( )− kpAm cos 2π fmt( )sin 2π fct( )⎡⎣ ⎤⎦

Xc f( ) ≅ Ac / 2( ) δ f − fc( ) +δ f + fc( )⎡⎣ ⎤⎦ −
jAmkp

2
δ f + fc − fm( ) +δ f + fc + fm( )
−δ f − fc − fm( )−δ f − fc + fm( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
For FM, 

xc t( ) ≅ Ac cos 2π fct( )− 2π fdAm
2π fm

sin 2π fct( )sin 2π fmt( )⎡

⎣
⎢

⎤

⎦
⎥

Xc f( ) ≅ Ac / 2( ) δ f − fc( ) +δ f + fc( )⎡⎣ ⎤⎦ −
Am fd
2 fm

δ f + fc − fm( )−δ f + fc + fm( )
−δ f − fc − fm( ) +δ f − fc + fm( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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Narrowband PM and FM Spectra

for Tone Modulation
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If the information signal is a sinc,  x t( ) = sinc 2Wt( )  then X f( ) = 1/ 2W( )rect f / 2W( )  
and, in the narrowband approximation,
For PM, 

Xc f( ) ≅ Ac / 2( ) δ f − fc( ) +δ f + fc( )⎡⎣ ⎤⎦ − j
kp

2W
rect f + fc( ) / 2W( )− rect f − fc( ) / 2W( )⎡⎣ ⎤⎦

⎧
⎨
⎩

⎫
⎬
⎭

For FM, 

Xc f( ) ≅ Ac / 2( ) δ f − fc( ) +δ f + fc( )⎡⎣ ⎤⎦ −
fmk f
2W

rect f + fc( ) / 2W( )
f + fc

−
rect f − fc( ) / 2W( )

f − fc

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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Narrowband PM and FM Spectra

for a Sinc Message
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If the narrowband approximation is not adequate we must deal
with the more complicated wideband case.  In the case of tone
modulation we can handle PM and FM with basically the same 
analysis technique if we use the following conventions:

                            x t( ) =
Am sin 2π fmt( )   ,  PM

Am cos 2π fmt( )   ,  FM

⎧
⎨
⎪

⎩⎪

 For FM, φ t( ) = 2π fd x λ( )dλ
t0

t

∫ = 2π fd Am cos 2π fmλ( )dλ
t0

t

∫

             φ t( ) = 2π Am
ωm

fd sin 2π fmt( ) = Am
fm

fd sin 2π fmt( )

Then, for PM and FM, φ t( ) = β sin 2π fmt( )  , where β !
kpAm             ,  PM

Am / fm( ) fd   ,  FM
⎧
⎨
⎪

⎩⎪

Then xc t( ) = Ac cos β sin 2π fmt( )( )cos 2π fct( )− sin β sin 2π fmt( )( )sin 2π fct( )⎡⎣ ⎤⎦

Phase and Frequency Modulation



In xc t( ) = Ac cos β sin 2π fmt( )( )cos 2π fct( )− sin β sin 2π fmt( )( )sin 2π fct( )⎡⎣ ⎤⎦
cos β sin 2π fmt( )( )   and sin β sin 2π fmt( )( )  are periodic with fundamental

period 1 / fm .  We can now use two results from applied 
mathematics  Abramowitz and Stegun, page 361( )

            cos zsin θ( )( ) = J0 z( ) + 2 J2k z( )cos 2kθ( )
k=1

∞

∑ = J0 z( ) + 2 Jk z( )cos kθ( )
k=1

k  even

∞

∑

            sin zsin θ( )( ) = 2 J2k+1 z( )sin 2k +1( )θ( )
k=0

∞

∑ = 2 Jk z( )sin kθ( )
k=1
k  odd

∞

∑

Adapting them to our case

            cos β sin 2π fmt( )( ) = J0 β( ) + 2 Jk β( )cos 2kπ fmt( )
k=1

k  even

∞

∑

            sin zsin 2π fmt( )( ) = 2 Jk β( )sin 2kπ fmt( )
k=1
k  odd

∞

∑

Phase and Frequency Modulation



   xc t( ) = Ac J0 β( ) + 2 Jk β( )cos 2kπ fmt( )
k=1

k  even

∞

∑
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
cos 2π fct( )− 2 Jk β( )sin 2kπ fmt( )

k=1
k  odd

∞

∑
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
sin 2π fct( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

   xc t( ) = Ac

J0 β( )cos 2π fct( ) + 2 Jk β( )cos 2π fct( )cos 2kπ fmt( )
k=1

k  even

∞

∑

−2 Jk β( )sin 2π fct( )sin 2kπ fmt( )
k=1
k  odd

∞

∑

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

   xc t( ) = Ac

J0 β( )cos 2π fct( ) + Jk β( ) cos 2π fc − kfm( )t( ) + cos 2π fc + kfm( )t( )⎡⎣ ⎤⎦
k=1

k  even

∞

∑

− Jk β( ) cos 2π fc − kfm( )t( )− cos 2π fc + kfm( )t( )⎡⎣ ⎤⎦
k=1
k  odd

∞

∑

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

This can also be written in the more compact form, xc t( ) = Ac Jk β( )cos 2π fc + kfm( )t( )
k=−∞

∞

∑

Phase and Frequency Modulation
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   Now, to find the spectrum of xc t( )  take the Fourier transform of xc t( ).

        Xc f( ) = Ac / 2( ) Jk β( ) δ f − fc + kfm( )( ) +δ f + fc + kfm( )( )⎡⎣ ⎤⎦
k=−∞

∞

∑

The impulses in the spectrum extend in frequency all the way to infinity.  But beyond 
β fm  the impulse strengths die rapidly.  For practical purposes the bandwidth is 
approximately 2β fm .

Phase and Frequency Modulation
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Wideband FM Spectrum

for Cosine-Wave Modulation
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The bandwidth required for transmitting an FM signal is theoretically
infinite.  That is, an infinite bandwidth would be required to transmit an 
FM signal perfectly,  even if the modulating signal is bandlimited.  Fortunately, 
in practical systems, perfection is not required and we can get by with a 
finite bandwidth.  With tone modulation, the bandwidth required depends on 
the modulation index β.  The spectral line magnitudes fall off rapidly at positive 
frequencies for which f − fc > β fm .  So for tone modulation the bandwidth 
required for transmission would be approximately 2β fm .  In the narrowband case 
when β  is very small we cannot exactly follow this rule because we would have 
no modulation at all.  So there is a "floor" of at least 2fm.   

Transmission Bandwidth



For the general case,  Carson 's rule is a handy approximation that 
says B ≅ 2 D +1( )W ,  where 

                        D = peak frequency deviation
bandwidth of m t( ) = fd

W
m t( )

max

If D <<1,  then B ≅ 2W .  This is the narrowband case. 
 

If D >>1, then B ≅ 2DW = fd m t( )
max

.  This is the wideband case.

Transmission Bandwidth



Generation and Detection of FM and PM

 

The most direct and straightforward way of generating FM is to use a
device known as a voltage-to-frequency converter (VCO).  One way this 
can be done is by varying with time the capacitance in an LC  parallel resonant 
oscillator.  Let the capacitance be the capacitance of a varactor diode in
parallel with another capacitor forming C t( ) = C0 −C x t( ).  The time-varying
LC  resonant frequency is 

        f t( ) = 1
2π

d
dt

θ t( )( )⇒ d
dt

θ t( )( ) = 1
LC t( )

= 1
LC0

1

1− C
C0

x t( )

We can use the formula (Abramowitz and Stegun, page 15),

            1+ x( )α = 1+αx + α α −1( )
2!

x2 +
α α −1( ) α − 2( )

3!
x3 +!

to write

d
dt

θ t( )( ) = 1
LC0

1− C
C0

x t( )⎡

⎣
⎢

⎤

⎦
⎥

−1/2

= 1
LC0

1+ 1
2
C
C0

x t( ) + 3
8

C
C0

x t( )⎛
⎝⎜

⎞
⎠⎟

2

+!
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥



Generation and Detection of FM and PM
If C x t( )  is "small enough", then d

dt
θ t( )( ) ≅ 1

LC0

1+ 1
2
C
C0

x t( )⎡

⎣
⎢

⎤

⎦
⎥  and 

θ t( ) = 2π fct + 2π C
2C0

fc x λ( )dλt

∫ .  This is in the form of FM with fd =
C

2C0

fc .  

Since x t( ) ≤1, the approximation is good to within one percent if C /C0 < 0.013.  

So, taking that as an upper limit,  fd =
C

2C0

fc ≤ 0.006 fc .  This is a practical result 

that usually causes no design problems.

x t( )

+

−

N :1

VB

RFC DC Block
Tuned
Circuit

Cv t( )
Varactor

C1 L xC t( ) Oscillator

+

−



Generation and Detection of FM and PM

Another method for generating FM is to use a phase modulator, which
produces PM, but integrate the message before applying it to the phase
modulator.  A narrowband phase modulator can be made by simulating
the narrowband approximation xc t( ) = Ac cos 2π fct( )− Ackp x t( )sin 2π fct( ).

+90°
−Ac sin 2πfc t( )

k p x t( ) xc t( )

Ac cos 2πfc t( )



Generation and Detection of FM and PM

A third method for generating FM is called indirect  FM.  First, integrate

the message x t( ).  Then use the integral of the message 1
T

x λ( )dλ  
t

∫ as the 

input signal to a narrowband phase modulator with a carrier frequency  fc1.  This 

produces a signal with instantaneous frequency f1 t( ) = fc1 +
kp

2πT
x t( ).  

xc t( )x t( )

Narrowband Frequency Modulator

fc1

f1 t( ) f2 t( ) f t( )

fLO

RF
Power
Amp

1
T ∫

Phase
Modulator

Frequency 
Multiplier

×n



Generation and Detection of FM and PM
Next frequency-multiply the narrowband FM signal by a factor of n.  This moves 
the carrier frequency to nfc1, creating a signal with instantaneous frequency 

f2 t( ) = nfc1 + n
kp

2πT
x t( ).  The effective value of the frequency deviation is now 

fd = n
kp

2πT
.  This changes the range of frequency variation but not the rate of 

frequency variation.  Then, if needed, shift the entire FM spectrum to whatever 
carrier frequency is required and amplify for transmission.

xc t( )x t( )

Narrowband Frequency Modulator

fc1

f1 t( ) f2 t( ) f t( )

fLO

RF
Power
Amp

1
T ∫

Phase
Modulator

Frequency 
Multiplier

×n



Generation and Detection of FM and PM

 

There are four common methods of detecting FM:
1.    FM-to-AM Conversion Followed by Envelope Detection
2.    Phase-Shift Discrimination
3.    Zero-Crossing Detection
4.    Frequency Feedback
FM-to-AM conversion can be done by time-differentiating the modulated signal.

Let xc t( ) = Ac cos θc t( )( )  with !θ t( ) = 2π fc + fd x t( )⎡⎣ ⎤⎦.  Then 

!xc t( ) = −Ac !θ t( )sin θc t( )( ) = 2πAc fc + fd x t( )⎡⎣ ⎤⎦sin θc t( ) ±180°( ).
The message can then be recovered by an envelope detector.

xc t( ) Limiter LPF d/dt Envelope
Detector

DC
Block yD t( )



Generation and Detection of FM and PM
The "differentiator" in FM-to-AM detection need not be a true
differentiator.  All that is really needed is a frequency response 
magnitude that has a linear (or almost linear) slope over the bandwidth 
of the FM signal.  Just below and just above resonance a tuned circuit 
resonator has an almost linear magnitude dependence on frequency.
This type of detection is commonly called slope detection.

f0fc

f

| H f( ) | Almost Linear Slope



Generation and Detection of FM and PM
The linearity of slope detection can be improved by using two
resonant circuits instead of only one.  This type of circuit is called
a balanced discriminator.

fc

f

+

+

−

−

C L

C L

xC t( )

           
f0 < fc
!"#

          
f0 > fc$%&

K x t( )



Phase and Frequency

Consider a cosine of the form x t( ) = Acos 2π f0t +φ t( )( ).  The phase of

this cosine is θ t( ) = 2π f0t +φ t( )  and φ t( )  is its phase shift.  

First consider the case φ t( ) = 0.  

Then x t( ) = Acos 2π f0t( )  
and θ t( ) = 2π f0t.  

The cyclic frequency of this cosine is f0 .  Also, the first time derivative 
of θ t( )  is 2π f0 .  So one way of defining cyclic frequency is as the first 
derivative of phase, divided by 2π .  It then follows that phase is the 
integral of frequency.

t

0T

A
x t! " # Acos � 0t! "

T0 # 1 / f0 # 2� /� 0



Phase and Frequency
If x t( ) = Acos 2π f0t( )  and θ t( ) = 2π f0t.  Then a graph of phase versus time
would be a straight line through the origin with slope 2π f0 .

t

0T

A
x t! " # Acos � 0t! "

T0 # 1 / f0 # 2� /� 0

t

θ t( )

1

2πf0



Phase and Frequency
Let x t( ) = Acos θ t( )( )  and let θ t( ) = 2π f0t u t( ) = 2π f0 ramp t( ).  Then the

cyclic frequency is 1
2π

d
dt
θ t( ) = f0 u t( ).  Call its instantaneous cyclic 

frequency f t( ).

t

0T

A

T0 ! 1 / f0 ! 2� /� 0

x t" # ! Acos � 0t u t" #" #

t

θ t( )

1t
2πf0f0

f(t)



Phase and Frequency
Now let x t( ) = Acos 2πt u t( ) + u t −1( )( )( ).  Then the instantaneous 

cyclic frequency is f t( ) = u t( ) + u t −1( )  and the phase is 

θ t( ) = 2π ramp t( ) + ramp t −1( )( ).

t

A

t ! 1 t ! 2

x t" # ! Acos 2�t u t" # $ u t �1" #" #" #

t11 t

f t( )
θ t( )2

2π1



Phase Discrimination
Let x1 t( ) = A1sin 2π f0t +θ t( )( )  and let x2 t( ) = A2 cos 2π f0t +φ t( )( ).  
The product is x1 t( )x2 t( ) = A1A2sin 2π f0t +θ t( )( )cos 2π f0t +φ t( )( ).
Using a trigonometric identity,

              x1 t( )x2 t( ) = A1A2

2
sin φ t( )−θ t( )( ) + sin 4π f0t +φ t( ) +θ t( )( )⎡⎣ ⎤⎦

and

              x1 t( )x2 t( ) = A1A2

2
sin φ t( )−θ t( )( )

LPF

A1A2
2 sin φ t( )−θ t( )( ) + sin 4π f0t +φ t( ) +θ t( )( )⎡⎣ ⎤⎦

A1A2
2 sin φ t( )−θ t( )( )A1sin 2π f0t +θ t( )( )

A2 cos 2π f0t +φ t( )( )

A1A2 / 2

90°
<90°

q t( )<e t( )



Voltage-Controlled Oscillators

A voltage - controlled oscillator (VCO) is a device that accepts 
an analog voltage as its input and produces a periodic waveform
whose fundamental frequency depends on that voltage.  Another
common name for a VCO is "voltage-to-frequency converter".  
The waveform is typically either a sinusoid or a rectangular wave.  
A VCO has a free-running frequency fv.  When the input analog
voltage is zero, the fundamental frequency of the VCO output signal
is fv.  The output frequency of the VCO is fVCO = fv + Kv vin where
Kv  is a gain constant with units of Hz/V.



Phase-Locked Loops
A phase - locked loop (PLL) is a device used to generate a signal with a
fixed phase relationship to the carrier in a bandpass signal.  An essential
ingredient in the locking process is an analog phase comparator.  A phase
comparator produces a signal that depends on the phase difference between
two bandpass signals.  One system that accomplishes this goal is an analog
mulitplier followed by a lowpass filter.  Let the two bandpass signals be
xr t( ) = Ac cos 2π fct +φ t( )( )  and e0 t( ) = Av sin 2π fct +θ t( )( )  and let the

output signal from the phase comparator be ed t( ).

LPF -K e t( ) xr t( ) = Ac cos 2π fct + φ t( )( )

e0 t( ) = Av sin 2π fct +θ t( )( )

d d



Phase-Locked Loops
xr t( )e0 t( ) = −KdAcAv cos 2π fct +φ t( )( )sin 2π fct +θ t( )( )
xr t( )e0 t( ) = − KdAcAv

2
sin θ t( )−φ t( )( ) + sin 4π fct +φ t( ) +θ t( )( )⎡⎣ ⎤⎦

ed t( ) = KdAcAv
2

sin φ t( )−θ t( )( ) = KdAcAv
2

sin ψ t( )( )

LPF -K e t( ) xr t( ) = Ac cos 2π fct + φ t( )( )

e0 t( ) = Av sin 2π fct +θ t( )( )

d d

90°

<90°

KdAcAv
2

ed t( )



Phase-Locked Loops

ed t( )  depends on both the phase difference and Ac  and Av.  We can make
the dependence on these amplitudes go away if we first hard limit  the signals, 
turning them into fixed-amplitude square waves.  Another benefit of hard-
limiting is that the multiplication becomes a switching operation and the error 
signal ed t( )  is now a linear function of ψ t( )  over a wider range.

LPFxr t( )

e t( )

Hard
Limiter

Hard
Limiter

Switching
Circuit

0

e t( )d

90°
<90°

ed t( )



Phase-Locked Loops
From the block diagram of the phase-locked loop below it is clear
that Ev s( ) = F s( )Ed s( ),  where F s( )  is the transfer function of the
loop-filter-loop-amplifier combination.  The VCO converts voltage
to frequency and phase is the integral of frequency.  That is why the
VCO is represented as an integrator with voltage in and phase out.

e t( ) t( )

t( )

d Loop 
Filter

Loop 
Amplifier

e t( ) v

KdAcAv
2sin(•)+

−

Phase Comparator

Kv

t

VCO



Phase-Locked Loops

Phase-locked loops operate in two modes, acquisition and tracking.
When a PLL is turned on it must first acquire a phase lock and
thereafter it must track the phase changes in the incoming signal.
The acquisition of a phase lock must be described by the non-linear
model of the PLL in which the phase discriminator has a sine transfer
function.  In the tracking mode, the phase error is typically small, the
sine function can be approximated by its argument and the model of
the PLL becomes linear.
 



Phase-Locked Loops

e t( ) t( )
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d Loop 
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Loop 
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e t( ) v
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−
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Phase-Locked Loops

e t( ) t( )

t( )

d Loop 
Filter

Loop 
Amplifier

e t( ) v

KdAcAv
2

+

−

Phase Comparator

Kv

t

VCO

In the tracking mode Θ s( ) = KdAcAv
2

Φ s( )−Θ s( )⎡⎣ ⎤⎦F s( )Kv

s
.

It follows that H s( ) = Θ s( )
Φ s( ) =

Kt F s( )
s + Kt F s( )  where Kt =

KdAcAvKv

2
.

Ψ s( ) = Φ s( )−Θ s( ),  therefore G s( ) = Ψ s( )
Φ s( ) =

Φ s( )−Θ s( )
Φ s( ) = 1− H s( ).



Phase-Locked Loops

Let the phase deviation of the incoming signal φ t( )  be of the general 

form φ t( ) = πRt 2 + 2π fΔ t( ) +θ0⎡⎣ ⎤⎦u t( ).  Then 1
2π

dφ
dt

= Rt + fΔ( )u t( ),  

a frequency ramp plus a frequency step.  Then Φ s( ) = 2πR
s3 + 2π fΔ

s2 + θ0

s
.

Using the final value theorem of the Laplace transform, the steady state
phase error between the incoming signal and the VCO output signal is

lim
t→∞

ψ t( ) = lim
s→0

s 2πR
s3 + 2π fΔ

s2 + θ0

s
⎡
⎣⎢

⎤
⎦⎥
G s( ).  Now let F s( ) = s2 + as + b

s2 .

Then H s( ) = Kt s
2 + as + b( )

s3 + Kt s
2 + as + b( )  and G s( ) = s3

s3 + Kt s
2 + as + b( ) .



Phase-Locked Loops
Then the steady-state phase error is lim

t→∞
ψ t( ) = lim

s→0
sθ0s

2 + 2π fΔs + 2πR
s3 + Kt s

2 + as + b( ) .

Its value depends on the form of the input signal's phase deviation and 
the order of the loop filter.
                            Steady State Error, lim

t→∞
ψ t( )

         

PLL Order
↓

θ0 ≠ 0
fΔ = 0
R = 0

θ0 ≠ 0
fΔ ≠ 0
R = 0

θ0 ≠ 0
fΔ ≠ 0
R ≠ 0

1 a = 0,b = 0( ) 0 2π fΔ
Kt

∞

2 a ≠ 0,b = 0( ) 0 0 2πR
t

3 a ≠ 0,b ≠ 0( ) 0 0 0



Phase-Locked Loops

So a first-order PLL can track a phase step with zero error and a 
frequency step with a finite error.  A second-order PLL can track 
a frequency step with zero error and a frequency ramp with a finite
error.  A third-order PLL can track a frequency step and a frequency
ramp with zero error.  When the error is finite, its size can be made 
arbitrarily small by making Kt  large.  However, this also increases 
the loop bandwidth, making the signal-to-noise ratio worse.  
(More in Chapter 8.)



Phase-Locked Loops
A first-order PLL can be used for demodulation of angle-modulated
signals but a second-order PLL has some advantages and is more

common in practice.  Therefore, in F s( ) = s2 + as + b
s2 ,  make b = 0.

Then F s( ) = 1+ a
s

.  This can be implemented as the signal plus a times

the integral of the signal.  With this F s( ), H s( ) = Θ s( )
Φ s( ) =

Kt s + a( )
s2 + Kt s + a( )  and

G s( ) = Ψ s( )
Φ s( ) =

s2

s2 + Kt s + a( ) , a second-order transfer function.  Expressing

this transfer function in a standard second-order system form, 

G s( ) = s2

s2 + 2ζω 0s +ω 0
2 ,  where ζ = 1

2
Kt

a
 is the damping factor and 

ω 0 = Kta  is the radian natural frequency.
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Phase-Locked Loop States
Input and Feedback Signals at Different Frequencies
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Phase-Locked Loops
For DSB signals, which do not have transmitted carriers, Costas
invented a system to synchronize a local oscillator and also do
synchronous detection.  The incoming signal is xc t( ) = x t( )cos ω ct( )
with bandwidth 2W .  It is applied to two phase discriminators, main
and quad, each consisting of a multiplier followed by a LPF and an 
amplifier.  The local oscillators that drive them are 90° out of phase so 
that the output signal from the main phase discriminator is x t( )sin ε ss( )
and the output signal from the quad phase discriminator is x t( )cos ε ss( ).

x t( )cos ω ct( )
cos ω ct − ε ss + 90°( )

x t( )cos ε ss( )

x t( )sin ε ss( )

Error Signals

Output

Main PD

Quad PD

VCO

−90°
t−T

t

∫
yss =

T
2 Sx sin 2ε ss( )



Phase-Locked Loops
The VCO control voltage yss  is the time average of the product of x t( )sin ε ss( )
and x t( )cos ε ss( )  or yss = x2 λ( )cos ε ss( )sin ε ss( )dλ

t−T

t

∫  which is 

yss =
T
2

x2 t( ) sin 0( ) + sin 2ε ss( )⎡⎣ ⎤⎦ = T
2
Sx sin 2ε ss( ).  When the angular error

ε ss  is zero, yss  does not change with time, the loop is locked and the output
signal from the quad phase discriminator is x t( )cos ε ss( ) = x t( )  because ε ss = 0.

x t( )cos ω ct( )
cos ω ct − ε ss + 90°( )

x t( )cos ε ss( )

x t( )sin ε ss( )

Error Signals

Output

Main PD

Quad PD

VCO

−90°
t−T

t

∫
yss =

T
2 Sx sin 2ε ss( )



Interference

 

Let the total received signal at a receiver be

               v t( ) = Ac cos ω ct( ) + Ai cos ω c +ω i( )t +φi( )
where the first term represents the desired signal and the second term represents 
interference.  Also define  ρ ! Ai / Ac  and θi t( ) !ω it +φi .  Then 

 v t( ) = Ac cos ω ct( ) + ρ cos ω ct +θi( )⎡⎣ ⎤⎦ = Ac cos ω ct( ) + ρ
cos ω ct( )cos θi t( )( )
− sin ω ct( )sin θi t( )( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

               v t( ) = Ac 1+ ρ cos θi t( )( )⎡⎣ ⎤⎦cos ω ct( )− ρ sin θi t( )( )sin ω ct( ){ }
The in-phase component is Ac 1+ ρ cos θi t( )( )⎡⎣ ⎤⎦cos ω ct( )  and the quadrature component is

−Acρ sin θi t( )( )sin ω ct( ).  The envelope is 

Av t( ) = Ac 1+ ρ cos θi( )⎡⎣ ⎤⎦
2
+ ρ2 sin θi t( )( ) = Ac 1+ ρ2 + 2ρ cos θi t( )( ).  The phase relative 

to the desired signal is φv t( ) = tan−1 ρ sin θi t( )( )
1+ ρ cos θi t( )( )

⎛

⎝⎜
⎞

⎠⎟
.



Interference

The envelope and phase of the total received signal   

            Av t( ) = Ac 1+ ρ2 + 2ρ cos θi t( )( )  and φv t( ) = tan−1 ρ sin θi t( )( )
1+ ρ cos θi t( )( )

⎛

⎝⎜
⎞

⎠⎟

show that the effect of the interference on the received signal is to create both amplitude 
and phase modulation.  If ρ <<1, then

Av t( ) ≅ Ac 1+ 2ρ cos θi t( )( )  ≅ Ac 1+ ρ cos θi t( )( )⎡⎣ ⎤⎦  and φv t( ) ≅ tan−1 ρ sin θi t( )( )( ) ≅ ρ sin θi t( )( )
or

          Av t( ) ≅ Ac 1+ ρ cos ω it +φi( )⎡⎣ ⎤⎦  and φv t( ) ≅ ρ sin ω it +φi( )
This result has the form of AM tone modulation with µ = ρ and simultaneous PM or FM
tone modulation with β = ρ.  If ρ >>1,  then

            Av t( ) = ρAc 1+ 2ρ−1 cos ω it +φi( ) ≅ ρAc 1+ ρ−1 cos ω it +φi( )⎡⎣ ⎤⎦  and φv t( ) =ω it +φi  



Interference
In the weak interference case

           Av t( ) ≅ Ac 1+ ρ cos ω it +φi( )⎡⎣ ⎤⎦  and φv t( ) ≅ ρ sin ω it +φi( )
if we demodulate with an envelope, phase or frequency demodulator we get
with φi = 0( )

Envelope Detector:    KD 1+ ρ cos ω it( )⎡⎣ ⎤⎦
Phase Detector:          KDρ sin ω it( )
Frequency Detector:  KDρ fi cos ω it( )
For AM or PM demodulation the demodulated signal strength is proportional to
ρ.  For FM demodulation the demodulated signal strength is porportional to the 
product of ρ and fi .

AM or PMFM

Am
pli

tud
e

fiW



Interference

The effects of interference on FM signals increases with frequency.  So
one way to reduce the effect is to lowpass filter the demodulated output.
Of course this also lowpass filters the message, an undesirable outcome.
To avoid the lowpass filtering effect on the message a technique called
preemphasis is often used.  The higher frequency parts of the message
are preemphasized before transmission by passing them through a preemphasis
filter with frequency response H pe f( )  that amplifies the higher frequencies 
more than the lower frequencies.  Then, after transmission and frequency
demodulation, the demodulated signal is passed through a deemphasis filter

whose frequency response is Hde f( ) = 1
H pe f( ) .



Interference

A typical deemphasis filter has a frequency response  Hde f( ) = 1
1+ jf / Bde

 in 

which Bde  is less than the cutoff frequency of the normal sharp-cutoff lowpass 
filter that determines the bandwidth.  That makes the corresponding preemphasis
filter have a frequency response H pe f( ) = 1+ jf / Bde.



Interference
A phenomenon that most people have experienced in receiving FM signals
is the so-called capture effect.  Suppose there are two FM stations, both 
transmitting in the same bandwidth and of approximately equal signal strength
at the receiver.  Their signal strengths will fluctuate some causing one to be
stronger for a time and then the other.  The stronger signal will "capture" the 
receiver for a short time and will dominate the demodulated signal.  But then 
later the other signal will dominate and capture the receiver.  The two stations 
switch back and forth and the listener hears a time-multiplexed version of both 
signals.  To keep the math simple, assume we have one unmodulated carrier
and one modulated carrier.  This is exactly the "interfering sinusoid" case we
analyzed earlier with the results

            Av t( ) = Ac 1+ ρ2 + 2ρ cos θi t( )( )  and φv t( ) = tan−1 ρ sin θi t( )( )
1+ ρ cos θi t( )( )

⎛

⎝⎜
⎞

⎠⎟

with θi t( ) = φi t( ), the phase modulation of the interfering signal.



Interference

 

Av t( ) = Ac 1+ ρ2 + 2ρ cos θi t( )( )  and φv t( ) = tan−1 ρ sin θi t( )( )
1+ ρ cos θi t( )( )

⎛

⎝⎜
⎞

⎠⎟

The demodulated signal is then

                    yD t( ) = φv t( ) = d
dt

tan−1 ρ sin φi t( )( )
1+ ρ cos φi t( )( )

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ .

Using d
dz

tan−1 z( )( ) = 1
1+ z2  and the chain rule of differentiation,

yD t( ) = 1

1+
ρ sin φi t( )( )

1+ ρ cos φi t( )( )
⎛

⎝⎜
⎞

⎠⎟

2 ×
1+ ρ cos φi t( )( )⎡⎣ ⎤⎦ρ cos φi t( )( ) !φ t( ) + ρ sin φi t( )( )ρ sin φi t( )( ) !φ t( )

1+ ρ cos φi t( )( )⎡⎣ ⎤⎦
2

yD t( ) = ρ cos φi t( )( ) + ρ2

1+ ρ cos φi t( )( )⎡⎣ ⎤⎦
2
+ ρ2 sin2 φi t( )( )

!φ t( )

yD t( ) = ρ ρ + cos φi t( )( )⎡⎣ ⎤⎦
1+ ρ2 + 2ρ cos φi t( )( )

!φ t( ) =α ρ,φi( ) !φ t( )

where α ρ,φi( ) = ρ ρ + cos φi t( )( )⎡⎣ ⎤⎦
1+ ρ2 + 2ρ cos φi t( )( )



Interference

 

yD t( ) =α ρ,φi( ) !φ t( )
The !φ t( )  factor suggests that the interference may be intelligible if α ρ,φi( )  
is relatively constant with time.  If ρ >>1,  then α ρ,φi( ) ≅ 1 and yD t( ) ≅ !φ t( ).
But we wish to examine the case in which the two signals are approximately
equal in strength, implying that ρ ≅ 1.

α ρ,φi( ) = ρ ρ + cos φi t( )( )⎡⎣ ⎤⎦
1+ ρ2 + 2ρ cos φi t( )( ) =

ρ / 1+ ρ( )        ,  φi = 0 + 2nπ

ρ2 / 1+ ρ2( )   ,  φi = π / 2 + nπ

−ρ / 1− ρ( )    ,  φi = π + 2nπ

⎧

⎨
⎪

⎩
⎪

  ,  n an integer
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Interference

 

            yD t( ) =α ρ,φi( ) !φ t( )   ,  α ρ,φi( ) = ρ ρ + cos φi t( )( )⎡⎣ ⎤⎦
1+ ρ2 + 2ρ cos φi t( )( )

As ρ→1 , α → 0.5 and yD t( )→ 0.5 !φ t( ).
For ρ <1, the strength of the demodulated interference depends mostly on the
peak-to-peak value of α

                          α p− p =α ρ,0( ) −α ρ,π( ) = 2ρ
1− ρ( )2

The interference effect is small-to-negligible for ρ < 0.7 and the interference 
captures the demodulated output signal when ρ > 0.7.
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