
Twelve voice signals, each band-limited to 3 kHz, are frequency
-multiplexed using 1 kHz guard bands between channels and between 
the main carrier and the first channel.  The modulation of the main 
carrier is AM.  Calculate the bandwidth of the composite channel 
if the subcarrier modulation is  (a) DSB, (b) LSSB.
(a) With DSB each 3 kHz channel becomes a 6 kHz bandwidth when 
modulating a subcarrier.  So each channel occupies 7 kHz for a total 
bandwidth of 84 kHz before modulating the main carrier.  The main 
carrier is AM so the bandwidth requirement for that signal is double 
84 kHz or 168 kHz.
(b) With LSSB each 3 kHz channel becomes a 3 kHz bandwidth when 
modulating a subcarrier.  So each channel occupies 4 kHz for a total 
bandwidth of 48 kHz before modulating the main carrier.  The main 
carrier is AM so the bandwidth requirement for that signal is double 
48 kHz or 96 kHz.



The signal x t( ) = cos 2000πt( )  is used to modulate a 5 kHz carrier.  
Sketch the time waveforms and line spectra if the modulation used is 
(a) DSB, (b) AM with  µ = 0.5, (c) USSB, (d) LSSB.
(a)  xc t( ) = Ac cos 2000πt( )cos 10000πt( )
              = Ac / 2( ) cos 8000πt( ) + cos 12000πt( )⎡⎣ ⎤⎦
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(b)  xc t( ) = Ac 1+ 0.5cos 2000πt( )⎡⎣ ⎤⎦cos 10000πt( )
                =Ac cos 10000πt( ) + Ac / 4( ) cos 8000πt( ) + cos 12000πt( )⎡⎣ ⎤⎦
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(c)   xc t( ) = Ac / 2( )cos 12000πt( )
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(d)   xc t( ) = Ac / 2( )cos 8000πt( )



Show that the system below acts as an envelope detector for a bandpass 
signal.  Verify that the system can indeed demodulate an AM wave.  
(Hint:  Consider a general bandpass signal 
 
                               xc t( )cos ω ct( ) + xs t( )sin ω ct( ).
  

Show that the output is the envelope  A / 2( ) xc
2 t( ) + xs

2 t( ).  Assume a 
narrowband signal.)



x t( ) = xc t( )cos ω ct( ) + xs t( )sin ω ct( )
On the top path:

xc t( )cos ω ct( ) + xs t( )sin ω ct( ) Mixer⎯ →⎯⎯ A
xc t( )cos ω ct( )
+xs t( )sin ω ct( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

cos ω ct +θ( )

A xc t( )cos ω ct( )cos ω ct +θ( ) + xs t( )sin ω ct( )cos ω ct +θ( )⎡⎣ ⎤⎦ =

    A / 2( ) xc t( ) cos θ( ) + cos 2ω ct +θ( )⎡⎣ ⎤⎦ + xs t( ) sin −θ( ) + sin 2ω ct +θ( )⎡⎣ ⎤⎦{ } LPF⎯ →⎯

A / 2( ) xc t( )cos θ( )
−xs t( )sin θ( )

⎧
⎨
⎩

⎫
⎬
⎭

Squarer⎯ →⎯⎯ A2 / 4( ) xc
2 t( )cos2 θ( ) + xs

2 t( )sin2 θ( )
−2xc t( )xs t( )cos θ( )sin θ( )

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪



x t( ) = xc t( )cos ω ct( ) + xs t( )sin ω ct( )
On the bottom path:

xc t( )cos ω ct( ) + xs t( )sin ω ct( ) Mixer⎯ →⎯⎯ A
xc t( )cos ω ct( )
+xs t( )sin ω ct( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
sin ω ct +θ( )

A xc t( )cos ω ct( )sin ω ct +θ( ) + xs t( )sin ω ct( )sin ω ct +θ( )⎡⎣ ⎤⎦ =

    A / 2( ) xc t( ) sin θ( ) + sin 2ω ct +θ( )⎡⎣ ⎤⎦ + xs t( ) cos θ( ) + cos 2ω ct +θ( )⎡⎣ ⎤⎦{ } LPF⎯ →⎯

A / 2( ) xc t( )sin θ( )
+xs t( )cos θ( )

⎧
⎨
⎩

⎫
⎬
⎭

Squarer⎯ →⎯⎯ A2 / 4( ) xc
2 t( )sin2 θ( ) + xs

2 t( )cos2 θ( )
+2xc t( )xs t( )cos θ( )sin θ( )

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪



On the top path:  A2 / 4( ) xc
2 t( )cos2 θ( ) + xs

2 t( )sin2 θ( )
−2xc t( )xs t( )cos θ( )sin θ( )

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

On the bottom path: A2 / 4( ) xc
2 t( )sin2 θ( ) + xs

2 t( )cos2 θ( )
+2 xc t( )xs t( )cos θ( )sin θ( )

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

Adding the two signals we get 

A2 / 4( ) xc
2 t( )cos2 θ( ) + xs

2 t( )sin2 θ( )
xc

2 t( )sin2 θ( ) + xs
2 t( )cos2 θ( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= A2 / 4( ) xc

2 t( ) + xs
2 t( )⎡⎣ ⎤⎦

Square
Rooter⎯ →⎯⎯ A / 2( ) xc

2 t( ) + xs
2 t( )



This is a circuit that performs the square-root function.  It is taken from a
National Semiconductor collection of op-amp circuits.



Show that a squaring circuit followed by a lowpass filter followed by a 
square rooter acts as an envelope detector for an AM wave.  Show that 
if a DSB signal x t( )cos ω ct( )  is demodulated by this scheme the output 

will be  x t( ) / 2.

AM:  xc t( ) = Ac 1+ µ x t( )⎡⎣ ⎤⎦cos ω ct( )
xc

2 t( ) = Ac2 1+ µ x t( )⎡⎣ ⎤⎦
2 cos2 ω ct( ) = Ac

2 / 2( ) 1+ µ x t( )⎡⎣ ⎤⎦
2 1+ cos 2ω ct( )⎡⎣ ⎤⎦

Ac
2 / 2( ) 1+ µ x t( )⎡⎣ ⎤⎦

2 1+ cos 2ω ct( )⎡⎣ ⎤⎦
LPF⎯ →⎯ Ac

2 / 2( ) 1+ µ x t( )⎡⎣ ⎤⎦
2

Ac
2 / 2( ) 1+ µ x t( )⎡⎣ ⎤⎦

2
Square
Rooter⎯ →⎯⎯ Ac / 2( ) 1+ µ x t( )⎡⎣ ⎤⎦

DSB:  xc t( ) = x t( )cos ω ct( )
xc

2 t( ) = x2 t( )cos2 ω ct( ) = x2 t( ) 1 / 2( ) 1+ cos 2ω ct( )⎡⎣ ⎤⎦
x2 t( ) 1 / 2( ) 1+ cos 2ω ct( )⎡⎣ ⎤⎦

LPF⎯ →⎯ x2 t( ) / 2

x2 t( ) / 2
Square
Rooter⎯ →⎯⎯ x2 t( ) / 2 = x t( ) / 2



Twenty-five radio stations are broadcasting in the band between 3 MHz 
and 3.5 MHz.  You wish to modify an AM broadcast receiver to receive 
the broadcasts.  Each audio signal has a maximum frequency  fm = 10 kHz.  
Describe in detail the changes you would have to make to the standard 
broadcast superheterodyne receiver in order to receive the broadcast.

For standard AM, each channel has a transmitted bandwith of BT = 10kHz.
After demodulation that becomes a baseband bandwidth of W = 5kHz.  We
need here a bandwidth of 10kHz for the demodulated baseband signal.  So 
we must increase the IF bandwidth by a factor of two.  The RF range of 
a standard AM receiver is 540 to 1700 kHz with an IF of 455khz.  The
local oscillator range is then 995 to 2155 kHz.  We need to change that to a
range of 3.455 to 3.955 MHz.  We must also modify the RF amplifier to pass
the signals in the 3 to 3.5 MHz range and reject the image frequencies in the 
3.91 to 4.41 MHz range.



A superheterodyne receiver is tuned to a station at 20 MHz.  The local
oscillator frequency is 80 MHz and the IF is 100 MHz.  (a)  What is the 
image frequency?  (b)  If the LO has appreciable second-harmonic 
content, what two additional frequencies are received?  (c)  If the RF 
amplifier contains a single-tuned parallel resonant circuit with Q =  50 
tuned to 20 MHz, what will be the image attenuation in dB?

(a)    The image frequency is fLO + fIF = 80 +100 = 180 MHz.
(b)    The second harmonic of the local oscillator is at 2fLO = 160 MHz.
        2fLO − fIF = fc = 60 MHz and 2fLO + fIF = fc = 260 MHz

(c)    H f( ) = 1

1+ jQ f
f0
− f0
f

⎛
⎝⎜

⎞
⎠⎟

H 180MHz( ) = 1

1+ j50 180
20

− 20
180

⎛
⎝⎜

⎞
⎠⎟
= 0.00225e− j1.5685  

H 180MHz( ) dB
= −52.96 dB



A receiver is tuned to receive a 7.225 MHz LSSB signal.  The LSSB 
signal is modulated by an audio signal that has a 3 kHz bandwidth.  
Assume that the receiver uses a superheterodyne circuit with an SSB 
IF filter.  The IF filter is centered on  3.395 MHz.  The LO frequency 
is on the high side of the input LSSB signal.  (a)  Draw a block diagram 
of the single-conversion superheterodyne receiver, indicating frequencies 
present and typical spectra of the signals at various points within the 
receiver.  (b)  Determine the required RF and IF filter specifications, 
assuming that the image frequency is to be attenuated by 40 dB.

fc = 7.225 MHz.  The IF filter is centered at 3.395MHz and, since the 
signal is LSSB, the upper edge of its passband at fIF = 3.3965MHz is  
fLO − fc .  Therefore, fLO = 7.225MHz + 3.3965MHz = 10.6215MHz.
The image frequency is fLO + fIF = 14.018MHz.



The RF amplifier/filter should be more than 40 dB down at 14.018MHz and the
IF filter should have a passband from 3.3935MHz to 3.3965MHz and very steep skirts
outside that range.



Five messages with bandwidths 1 kHz,  1 kHz, 2 kHz, 4 kHz and 4 kHz 
respectively are to be time-division multiplexed.  You have a 4 input 
multiplexer with a maximum sampling rate of 8 khz and a 32 kHz clock.  
Design a system, in block diagram form, that will multiplex these signals
plus an 8 kHz marker.

BW  (kHz) Min. fs
1 2000
1 2000
2 4000
4 8000
4 8000

fs = 8 kHz
M = 4

Marker

4 kHz

4 kHz
fs = 4 kHz
M = 2

2 kHz
fs = 2 kHz
M = 2

1 kHz
1 kHz

32 kHz
Clock÷4÷2



In an FDM communication system, the transmitted baseband signal is
x t( ) = m1 t( )cos ω1t( ) + m2 t( )cos ω2t( ).  The system under study has a
second-order nonlinearity between transmitter input and receiver output.
Thus, the received baseband signal can be expressed as 
y t( ) = a1 x t( ) + a2 x2 t( ).  Assuming that the two message signals m1 t( )  and
m2 t( )  have spectra M1 f( ) = M 2 f( ) =Π f /W( )  sketch the spectrum of
y t( ).  Discuss the difficulties encountered in demodulating the received
baseband signal.  In many FDM systems the subcarrier frequencies ω1  and ω2

are harmonically related.  Describe any additional problems this presents.

y t( ) = a1 m1 t( )cos ω1t( ) + m2 t( )cos ω2t( )⎡⎣ ⎤⎦ + a2 m1 t( )cos ω1t( ) + m2 t( )cos ω2t( )⎡⎣ ⎤⎦
2

y t( ) = a1m1 t( )cos ω1t( ) + a1m2 t( )cos ω2t( )
         + a2 m1

2 t( )cos2 ω1t( ) + m2
2 t( )cos2 ω2t( ) + 2m1 t( )m2 t( )cos ω1t( )cos ω2t( )⎡⎣ ⎤⎦

y t( ) = a1m1 t( )cos ω1t( ) + a1m2 t( )cos ω2t( )

         + a2 / 2( )
m1

2 t( ) + m1
2 t( )cos 2ω1t( ) + m2

2 t( ) + m2
2 t( )cos 2ω2t( )

+2m1 t( )m2 t( )cos ω1 −ω2( )t( ) + 2m1 t( )m2 t( )cos ω1 +ω2( )t( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥



y t( ) = a1m1 t( )cos ω1t( ) + a1m2 t( )cos ω2t( )

         + a2 / 2( )
m1

2 t( ) + m1
2 t( )cos 2ω1t( ) + m2

2 t( ) + m2
2 t( )cos 2ω2t( )

+2m1 t( )m2 t( )cos ω1 −ω2( )t( ) + 2m1 t( )m2 t( )cos ω1 +ω2( )t( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥



A superheterodyne receiver is designed to cover the RF frequency range of
45 to 860 MHz, with channel spacings of 8 MHz and an IF of 40 MHz.
Assume high-side injection.  (a)  If the receiver down-converts the RF signals
to an IF of 40 MHz, calculate the range of frequencies for the LO.  (b)  Calculate
the range of image frequencies.  (Note that the band of image frequencies and
the signal band overlap.  This is undesirable.  So we up-convert to a higher IF 
of 1.2 GHz.)  (c)  Calculate the new range of frequencies for the LO.
(d)  Determine the range of image frequencies.

(a)  fLO = fc + fIF ⇒ Range of fLO = 45 + 40 to 860 + 40 or 85 to 900 MHz
(b)  The image frequencies are the carrier frequencies plus twice the IF frequency
      or 125 to 940 MHz.
(c)  New range of fLO  is 1.245 GHz to 2.06 GHz.
(d)  New range of image frequencies is 2.445 GHz to 3.26 GHz



You have a crystal-controlled 100 kHz oscillator and as many divide-by-n 
counters (n ≤10), voltage-controlled oscillators, phase detectors and highpass
filters as needed.  Design a frequency synthesizer that will generate a 
343 kHz signal.

We will need a frequency resolution of 1 kHz so we will need to divide the
100 kHz down to 1 kHz initially.  We can do that with two stages of ÷10
each.  We can multiply the 100 kHz by 3 to get 300 kHz and we can multiply
the 10 kHz signal already obtained by 4 to get 40 kHz.  Then we can multiply 
the 1 kHz signal by 3 to get the needed 3 kHz.  We can combine these in two 
steps to get the 343 kHz signal.  It is best to combine the 40 and 3 first to get 
37 and 43 and then filter out the 37 with a highpass filter.  Then combine the 
43 with the 300 to get 343 and 257 and filter out the 257 with a highpass filter.





An analog multiplier, a filter with transfer function H s( ) = 0.1s +100
s

,

an amplifier with gain Ka = 10 and a VCO with Kv = 2 MHz/volt are used to 
make a phase-locked loop.  Using the linearized model of a phase-locked loop
find the closed-loop system poles.  Is this phase-locked loop stable?

Y s( )
Φ s( ) =

sKa H s( )
s + 2πKaKv H s( ) =

10s 0.1s +100
s

s + 2π ×10 × 2 ×106 0.1s +100
s

Y s( )
Φ s( ) =

s s +1000( )
s2 + 2π ×10 × 2 ×106 0.1s +100( ) =

s s +1000( )
s2 + 4π ×106 s + 4π ×109

Poles at −1.257 ×107  and −1000.  
Both poles are in the open left half-plane, therefore the system is stable.



A stable phase-locked loop is locked.  The input signal's phase suddenly jumps
up by a small amount.  Describe the sequence of events in the system that makes 
it settle to a new locked state with the new input signal phase.

The first thing that happens is that the phase of the input signal lags the VCO 
output signal less than previously.  This causes the lowpass filter output to move 
to a more positive voltage.  That more positive voltage drives the VCO to raise 
its output signal frequency.  That tends to make the phase difference return to 
quadrature (or near quadrature).  That lowers the output of the lowpass filter 
reducing the VCO output signal's frequency.  Eventually the lowpass filter's 
output signal returns to its original value with the VCO output again leading the 
input signal by approximately 90°.



A stable phase-locked loop is locked.  The input signal's frequency suddenly drops
by a small amount.  Describe the sequence of events in the system that makes it
settle to a new locked state with the new input signal frequency.

The first thing that happens is that the phase of the input signal starts lagging the 
VCO output signal more than previously.  This causes the lowpass filter output to
move to a more negative voltage.  That more negative voltage drives the VCO to 
lower its output signal frequency.  That tends to make the phase difference return
to quadrature (or near quadrature) at a lower frequency of the VCO output.  
Eventually the loop is locked again with the VCO output frequency matching the 
input signal's frequency and with the lowpass filter's output signal at a lower 
voltage.



A stable phase locked-loop is operating in a locked condition and the output 
of the lowpass filter is a small positive voltage.  The amplitude of the input 
signal suddenly doubles.  The phase-locked loop is momentarily perturbed
but soon quickly settles into a new locked state.  What happens to the phase 
relationship between the input signal and the VCO output signal and what 
happens to the lowpass filter output signal?

The fact that the lowpass filter ouput is initially not zero means that the input
signal and the VCO output signal are not exactly 90° apart.  The VCO output
leads the input signal by less than 90°.  When the input signal amplitude doubles 
the output of the lowpass filter would quickly double if there were no feedback 
action.  But the increase in the lowpass filter output momentarily increases the 
frequency of the VCO causing the phase of the VCO output to increase relative 
to the phase of the input signal, moving the phase difference closer to 90°.  So the 
increase in input signal amplitude makes the two signals move closer to exact
quadrature.  The lowpass filter output returns to its original value.


