
Linear CW Modulation



Bandpass Signals and Systems

Let x t( )  represent a message to be sent from one location to another.
Let x t( )  have negligible spectral content for f >W .

Let x t( ) ≤1.  Then x2 t( ) ≤1,  meaning its average signal power

cannot exceed one.  Then x t( )  will represent a typical message
signal.  Sometimes, when the analysis of a general signal x t( )  becomes 
difficult we will let x t( ) = Am cos ωmt( )  with Am ≤1 and fm <W .  This 
could be one sinusoid of a spectrum of sinusoids that make up the real 
message signal.



Bandpass Signals and Systems

 

Let x t( )  modulate a cosine to form a bandpass signal

xbp t( ) = x t( )cos 2π fct( ) F← →⎯ Xbp f( ) = 1 / 2( ) X f − fc( ) + X f + fc( )⎡⎣ ⎤⎦.



Bandpass Signals and Systems
Consider an energy signal vbp t( )  whose Fourier transform Vbp f( )
has a bandpass characteristic, which means 
                  Vbp f( ) ≅ 0 , f < fc −W  and f > fc +W



Bandpass Signals and Systems
The time-domain signal vbp t( )  will have the form of

a sinusoid with a slowly-changing envelope A t( )  and 
phase shift  φ t( ).
                           vbp t( ) = A t( )cos ω ct +φ t( )( )



Bandpass Signals and Systems
The bandpass signal vbp t( )  is characterized by its amplitude A t( ), 
frequency  fc  or ω c  and phase shift φ t( ).  We can represent the signal 
in a vector diagram in which A t( )  is the length of the vector and 
ω ct +φ t( )  is its angle.  Since ω ct  represents a rotation at a constant 
angular velocity, we can suppress it and characterize the signal by 
A t( )  and φ t( )  only, always realizing that the ω ct  term is there and 
can be re-introduced if needed.
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                         vbp t( ) = A t( )cos ω ct +φ t( )( )
Using the trigonometric identity cos α + β( ) = cos α( )cos β( )− sin α( )sin β( )
     vbp t( ) = A t( )cos φ t( )( )cos ω ct( )− A t( )sin φ t( )( )sin ω ct( )
Therefore, the bandpass signal can also be characterized by its in-phase
component vi t( )  A t( )cos φ t( )( )  and its quadrature component 

vq t( )  A t( )sin φ t( )( ).  Then

                  vbp t( ) = vi t( )cos ω ct( )− vq t( )sin ω ct( )
                  vbp t( ) = vi t( )cos ω ct( ) + vq t( )cos ω ct + 90°( )



Bandpass Signals and Systems

Fourier transforming
                    vbp t( ) = vi t( )cos ω ct( )− vq t( )sin ω ct( )
yields

Vbp f( ) = 1 / 2( ) Vi f − fc( ) +Vi f + fc( )⎡⎣ ⎤⎦ − j / 2( ) Vq f + fc( )−Vq f − fc( )⎡⎣ ⎤⎦
We can see from this result that, for vbp t( )  to be bandpass, 

                         Vi f( ) = Vq f( ) = 0  ,  f >W



Bandpass Signals and Systems

 

Now we can conceive Vbp f( )  as consisting of two lowpass spectra 

that have been shifted by ± fc  and, in the case of Vq f( ),  quadrature phase
shifted.  Then we can define a lowpass equivalent  spectrum 

         Vlp f( )  1 / 2( ) Vi f( ) + jVq f( )⎡⎣ ⎤⎦ = Vbp f + fc( )u f + fc( )
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Notice that Vlp f( )  does not have Hermitian symmetry, therefore 

the inverse transform of Vlp f( )  is not a real-valued function of time.  
It is instead

                       vlp t( ) = 1 / 2( ) vi t( ) + j vq t( )⎡⎣ ⎤⎦
which can also be written as

       vlp t( ) = 1 / 2( )A t( ) cos φ t( )( ) + j sin φ t( )( )⎡⎣ ⎤⎦ = 1 / 2( )A t( )e jφ t( )

Then the relation between vbp t( )  and vlp t( )  can be derived as follows

        vbp t( ) = A t( )cos ω ct +φ t( )( ) = Re A t( )e j ωct+φ t( )( )( )
        vbp t( ) = 2Re 1 / 2( )A t( )e jωcte jφ t( )( ) = 2Re vlp t( )e jωct( )
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Fourier transforming vbp t( ) = 2 Re vlp t( )e jωct( )  we get

         Vbp f( ) = F 2Re 1 / 2( ) vi t( ) + j vq t( )⎡⎣ ⎤⎦e
jωct( )( )

         Vbp f( ) = F vi t( )cos ω ct( )− vq t( )sin ω ct( )( )
         Vbp f( ) = 1 / 2( ) Vi f − fc( ) +Vi f + fc( )⎡⎣ ⎤⎦  

                                 − j / 2( ) Vq f + fc( )−Vq f − fc( )⎡⎣ ⎤⎦
         Vbp f( ) = 1 / 2( ) Vi f − fc( ) + jVq f − fc( )⎡⎣ ⎤⎦
                                 + 1 / 2( ) Vi f + fc( )− jVq f + fc( )⎡⎣ ⎤⎦
         Vbp f( ) = Vlp f − fc( ) +Vlp

* f + fc( )
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The response of a bandpass system to an excitation can be found
using Ybp f( ) = Hbp f( )Xbp f( ).  But it can also be found using the

lowpass equivalent spectrum of xbp t( )
                      Xlp f( ) = Xbp f + fc( )u f + fc( )
and the lowpass equivalent transfer function (frequency response) 
                      Hlp f( ) = Hbp f + fc( )u f + fc( )
to form the lowpass equivalent spectrum of ybp t( )
                           Ylp f( ) = Hlp f( )Xlp f( ).
Then ylp t( ) = F −1 Ylp f( )( )  and ybp t( ) = 2Re ylp t( )e jωct( ).
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ylp t( ) = F −1 Ylp f( )( )  and ybp t( ) = 2Re ylp t( )e jωct( ).
yi t( ) = 2 Re ylp t( )( )   ,  yq t( ) = 2 Im ylp t( )( )
Ay t( ) = 2 ylp t( )   ,  φy t( ) = ylp t( )



Bandpass Signals and Systems
Example 4.1-1 in Carlson and Crilly:  Let Hbp f( ) = Kejθ f( )   ,  fl < f < fh .

Then Hlp f( ) = Kejθ f + fc( ) u f + fc( )   ,  fl < f + fc < fh .

If θ f + fc( )  is relatively slowly varying with f , we can approximate
it by the first two terms in its Taylor series expansion about the 
point  f = 0.

                      θ f + fc( ) ≅θ fc( ) + f + fc( )− 0 + fc( )
1!

dθ f + fc( )
df

⎡

⎣
⎢

⎤

⎦
⎥
f =0

         θ f + fc( ) ≅θ fc( )− f
dθ f + fc( )

df
⎡

⎣
⎢

⎤

⎦
⎥
f =0

= θ fc( )− f dθ f( )
df

⎡
⎣⎢

⎤
⎦⎥ f = fc

                                      θ f + fc( ) ≅ −2π t0 fc + t1 f( )

where − 2πt0 fc = θ fc( )⇒ t0 = −
θ fc( )
2π fc

 and − 2πt1 f = − f dθ f( )
df

⎡
⎣⎢

⎤
⎦⎥ f = fc

⇒ t1 =
1

2π
dθ f( )
df

⎡
⎣⎢

⎤
⎦⎥ f = fc
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                      θ f + fc( ) ≅ −2π t0 fc + t1 f( )
Let xbp t( ) = Ax t( )cos ω ct( ),(implying that φ t( ) = 0).  Then 

      xlp t( ) = 1 / 2( )Ax t( ) cos φ t( )( ) + j sin φ t( )( )⎡⎣ ⎤⎦  or 1 / 2( )Ax t( )
because φ t( ) = 0.  Then, using Ylp f( ) = Hlp f( )Xlp f( ),
Ylp f( ) = Kejθ f + fc( ) u f + fc( )Xlp f( ) = Ke− j2π t0 fc + t1 f( ) u f + fc( )Xlp f( )
Ylp f( ) = Ke− jωct0 Xlp f( )e− j2π ft1⎡⎣ ⎤⎦  , (the u f + fc( )  term can be omitted

because Xlp f( )  is bandlimited to the range − fc << −W < f <W << fc ).
Inverse Fourier transforming,
ylp t( ) = Ke− jωct0 xlp t − t1( ) = 1 / 2( )Ke− jωct0 Ax t − t1( ).
Then, using ybp t( ) = 2Re ylp t( )e jωct( ),
ybp t( ) = K Ax t − t1( )cos ω c t − t0( )( ).



Bandpass Signals and Systems

The result from the previous slide

                 ylp t( ) = K Ax t − t1( )cos ω c t − t0( )( )
indicates that t0  is the carrier delay and t1  is the envelope 
or group delay.  In this example, the original signal xbp t( )
has experienced no delay distortion, at least within the limits
of the approximation θ f + fc( ) ≅ −2π t0 fc + t1 f( ).
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The simplest and most commonly used bandpass system is the parallel resonant RLC  
circuit below.  Its frequency response is

H f( ) = ZLC f( )
ZLC f( ) + R  where ZLC f( ) = j2π fL / j2π fC

j2π fL +1 / j2π fC
= j2π fL

1− 2π f( )2 LC

and ZLC f( ) = j2π fL
1− f / f0( )2 where f0 =

1
2π LC

H f( ) =

j2π fL
1− f / f0( )2

j2π fL
1− f / f0( )2 + R

= 1

1+ jQ f
f0
− f0
f

⎛
⎝⎜

⎞
⎠⎟

  where Q = R C
L

f0  is the resonant  cyclic frequency and Q is the quality factor. 
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H f( ) = 1

1+ jQ f
f0
− f0
f

⎛
⎝⎜

⎞
⎠⎟

  

The maximum response occurs when  f = f0  and H f0( ) = 1.  The -3 dB bandwidth

is defined by the frequencies at which H f( ) 2 = 1 / 2.

H f( ) 2 = 1

1+ jQ f
f0
− f0
f

⎛
⎝⎜

⎞
⎠⎟

× 1

1− jQ f
f0
− f0
f

⎛
⎝⎜

⎞
⎠⎟

= 1

1+Q2 f
f0
− f0
f

⎛
⎝⎜

⎞
⎠⎟

2 = 1
2
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Q2 f
f0
− f0
f

⎛
⎝⎜

⎞
⎠⎟

2

= 1 ⇒  f / f0( )2 − 2 − 1
Q2 + f0 / f( )2 = 0

f 2

f0
2

⎛
⎝⎜

⎞
⎠⎟

2

− 2 + 1
Q2

⎛
⎝⎜

⎞
⎠⎟

f 2

f0
2

⎛
⎝⎜

⎞
⎠⎟
+1= 0 ⇒ f 2

f0
2 =

2 +1 /Q2( ) ± 2 +1 /Q2( )2
− 4

2

f 2

f0
2 = 1+ 1

2Q2 ± 4 /Q2 +1 /Q4

4
= 1+ 1

2Q2 ± 4Q2 +1
4Q4 = 1+ 1± 4Q2 +1

2Q2

For large Q, 4Q2 >>1  and 2Q >>1 and f
2

f0
2 ≅ 1± 1

Q
⇒ f 2 ≅ f0

2 1±1 /Q( )

∴ f ≅ ± f0 1±1 /Q .  Again, for large Q,  1±1 /Q ≅ 1±1 / 2Q and f ≅ ± f0 1±1 / 2Q( )
So the 3 dB bandwidth B is B ≅ f0 /Q if Q is large.  As a practical matter the Q of this
type of tuned circuit is between 10 and 100.  Also, as a practical matter, the
fractional bandwidth B / f0  should be in the range 0.01< B / f0 < 0.1 to avoid some
design problems.  Therefore large bandwidths require high center frequencies.
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There are many definitions of "bandwidth".

Absolute bandwidth 
The band of frequencies outside of which there is absolutely
no signal energy.  This only applies to ideal situations in which we have signals
that are unlimited in time and filters that are ideal.
Null - to - Null Bandwidth
The spacing between zero crossings of a filter or the spectrum of a signal.
-3 dB Bandwidth
The frequency range between frequencies at which a signal's power is down
3 dB from its maximum (1/2 power points) or at which a filter's power gain
is down 3 dB from its maximum.

There are many other definitions for various purposes.



Double-Sideband Amplitude Modulation
The most common type of amplitude modulation used in practice is standard
amplitude modulation (AM) (also known as Double-Sideband Transmitted Carrier 
Modulation or DSBTC).  In this type of modulation the envelope of the modulated
carrier has the shape of the message signal.  The modulated carrier is
                                    xc t( ) = Ac 1+ µ x t( )⎡⎣ ⎤⎦cos ω ct( )
where Ac  is the amplitude of the unmodulated
carrier and µ  is the modulation index.  Then
               A t( ) = Ac 1+ µ x t( )⎡⎣ ⎤⎦
and φ t( ) = 0.  Therefore xci t( ) = A t( )  
and xcq t( ) = 0.



Double-Sideband Amplitude Modulation
The envelope A t( )  is defined as being non-negative.  So if µ  is too large
a problem called overmodulation occurs as illustrated below.  Simple 
detection of the envelope causes distortion of the original message.



Double-Sideband Amplitude Modulation

The Fourier transform of the AM signal xc t( ) = Ac 1+ µ x t( )⎡⎣ ⎤⎦cos ω ct( )  is
      Xc f( ) = Ac δ f( ) + µ X f( )⎡⎣ ⎤⎦ ∗ 1 / 2( ) δ f − fc( ) +δ f + fc( )⎡⎣ ⎤⎦

    Xc f( ) = Ac
2

δ f − fc( ) +δ f + fc( ) + µ X f − fc( ) + X f + fc( )⎡⎣ ⎤⎦{ }
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The transmission bandwidth required to transmit a message with
bandwidth W  is BT = 2W .  The average transmitted power is 

ST  xc
2 t( ) .  Using xc t( ) = Ac 1+ µ x t( )⎡⎣ ⎤⎦cos ω ct( )

                          ST = Ac
2 1+ µ x t( )⎡⎣ ⎤⎦

2 cos2 ω ct( )
           ST = Ac

2 1+ 2µ x t( ) + µ2 x2 t( )⎡⎣ ⎤⎦ 1 / 2( ) 1+ cos 2ω ct( )⎡⎣ ⎤⎦

     ST = Ac
2

2
1+ 2µ x t( ) + µ2 x2 t( )⎡⎣ ⎤⎦ + 1+ 2µ x t( ) + µ2 x2 t( )⎡⎣ ⎤⎦cos 2ω ct( )

   ST = Ac
2

2
1+ 2µ x t( ) + µ2 x2 t( ) + + Ac

2

2
1+ 2µ x t( ) + µ2 x2 t( )⎡⎣ ⎤⎦cos 2ω ct( )

=0  if fc >>W
  

                            ST = Ac
2

2
1+ 2µ x t( ) + µ2 x2 t( )
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                                ST = Ac

2

2
1+ 2µ x t( ) + µ2 x2 t( )

If x t( ) = 0 (which is typical of most messages) then ST = Ac
2

2
1+ µ2Sx( )

where Sx  is the average signal power of the message.  Then ST = Pc + 2Psb
where Pc = Ac

2 / 2 is the average signal power in the unmodulated carrier and 

                                Psb =
1
2
× Ac

2

2
µ2Sx = 1 / 2( )µ2SxPc  

is the average signal power in each sideband.  To avoid overmodulation
µ x t( ) ≤1.  Then µ2Sx ≤1 and Psb ≤ 1 / 2( )Pc  and 
                           Pc = ST − 2Psb ≥ ST / 2 and Psb ≤ ST / 4
So at least half of the total transmitted power is in the carrier and conveys no
information.  The efficiency can be improved by using other modulation 
techniques but with an attendant complication in receiver design.



Double-Sideband Suppressed-Carrier Modulation

If, instead of transmitting xc t( ) = Ac 1+ µ x t( )⎡⎣ ⎤⎦cos ω ct( )  we 
remove the "1" and set µ = 1,  we get 
                             xc t( ) = Ac x t( )cos ω ct( ).
This type of modulation is called double-sideband suppressed-carrier
modulation (DSB for short), (also sometimes called DSBSC or DSSC).
Its Fourier transform is 

Xc f( ) = Ac / 2( ) X f − fc( ) + X f + fc( )⎡⎣ ⎤⎦



Double-Sideband Suppressed-Carrier Modulation
In DSB modulation, the impulses at the carrier frequency are gone

and all the transmitted power is in the sidebands.  ST = 2Psb = Ac
2 / 2( )Sx

The envelope is defined as non-negative so, in this case, it is A t( ) = Ac x t( ) .
The message cannot be recovered by a simple envelope detector.



In the special case in which x t( ) = Am cos ωmt( ),  the DSB-modulated carrier 

becomes xc t( ) = AcAm cos ωmt( )cos ω ct( )  which, using a trigonometric
identity, can be written as

                xc t( ) = AcAm
2

cos ωm −ω c( )t + cos ωm +ω c( )t⎡⎣ ⎤⎦

which is the sum of two sinusoids, one at the sum frequency and one at 
the difference frequency.  If we use the same message signal in an AM system 
we get

                         xc t( ) = Ac 1+ µAm cos ωmt( )⎡⎣ ⎤⎦cos ω ct( )
                   xc t( ) = Ac cos ω ct( ) + µAcAm cos ωmt( )cos ω ct( )
              xc t( ) = Ac cos ω ct( ) + µAcAm

2
cos ωm −ω c( )t + cos ωm +ω c( )t⎡⎣ ⎤⎦

which is three sinusoids, one at the carrier frequency and one each at the sum
and difference frequencies.
Modulation with a sinusoid is referred to as tone modulation.

Double-Sideband Amplitude Modulation



Modulators and Transmitters
The electronic hardware to implement AM or DSB modulation can 
take any of several forms.  The most direct and obvious form is the 
product  modulator illustrated below for AM modulation.



Modulators and Transmitters
Another way of obtaining the product of two signals is to use a
square-law modulator.  This type of circuit takes advantage of
the inherent non-linearity of a solid-state device.  In the example
below the device is a field-effect transistor (FET).  
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If the FET has a transfer characteristic vout = a1 vin+ a2 vin
2  and 

if vin t( ) = x t( ) + cos ω ct( ), then 

         vout t( ) = a1 x t( ) + cos ω ct( )⎡⎣ ⎤⎦ + a2 x t( ) + cos ω ct( )⎡⎣ ⎤⎦
2

         vout t( ) = a1 x t( ) + a1 cos ω ct( ) + a2 x2 t( ) + cos2 ω ct( ) + 2 x t( )cos ω ct( )⎡⎣ ⎤⎦
         vout t( ) = a1 x t( ) + a1 cos ω ct( ) + a2 x2 t( ) + a2 cos2 ω ct( ) + 2a2 x t( )cos ω ct( )
         vout t( ) = a1 x t( ) + a2 x2 t( ) + a2 cos2 ω ct( ) + a1 1+ 2 a2 / a1( )x t( )⎡⎣ ⎤⎦cos ω ct( )
         vout t( ) = a1 x t( ) + a2 x2 t( ) + a2 cos2 ω ct( ) + Ac 1+ µ x t( )⎡⎣ ⎤⎦cos ω ct( )

Desired AM Wave
  

where Ac = a1  and µ = 2 a2 / a1( ).  



Modulators and Transmitters

vout t( ) = a1 x t( ) + a2 x2 t( ) + a2 cos2 ω ct( ) + a1 1+ 2 a2 / a1( )x t( )⎡⎣ ⎤⎦cos ω ct( )
The Fourier transform of vout t( )  is
Vout f( ) = a1 X f( ) + a2 X f( )∗X f( ) + a2 / 2( ) δ f( ) + 1 / 2( ) δ f − 2 fc( ) +δ f + 2 fc( )⎡⎣ ⎤⎦{ }
                + a1 / 2( ) δ f − fc( ) +δ f + fc( )⎡⎣ ⎤⎦ + a2 X f − fc( ) + X f + fc( )⎡⎣ ⎤⎦



Modulators and Transmitters
The circuit below is a ring modulator.  When the carrier signal is positive
on the left side, the top and bottom diodes are forward biased and the inner 
diodes are reverse biased, effectively connecting the top of the left transformer
secondary to the top of the right transformer primary and the bottoms also
and xc t( )  = x t( ).  When the carrier signal is positive on the right side, the 
diodes all switch their bias to the opposite state and the tops and bottoms 
of the transformers are now cross connected making xc t( ) = −x t( ).  (The
ring modulator circuit in the book is drawn wrong.)



Modulators and Transmitters
The circuit below is a switching modulator.  The switch closes briefly every
1 / fc  seconds.  The tank circuit (the parallel RLC  circuit) on the right is tuned
to resonate at fc  Hz.  Every 1 / fc  seconds the tank circuit is hit with a pulse 
of energy and "rings" at its resonant frequency.  Then at the end of one cycle of 
ringing it is hit again the same way.  If the driving voltage is of constant amplitude 
the output signal is effectively a sinusoid.  The driving voltage is a constant plus 
the message signal.  It changes slowly (compared with the resonant frequency) so 
the overall effect is to AM modulate the sinusoid with the message signal.



Suppressed-Sideband Amplitude Modulation

In DSB modulation the upper and lower 
sidebands are related through Hermitian
symmetry and, therefore, they both contain 
all  of the message information.
So it should be possible to transmit all 
the message information using only one
of the two sidebands.  This can be done 
by suppressing one of the sidebands and
transmitting only the other sideband.  This
type of modulation is called single-sideband
suppressed-carrier (SSB) modulation.
SSB reduces the bandwidth requirement by
a factor of two thus using frequency space 
more efficiently.



Suppressed-Sideband Amplitude Modulation

 

We can analyze SSB modulation using the equivalent lowpass method.
Let xbp t( )  be the output signal from DSB modulation and let xc t( )  be 

the SSB signal.  Then xbp t( ) = Ac x t( )cos ω ct( ).  Using some results from
the derivation of the lowpass equivalent method

                       vlp t( ) = 1 / 2( ) vi t( ) + j vq t( )⎡⎣ ⎤⎦  

and 
        vi t( )  A t( )cos φ t( )( )  and vq t( )  A t( )sin φ t( )( )
we get

xlp t( ) = 1 / 2( ) xi t( ) + j xq t( )⎡⎣ ⎤⎦ = 1 / 2( ) A t( )cos φ t( )( ) + jA t( )sin φ t( )( )⎡⎣ ⎤⎦

In this case xlp t( ) = 1 / 2( )Ac x t( ) e jφ t( )   ,  φ t( ) = 0          ,  x t( ) > 0
±180°  ,  x t( ) < 0

⎧
⎨
⎩

 and Xlp f( ) = 1 / 2( )Ac X f( )



Suppressed-Sideband Amplitude Modulation

The bandpass filter transfer function is 

               Hbp f( ) = 1  ,  fc −W < f < fc
0  ,  otherwise

⎧
⎨
⎩

⎫
⎬
⎭

 for LSSB

or

                Hbp f( ) = 1  ,  fc < f < fc +W
0  ,  otherwise

⎧
⎨
⎩

⎫
⎬
⎭

 for USSB

The equivalent lowpass transfer function is

Hlp f( ) = Hbp f + fc( )u f + fc( ) = u f +W( )− u f( )  for LSSB
u f( )− u f −W( )  for USSB

⎧
⎨
⎩

⎫
⎬
⎭

They can both be expressed in the form Hlp f( ) = 1 / 2( ) 1± sgn f( )⎡⎣ ⎤⎦   ,  f <W
0  ,  otherwise

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

where the plus sign is taken for USSB and the minus sign is taken for LSSB.



Suppressed-Sideband Amplitude Modulation

  

The equivalent lowpass response of the system is 

Ylp f( ) = Hlp f( )Xlp f( ) = 1 / 2( ) 1± sgn f( )⎡⎣ ⎤⎦   ,  f <W
0  ,  otherwise

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

1 / 2( )Ac X f( )

Ylp f( ) = Ac / 4( ) X f( ) ± sgn f( )X f( )⎡⎣ ⎤⎦
The requirement f <W  is satisfied by the fact that X f( )  is bandlimited to W .( )

Now, using the Hilbert transform relationship x̂ t( ) F← →⎯ − j sgn f( )X f( )
                      ylp t( ) = Ac / 4( ) x t( ) ± j x̂ t( )⎡⎣ ⎤⎦
Then, transforming from lowpass to bandpass,

xc t( ) = ybp t( ) = 2Re ylp t( )e jωct⎡⎣ ⎤⎦ = Ac / 2( ) x t( )cos ω ct( )  x̂ t( )sin ω ct( )⎡⎣ ⎤⎦
The in-phase and quadrature components are 
            xci t( ) = Ac / 2( )x t( )  and xcq t( ) = ± Ac / 2( ) x̂ t( )
and the envelope is A t( ) = Ac / 2( ) x2 t( ) + x̂2 t( )



Suppressed-Sideband Amplitude Modulation

The generation of an SSB signal, as presented so far, requires an 
ideal filter (one with vertical sides and a flat top).  Ideal filters don't
exist.  Real filters can have transition regions that are steep but not 
vertical and real filters can never have a perfectly flat top.  So if we 
use a real filter we can either
    1.    Set the filter transition region inside the sideband to be retained
           and lose some of the sideband information
or
    2.    Set the filter transition region inside the sideband to be removed
           retain some of the unwanted sideband
or
    3.    some combination of 1 and 2.



Suppressed-Sideband Amplitude Modulation
Fortunately, for many practical messages, the spectral content at very
low frequencies is very small.  This gives the designer of an SSB system
a little room to maneuver.  The transition region of the filter used to 
eliminate the unwanted sideband can be placed in the region around
the carrier frequency where the DSB signal has very little signal power.



Suppressed-Sideband Amplitude Modulation

 

Another method for generating SSB is suggested by the relationship
      xc t( ) = Ac / 2( )x t( )cos ω ct( )  Ac / 2( ) x̂ t( )cos ω ct − 90°( ).
This is written as though SSB consists of the sum of two DSB signals,
with carriers that are in quadrature (phase shifted by 90°) and modulated
by x t( )  and x̂ t( ).  That could be accomplished (theoretically) by the 
system below where HQ f( )  is a quadrature phase shifter.  
Unfortunately a quadrature phase shifter is an idealization that can 
never quite be achieved in practice.



Suppressed-Sideband Amplitude Modulation
A third, more practical, method is Weaver's SSB modulator, diagrammed below.  
Let x t( ) = cos 2π fmt( )  with 0 <  fm <W  (tone modulation).  Then xc t( ) = v1 t( ) ± v2 t( )  
where v1 t( )  is the signal from the upper part of the loop and v2 t( )  is the signal from the 
lower part.  The input signal to LPF1 is 

cos 2π fmt( )cos 2πWt / 2( ) = 1 / 2( ) cos 2π fm −W / 2( )t( ) + cos 2π fm +W / 2( )t( )⎡⎣ ⎤⎦
Since the filter cuts off at W / 2 its output signal is 1 / 2( ) cos 2π fm −W / 2( )t( )⎡⎣ ⎤⎦.



Suppressed-Sideband Amplitude Modulation
The LPF1 output signal is multiplied by cos 2π fc ±W / 2( )t( ).  Therefore, 

v1 t( ) = 1 / 4( ) cos 2π fc ±W / 2 + fm −W / 2( )t( ) + cos 2π fc ±W / 2 − fm +W / 2( )t( )⎡⎣ ⎤⎦
The input signal to the LPF2 is cos 2π fmt( )sin 2πWt / 2( )  and (using similar reasoning)

v2 t( ) = 1 / 4( ) cos 2π fc ±W / 2 + fm −W / 2( )t( )− cos 2π fc ±W / 2 − fm +W / 2( )t( )⎡⎣ ⎤⎦.

Taking the upper signs, xc t( ) = 1 / 2( )cos ω c +ωm( )t( ).  This is a USB signal.  If we

instead take the lower signs we get xc t( ) = 1 / 2( )cos ω c −ωm( )t( ), an LSB signal.



Vestigial-Sideband Amplitude Modulation

Vestigial sideband modulation (VSB) is a compromise between DSB, which
has good fidelity for messages with significant low-frequency content, and
SSB which does not, but uses only half the bandwidth.  In VSB the transmitted
signal is predominately one of the two sidebands but with a "vestige" of the
other sideband.  Sometimes a carrier is added to VSB.  This generally makes the
detector easier to design.



Frequency Conversion and Demodulation
So far we have described several ways of modulating a carrier with a message
signal.  Now we turn to demodulation, the recovery of the message from the
modulated carrier.  An essential process in most demodulation methods is
frequency conversion.  Consider a DSB signal of the form x t( )cos ω1t( ).
If we multiply it by cos ω2t( )  we get

   x t( )cos ω1t( )cos ω2t( ) = 1 / 2( ) cos ω1 −ω2( )t( ) + cos ω1 +ω2( )t( )⎡⎣ ⎤⎦
The DSB spectrum has been shifted in frequency up and down by ω2  resulting
in sum and difference spectral components.  Devices that do this operation
are called frequency converters or mixers and the operation is called
heterodyning or mixing.  The "hetero" prefix refers to two things that are
different, in this case ω1  and ω2 .  If we make ω1  and ω2  the same, heterodyning
becomes a special case called homodyning in which the prefix "homo" refers to
two things that are the same.  The most common current uses of the prefixes "hetero" 
and "homo" in everyday speech are in the words "heterosexual" and "homosexual" 
where they have the same general significance.



Frequency Conversion and Demodulation
A basic process in many demodulation systems is synchronous detection.
In synchronous detection the received signal is multiplied by the signal from
a local oscillator that is at the same frequency as the carrier of the received
signal and in phase with that carrier (as received).  Let the received signal be
represented by

               xc t( ) = Kc + Kµ x t( )⎡⎣ ⎤⎦cos ω ct( )− Kµ xq t( )sin ω ct( )
If Kc = 0, we have a suppressed carrier.  If xq t( ) = 0,  we have double sideband.
This form can represent the types of modulation we have seen so far.  So the
demodulation process begins with the product 

xc t( )ALO cos ω ct( ) = Kc + Kµ x t( )⎡⎣ ⎤⎦cos ω ct( )− Kµ xq t( )sin ω ct( ){ }ALO cos ω ct( )
xc t( )ALO cos ω ct( ) = ALO Kc cos2 ω ct( ) + Kµ x t( )cos2 ω ct( )− Kµ xq t( )cos ω ct( )sin ω ct( ){ }
xc t( )ALO cos ω ct( ) = ALO / 2( )

Kc + Kµ x t( ) + Kc cos 2ω ct( ) + Kµ x t( )cos 2ω ct( )
−Kµ xq t( )sin 2ω ct( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪



Frequency Conversion and Demodulation
From the previous slide,

xc t( )ALO cos ω ct( ) = ALO / 2( )
Kc + Kµ x t( ) + Kc cos 2ω ct( ) + Kµ x t( )cos 2ω ct( )
−Kµ xq t( )sin 2ω ct( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
We can filter out the double-frequency components of this signal leaving

yD t( ) = KD Kc + Kµ x t( )⎡⎣ ⎤⎦, where KD  is a constant accounting for any gain or

attenuation in the multiplication/filtering process.  Since the local oscillator and
the carrier frequency are the same, this is a case of homodyning.  We can, if desired, 
also filter out the KDKc  constant component of the signal with a blocking capacitor 
or other suitable DC blocking filter.  This process seems simple enough until we come
to the problem of how to generate a local oscillator that is locked in both frequency
and phase to the carrier of the incoming signal.  If the incoming signal is DSB, the
carrier has been suppressed.  So locking to it is non-trivial.  Sometimes a small
pilot  carrier is added to the transmitted signal to facilitate detection of and locking
on to the carrier.



Frequency Conversion and Demodulation
There are many techniques for generating a local oscillator that is phase-locked
to the incoming carrier but there is always at least a little asynchronism.  Let the
local oscillator be cos ω ct + ′ω t + ′φ( )  where ′ω  accounts for frequency error and

′φ  accounts for phase error.  Let the signal be DSB with tone modulation cos ωmt( ).  
Then xc t( ) = Kµ cos ωmt( )cos ω ct( )  and, multiplying by the local oscillator, we get

Kµ cos ωmt( )cos ω ct( )cos ω ct + ′ω t + ′φ( )
                              = Kµ / 2( ) cos ωmt( )cos ′ω t + ′φ( ) + cos ωmt( )cos 2ω ct + ′ω t + ′φ( )⎡⎣ ⎤⎦
After lowpass filtering (possibly with gain or attenuation) this becomes
yD t( ) = KD cos ωmt( )cos ′ω t + ′φ( )

      yD t( ) =
KD / 2( ) cos ωm − ′ω( )t( )⎡⎣ ⎤⎦ + cos ωm + ′ω( )t( )   ,  ′φ = 0

KD cos ωmt( )cos ′φ( )   ,  ′ω =0

⎧
⎨
⎪

⎩⎪
The frequency error causes a shift in the signal's frequency both up an down by ′f .
The phase error causes a loss in signal power.  If ′φ = 90°,  the detected signal is zero.



Frequency Conversion and Demodulation

 

Now let the signal be SSB with xc t( ) = cos ω c ±ωm( )t( )
Multiplying by the local oscillator, we get

cos ω c ±ωm( )t( )cos ω ct + ′ω t + ′φ( )
                              = 1 / 2( ) cos ′ω t + ′φ ωmt( ) + cos 2ω ct + ′ω t + ′φ ±ωmt( )⎡⎣ ⎤⎦
After lowpass filtering (possibly with gain or attenuation) this becomes
      yD t( ) = KD cos ′ω t + ′φ ωmt( ) = KD cos ±ωmt − ′ω t + ′φ( )( )
Multiplying the cosine argument through by ±1 we get

                      yD t( ) = KD

cos ωm  ′ω( )t( )   ,  ′φ = 0

cos ωmt  ′φ( )        ,  ′ω = 0

⎧
⎨
⎪

⎩⎪
The frequency error causes a shift in the frequency of the message either up or down 
by ′f .  The phase error causes a phase shift in the signal.  For tone modulation this 
is not a problem.  But for a more general signal, the different frequencies would all 
experience the same phase shift, therefore different time delays, causing delay distortion.



Envelope Detection
An AM signal carries the message  (plus a constant) directly in its envelope.
An envelope detector is a simple electrical circuit designed to extract the
envelope from the AM signal.  On each positive half-cycle of the carrier,
the diode is forward biased for a short time during which the voltage across
the RC  parallel combination follows the AM signal, charging the capacitor.
As the AM signal descends from its peak, its voltage falls below the capacitor
voltage and the diode is reverse biased and is effectively an open circuit until
the next positive half-cycle of the AM signal.  While the diode is reverse biased
the voltage across the RC  parallel combination decays exponentially.  This
action causes the output voltage to be an approximate replica of the envelope 
of the AM signal.  This type of detection does not require a synchronized
local oscillator and is therefore an asynchronous detection method.



Envelope Detection
The output voltage of the envelope detector is not a perfect replica of the
message.  The added constant can be removed by a blocking capacitor.  If
necessary, the small ripple caused by the charge-discharge cycling of the
capacitor voltage can be filtered out with a lowpass filter.  If the carrier
frequency is much larger than the bandwidth of the message, the reproduction
of the message is good enough for most applications like voice or music.  The
envelope detector cannot be used directly for DSB or SSB.  But if a local
oscillator is used to inject a carrier into the DSB or SSB signal then the 
envelope detector can be used.  But the problem of synchronizing the local
oscillator to the carrier is still there just as it is in synchronous detection.


