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Double-Sideband Suppressed-Carrier Modulation

The simplest type of linear modulation to describe mathematically is
Double − sideband suppressed − carrier modulation DSB( ).  It is 
done by directly multiplying a carrier by a message signal of bandwidth
W .
                                xc t( ) = Ac m t( )cos 2π fct( )
Its Fourier transform is 

Xc f( ) = Ac / 2( ) M f − fc( ) + M f + fc( )⎡⎣ ⎤⎦
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Double-Sideband Suppressed-Carrier Modulation
The average signal power of the DSB signal is 

        Ac
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Double-Sideband Suppressed-Carrier Modulation
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DSB signals can be demodulated with a synchronous demodulator.

The received signal x r t( )  is multiplied by a local oscillator 2cos 2π fct( )
to form 

                d t( ) = x r t( )× 2cos 2π fct( ) = K xc t( )× 2cos 2π fct( )
                d t( ) = KAc m t( )cos 2π fct( )× 2cos 2π fct( )
                d t( ) = KAc m t( ) 1+ cos 4π fct( )⎡⎣ ⎤⎦
Then d t( )  is lowpass filtered to produce the demodulated output signal

                yD t( ) = KAc m t( )



Double-Sideband Amplitude Modulation
The most common type of amplitude modulation used in practice is standard
amplitude modulation (AM) (also known as Double-Sideband Transmitted Carrier 
Modulation or DSBTC).  In this type of modulation, the envelope of the modulated
carrier has the shape of the message signal.  The modulated carrier is

                                    xc t( ) = Ac 1+ amn t( )⎡⎣ ⎤⎦cos 2π fct( )
where Ac  is the amplitude of the unmodulated
carrier, a is the modulation index and mn t( )
is a scaled version of the message signal m t( ).

                    mn t( ) = m t( )
m t( )
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Double-Sideband Amplitude Modulation

The Fourier transform of the AM signal xc t( ) = Ac 1+ amn t( )⎡⎣ ⎤⎦cos 2π fct( )  is
      Xc f( ) = Ac δ f( ) + aMn f( )⎡⎣ ⎤⎦∗ 1/ 2( ) δ f − fc( ) +δ f + fc( )⎡⎣ ⎤⎦

    Xc f( ) = Ac
2

δ f − fc( ) +δ f + fc( ) + a Mn f − fc( ) + Mn f + fc( )⎡⎣ ⎤⎦{ }
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Double-Sideband Amplitude Modulation
The average signal power of an AM signal is

xc t( ) = Ac
2 1+ amn t( )⎡⎣ ⎤⎦

2 cos2 2π fct( )

xc t( ) = Ac
2

2
1+ 2amn t( ) + a2 mn

2 t( )⎡⎣ ⎤⎦ 1+ cos 4π fct( )⎡⎣ ⎤⎦

xc t( ) = Ac
2

2
1+ 2amn t( ) + a2 mn

2 t( ) = Ac
2

2
1+ 2amn t( ) + a2 mn

2 t( )⎡⎣ ⎤⎦

If mn t( ) = 0 (a very common case), xc t( ) = Ac
2

2
1+ a2 mn

2 t( )⎡⎣ ⎤⎦

The two parts of the signal power are Ac
2

2
,  which is the power in the

carrier and Ac
2a2

2
mn

2 t( ) , which is the power in the sidebands.  The 

efficiency of the modulation in defined as the ratio of the power in the
sidebands to the total power.
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Envelope Detection
An AM signal carries the message  (plus a constant) directly in its envelope.
An envelope detector is a simple electrical circuit designed to extract the
envelope from the AM signal.  On each positive half-cycle of the carrier,
the diode is forward biased for a short time during which the voltage across
the RC  parallel combination follows the AM signal, charging the capacitor.
As the AM signal descends from its peak, its voltage falls below the capacitor
voltage and the diode is reverse biased and is effectively an open circuit until
the next positive half-cycle of the AM signal.  While the diode is reverse biased
the voltage across the RC  parallel combination decays exponentially.  This
action causes the output voltage to be an approximate replica of the envelope 
of the AM signal.  This type of detection does not require a synchronized
local oscillator and is therefore an asynchronous detection method.
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Overmodulation
Modulation Signal

Demodulated Signal

Double-Sideband Amplitude Modulation
The envelope is defined as being non-negative.  So if a is too large
a problem called overmodulation occurs as illustrated below.  Simple 
detection of the envelope causes distortion of the original message.



Modulators and Transmitters

x t( ) xc t( )

Analog
Multiplier

Carrier

The electronic hardware to implement AM or DSB modulation can 
take any of several forms.  The most direct and obvious form is the 
product  modulator illustrated below for AM modulation.



Modulators and Transmitters
Another way of obtaining the product of two signals is to use a
square-law modulator.  This type of circuit takes advantage of
the inherent non-linearity of a solid-state device.  In the example
below the device is a field-effect transistor (FET).  
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Modulators and Transmitters

 

If the FET has a transfer characteristic vout = b1 vin+ b2 vin
2  and 

if vin t( ) = mn t( ) + cos 2π fct( ), then 

         vout t( ) = b1 mn t( ) + cos 2π fct( )⎡⎣ ⎤⎦ + b2 mn t( ) + cos 2π fct( )⎡⎣ ⎤⎦
2

         vout t( ) = b1 mn t( ) + b1 cos 2π fct( ) + b2 mn
2 t( ) + cos2 2π fct( ) + 2mn t( )cos 2π fct( )⎡⎣ ⎤⎦

         vout t( ) = b1 mn t( ) + b1 cos 2π fct( ) + b2 mn
2 t( ) + b2 cos2 2π fct( ) + 2b2 mn t( )cos 2π fct( )

         vout t( ) = b1 mn t( ) + b2 mn
2 t( ) + b2 cos2 2π fct( ) + b1 1+ 2 b2 /b1( )mn t( )⎡⎣ ⎤⎦cos 2π fct( )

         vout t( ) = b1 mn t( ) + b2 mn
2 t( ) + b2 cos2 2π fct( ) + Ac 1+ amn t( )⎡⎣ ⎤⎦cos 2π fct( )

Desired AM Wave
! "#### $####

where Ac = b1  and a = 2 b2 /b1( ).  



Modulators and Transmitters

vout t( ) = b1 mn t( ) + b2 mn
2 t( ) + b2 cos2 2π fct( ) + b1 1+ 2 b2 /b1( )mn t( )⎡⎣ ⎤⎦cos 2π fct( )

The Fourier transform of vout t( )  is
Vout f( ) = b1 Mn f( ) + b2 Mn f( )∗Mn f( ) + b2 / 2( ) δ f( ) + 1/ 2( ) δ f − 2 fc( ) +δ f + 2 fc( )⎡⎣ ⎤⎦{ }
                + b1 / 2( ) δ f − fc( ) +δ f + fc( )⎡⎣ ⎤⎦ + b2 Mn f − fc( ) + Mn f + fc( )⎡⎣ ⎤⎦

f
fc− fc 2 fc−2 fc fc +Wfc −W− fc −W − fc +W

b1 M f( )b2 M f( )∗X f( ) b2 M f − fc( )b2 M f + fc( )

b2 / 4( )δ f − 2 fc( )b2 / 4( )δ f + 2 fc( ) b1 / 2( )δ f + fc( ) b1 / 2( )δ f − fc( )
b2 / 2( )δ f( )

n
n
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Modulators and Transmitters

 

BPF xc t( )x t( )

+ +

−−

Carrier

The circuit below is a ring modulator.  When the carrier signal is positive
on the left side, the top and bottom diodes are forward biased and the inner 
diodes are reverse biased, effectively connecting the top of the left transformer
secondary to the top of the right transformer primary and the bottoms also
and xc t( )  = x t( ).  When the carrier signal is positive on the right side, the 
diodes all switch their bias to the opposite state and the tops and bottoms 
of the transformers are now cross connected making xc t( ) = −x t( ).



Modulators and Transmitters
The circuit below is a switching modulator.  The switch closes briefly every
1 / fc  seconds.  The tank circuit (the parallel RLC  circuit) on the right is tuned
to resonate at fc  Hz.  Every 1 / fc  seconds the tank circuit is hit with a pulse 
of energy and "rings" at its resonant frequency.  Then at the end of one cycle of 
ringing it is hit again the same way.  If the driving voltage is of constant amplitude 
the output signal is effectively a sinusoid.  The driving voltage is a constant plus 
the message signal.  It changes slowly (compared with the resonant frequency) so 
the overall effect is to AM modulate the sinusoid with the message signal.

 1:N  

V  
 fc  L  C  R v(t)

 x(t)



Suppressed-Sideband Amplitude Modulation

In DSB modulation the upper and lower sidebands are related through 
Hermitian symmetry and, therefore, they both contain all  of the message 
information.  So it should be possible to transmit all the message information 
using only one of the two sidebands.  This can be done by suppressing 
one of the sidebands and transmitting only the other sideband.  This type 
of modulation is called single-sideband suppressed-carrier (SSB) modulation.
SSB reduces the bandwidth requirement bya factor of two thus using frequency 
space more efficiently.



Suppressed-Sideband Amplitude Modulation

  

We will look at two methods for 
creating an SSB signal.  The first
method is sideband filtering.  A
lower sideband signal can be
produced by passing the DSB
signal through a filter whose
frequency response is

H f( ) = 1
2

sgn f + fc( )− sgn f − fc( )⎡⎣ ⎤⎦ ,

an ideal lowpass filter.

f 

1
2
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Suppressed-Sideband Amplitude Modulation

  

The Fourier transform of the DSB signal is 

             XDSB f( ) = 1
2

Ac M f + fc( ) + 1
2

Ac M f − fc( )
so the output of the lowpass filter is
Xc f( ) = H f( )XDSB f( )

Xc f( ) = 1
4

Ac

M f + fc( )sgn f + fc( ) + M f − fc( )sgn f + fc( )
−M f + fc( )sgn f − fc( )− M f − fc( )sgn f − fc( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

This can be rewritten in this form

Xc f( ) = 1
4

Ac

M f + fc( ) + M f − fc( )
+M f + fc( )sgn f + fc( )− M f − fc( )sgn f − fc( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥



Suppressed-Sideband Amplitude Modulation

   

We now inverse Fourier transform

Xc f( ) = 1
4

Ac

M f + fc( ) + M f − fc( )
+M f + fc( )sgn f + fc( )− M f − fc( )sgn f − fc( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

using m̂ t( ) F← →⎯ − jsgn f( )M f( )  and m t( )e j2π fct F← →⎯ M f − fc( )  
to yield

xc t( ) = 1
4

Ac m t( )e− j2π fct + m t( )e+ j2π fct + j m̂ t( )e− j2π fct − j m̂ t( )e j2π fct⎡⎣ ⎤⎦

xc t( ) = 1
2

Ac m t( )cos 2π fct( ) + m̂ t( )sin 2π fct( )⎡⎣ ⎤⎦

For upper sideband SSB the corresponding result is

xc t( ) = 1
2

Ac m t( )cos 2π fct( )− m̂ t( )sin 2π fct( )⎡⎣ ⎤⎦



Suppressed-Sideband Amplitude Modulation

The generation of an SSB signal, as presented so far, requires an 
ideal filter (one with vertical sides and a flat top).  Ideal filters don't
exist.  Real filters can have transition regions that are steep but not 
vertical and real filters can never have a perfectly flat top.  So if we 
use a real filter we can either
    1.    Set the filter transition region inside the sideband to be retained
           and lose some of the sideband information
or
    2.    Set the filter transition region inside the sideband to be removed
           retain some of the unwanted sideband
or
    3.    some combination of 1 and 2.



Suppressed-Sideband Amplitude Modulation
Fortunately, for many practical messages, the spectral content at very
low frequencies is very small.  This gives the designer of an SSB system
a little room to maneuver.  The transition region of the filter used to 
eliminate the unwanted sideband can be placed in the region around
the carrier frequency where the DSB signal has very little signal power.

X f( )

fW−W
ffcfc −W fc +W

Filter Transition Region
Xc f( )



Suppressed-Sideband Amplitude Modulation

 

Another method for generating SSB is suggested by the relationship
      xc t( ) = Ac / 2( )m t( )cos 2π fct( )∓ Ac / 2( )m̂ t( )sin 2π fct( ).
This is written as though SSB consists of the sum of two DSB signals,
with carriers that are in quadrature (phase shifted by 90°) and modulated
by x t( )  and x̂ t( ).  That could be accomplished (theoretically) by the 
system below where HQ f( )  is a quadrature phase shifter.  
Unfortunately a quadrature phase shifter is an idealization that can 
never quite be achieved in practice.

m t( ) xc t( )

HQ f( )

−90°

m̂ t( )

Ac
2
cos 2π fct( )

Ac
2
m t( )cos 2π fct( )

Ac
2
m t( )sin 2π fct( )



Suppressed-Sideband Amplitude Modulation
A third, more practical, method is Weaver's SSB modulator, diagrammed below.  
Let x t( ) = cos 2π fmt( )  with 0 <  fm <W  (tone modulation).  Then xc t( ) = v1 t( ) ± v2 t( )  
where v1 t( )  is the signal from the upper part of the loop and v2 t( )  is the signal from the 
lower part.  The input signal to LPF1 is 

cos 2π fmt( )cos 2πWt / 2( ) = 1 / 2( ) cos 2π fm −W / 2( )t( ) + cos 2π fm +W / 2( )t( )⎡⎣ ⎤⎦
Since the filter cuts off at W / 2 its output signal is 1 / 2( ) cos 2π fm −W / 2( )t( )⎡⎣ ⎤⎦.

m t( ) xc t( )
−90° −90°

f =W / 2

LPF1
B =W / 2

LPF2
B =W / 2

f = fc ±W / 2



Suppressed-Sideband Amplitude Modulation
The LPF1 output signal is multiplied by cos 2π fc ±W / 2( )t( ).  Therefore, 

v1 t( ) = 1/ 4( ) cos 2π fc ±W / 2 + fm −W / 2( )t( ) + cos 2π fc ±W / 2 − fm +W / 2( )t( )⎡⎣ ⎤⎦
The input signal to the LPF2 is cos 2π fmt( )sin 2πWt / 2( )  and (using similar reasoning)

v2 t( ) = 1/ 4( ) cos 2π fc ±W / 2 + fm −W / 2( )t( )− cos 2π fc ±W / 2 − fm +W / 2( )t( )⎡⎣ ⎤⎦.

Taking the upper signs, xc t( ) = 1/ 2( )cos 2π fc + fm( )t( ).  This is a USB signal.  If we

instead take the lower signs we get xc t( ) = 1/ 2( )cos 2π fc − fm( )t( ), an LSB signal.

x t( ) xc t( )
−90° −90°

f =W / 2

LPF1
B =W / 2

LPF2
B =W / 2

f = fc ±W / 2



Frequency Conversion and Demodulation
So far we have described several ways of modulating a carrier with a message
signal.  Now we turn to demodulation, the recovery of the message from the
modulated carrier.  An essential process in most demodulation methods is
frequency conversion.  Consider a DSB signal of the form x t( )cos 2π f1t( ).
If we multiply it by cos 2π f2t( )  we get

   x t( )cos 2π f1t( )cos 2π f2t( ) = 1/ 2( ) cos 2π f1 − f2( )t( ) + cos 2π f1 + f2( )t( )⎡⎣ ⎤⎦
The DSB spectrum has been shifted in frequency up and down by f2  resulting
in sum and difference spectral components.  Devices that do this operation
are called frequency converters or mixers and the operation is called
heterodyning or mixing.  The "hetero" prefix refers to two things that are
different, in this case f1  and f2 .  If we make f1  and f2  the same, heterodyning
becomes a special case called homodyning in which the prefix "homo" refers to
two things that are the same.  The most common current uses of the prefixes "hetero" 
and "homo" in everyday speech are in the words "heterosexual" and "homosexual" 
where they have the same general significance.



Frequency Conversion and Demodulation
A basic process in many demodulation systems is synchronous detection.
In synchronous detection the received signal is multiplied by the signal from
a local oscillator that is at the same frequency as the carrier of the received
signal and in phase with that carrier (as received).  Let the received signal be
represented by

               xc t( ) = Kc + Kµ x t( )⎡⎣ ⎤⎦cos ω ct( )− Kµ xq t( )sin ω ct( )
If Kc = 0, we have a suppressed carrier.  If xq t( ) = 0,  we have double sideband.
This form can represent the types of modulation we have seen so far.  So the
demodulation process begins with the product 

xc t( )ALO cos ω ct( ) = Kc + Kµ x t( )⎡⎣ ⎤⎦cos ω ct( )− Kµ xq t( )sin ω ct( ){ }ALO cos ω ct( )
xc t( )ALO cos ω ct( ) = ALO Kc cos2 ω ct( ) + Kµ x t( )cos2 ω ct( )− Kµ xq t( )cos ω ct( )sin ω ct( ){ }
xc t( )ALO cos ω ct( ) = ALO / 2( )

Kc + Kµ x t( ) + Kc cos 2ω ct( ) + Kµ x t( )cos 2ω ct( )
−Kµ xq t( )sin 2ω ct( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪



Frequency Conversion and Demodulation
From the previous slide,

xc t( )ALO cos ω ct( ) = ALO / 2( )
Kc + Kµ x t( ) + Kc cos 2ω ct( ) + Kµ x t( )cos 2ω ct( )
−Kµ xq t( )sin 2ω ct( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
We can filter out the double-frequency components of this signal leaving

yD t( ) = KD Kc + Kµ x t( )⎡⎣ ⎤⎦, where KD  is a constant accounting for any gain or

attenuation in the multiplication/filtering process.  Since the local oscillator and
the carrier frequency are the same, this is a case of homodyning.  We can, if desired, 
also filter out the KDKc  constant component of the signal with a blocking capacitor 
or other suitable DC blocking filter.  This process seems simple enough until we come
to the problem of how to generate a local oscillator that is locked in both frequency
and phase to the carrier of the incoming signal.  If the incoming signal is DSB, the
carrier has been suppressed.  So locking to it is non-trivial.  Sometimes a small
pilot  carrier is added to the transmitted signal to facilitate detection of and locking
on to the carrier.



Frequency Conversion and Demodulation
There are many techniques for generating a local oscillator that is phase-locked
to the incoming carrier but there is always at least a little asynchronism.  Let the
local oscillator be cos ω ct + ′ω t + ′φ( )  where ′ω  accounts for frequency error and

′φ  accounts for phase error.  Let the signal be DSB with tone modulation cos ωmt( ).  
Then xc t( ) = Kµ cos ωmt( )cos ω ct( )  and, multiplying by the local oscillator, we get

Kµ cos ωmt( )cos ω ct( )cos ω ct + ′ω t + ′φ( )
                              = Kµ / 2( ) cos ωmt( )cos ′ω t + ′φ( ) + cos ωmt( )cos 2ω ct + ′ω t + ′φ( )⎡⎣ ⎤⎦
After lowpass filtering (possibly with gain or attenuation) this becomes
yD t( ) = KD cos ωmt( )cos ′ω t + ′φ( )

      yD t( ) =
KD / 2( ) cos ωm − ′ω( )t( )⎡⎣ ⎤⎦ + cos ωm + ′ω( )t( )   ,  ′φ = 0

KD cos ωmt( )cos ′φ( )   ,  ′ω =0

⎧
⎨
⎪

⎩⎪
The frequency error causes a shift in the signal's frequency both up an down by ′f .
The phase error causes a loss in signal power.  If ′φ = 90°,  the detected signal is zero.



Frequency Conversion and Demodulation

 

Now let the signal be SSB with xc t( ) = cos ω c ±ωm( )t( )
Multiplying by the local oscillator, we get

cos ω c ±ωm( )t( )cos ω ct + ′ω t + ′φ( )
                              = 1 / 2( ) cos ′ω t + ′φ ∓ωmt( ) + cos 2ω ct + ′ω t + ′φ ±ωmt( )⎡⎣ ⎤⎦
After lowpass filtering (possibly with gain or attenuation) this becomes
      yD t( ) = KD cos ′ω t + ′φ ∓ωmt( ) = KD cos ±ωmt − ′ω t + ′φ( )( )
Multiplying the cosine argument through by ±1 we get

                      yD t( ) = KD

cos ωm ∓ ′ω( )t( )   ,  ′φ = 0

cos ωmt ∓ ′φ( )        ,  ′ω = 0

⎧
⎨
⎪

⎩⎪
The frequency error causes a shift in the frequency of the message either up or down 
by ′f .  The phase error causes a phase shift in the signal.  For tone modulation this 
is not a problem.  But for a more general signal, the different frequencies would all 
experience the same phase shift, therefore different time delays, causing delay distortion.



Bandpass Signals and Systems

R

C Lv  (t)in
v   (t)out

-

+

-

+

The simplest and most commonly used bandpass system is the parallel resonant RLC  
circuit below.  Its frequency response is

H f( ) = ZLC f( )
ZLC f( ) + R  where ZLC f( ) = j2π fL / j2π fC

j2π fL +1 / j2π fC
= j2π fL

1− 2π f( )2 LC

and ZLC f( ) = j2π fL
1− f / f0( )2 where f0 =

1
2π LC

H f( ) =

j2π fL
1− f / f0( )2

j2π fL
1− f / f0( )2 + R

= 1

1+ jQ f
f0
− f0
f

⎛
⎝⎜

⎞
⎠⎟

  where Q = R C
L

f0  is the resonant  cyclic frequency and Q is the quality factor. 



Bandpass Signals and Systems

H f( ) = 1

1+ jQ f
f0
− f0
f

⎛
⎝⎜

⎞
⎠⎟

  

The maximum response occurs when  f = f0  and H f0( ) = 1.  The -3 dB bandwidth

is defined by the frequencies at which H f( ) 2 = 1 / 2.

H f( ) 2 = 1

1+ jQ f
f0
− f0
f

⎛
⎝⎜

⎞
⎠⎟

× 1

1− jQ f
f0
− f0
f

⎛
⎝⎜

⎞
⎠⎟

= 1

1+Q2 f
f0
− f0
f

⎛
⎝⎜

⎞
⎠⎟

2 = 1
2



Bandpass Signals and Systems

Q2 f
f0
− f0
f

⎛
⎝⎜

⎞
⎠⎟

2

= 1 ⇒  f / f0( )2 − 2 − 1
Q2 + f0 / f( )2 = 0

f 2

f0
2

⎛
⎝⎜

⎞
⎠⎟

2

− 2 + 1
Q2

⎛
⎝⎜

⎞
⎠⎟

f 2

f0
2

⎛
⎝⎜

⎞
⎠⎟
+1= 0 ⇒ f 2

f0
2 =

2 +1 /Q2( ) ± 2 +1 /Q2( )2
− 4

2

f 2

f0
2 = 1+ 1

2Q2 ± 4 /Q2 +1 /Q4

4
= 1+ 1

2Q2 ± 4Q2 +1
4Q4 = 1+

1± 4Q2 +1
2Q2

For large Q, 4Q2 >>1  and 2Q >>1 and f
2

f0
2 ≅ 1± 1

Q
⇒ f 2 ≅ f0

2 1±1 /Q( )

∴ f ≅ ± f0 1±1 /Q .  Again, for large Q,  1±1 /Q ≅ 1±1 / 2Q and f ≅ ± f0 1±1 / 2Q( )
So the 3 dB bandwidth B is B ≅ f0 /Q if Q is large.  As a practical matter the Q of this
type of tuned circuit is between 10 and 100.  Also, as a practical matter, the
fractional bandwidth B / f0  should be in the range 0.01< B / f0 < 0.1 to avoid some
design problems.  Therefore large bandwidths require high center frequencies.



Bandpass Signals and Systems

There are many definitions of "bandwidth".

Absolute bandwidth 
The band of frequencies outside of which there is absolutely
no signal energy.  This only applies to ideal situations in which we have signals
that are unlimited in time and filters that are ideal.
Null - to - Null Bandwidth
The spacing between zero crossings of a filter or the spectrum of a signal.
-3 dB Bandwidth
The frequency range between frequencies at which a signal's power is down
3 dB from its maximum (1/2 power points) or at which a filter's power gain
is down 3 dB from its maximum.

There are many other definitions for various purposes.


