
Signal Transmission and Filtering



LTI means linear and time - invariant.

Linear means that if we multiply the excitation of the system 
by a constant we multiply the response by the same constant
It also means that the response to multiple excitations can be 
found by finding the responses to the individual excitations and 
adding them.

Response of LTI Systems



Response of LTI Systems

Time invariant  means that if we excite the system and get a 
response at one time and then excite the system at a different 
time, the response is the same except shifted by the difference 
in time.  In other words, the way the system responds to an
excitation does not change with time.  Hence the term "time
invariant".



An LTI system is completely characterized by its impulse response
h t( ).  The response y t( )of an LTI system to an excitation x t( )  is the 
convolution of x t( )  with h t( ).

                        y t( ) = x t( )∗h t( ) = x λ( )h t − λ( )dλ
−∞

∞

∫

Response of LTI Systems



 

The Fourier transform of the impulse response is frequency response.  
(The book calls it transfer function.)

                                 H f( ) = h t( )e− j2π ft dt
−∞

∞

∫
For any physically realizable system H f( )  has Hermitian symmetry.  
That is, H f( ) = H* − f( )  and that fact can be used to show that its 
magnitude is an even function and its phase can be expressed as an 
odd function.
                  H f( ) = H − f( )  and H f( ) = −H − f( )
(In the book, arg H f( ) = − arg  H − f( ).)

Response of LTI Systems



 

If the excitation x t( )  is a phasor or complex sinusoid of 
frequency f0 ,  of the form
                                   x t( ) = Axe

jφxe j2π f0t

then the response y t( )  is of the form
                      y t( ) = H f0( )x t( ) = H f0( )Axe

jφxe j2π f0t .
The response can also be written in the form

y t( ) = Aye
jφye j2π f0t  where Ay = H f0( ) Ax  and φy = φx +H f0( ).

Applying this to real sinusoids, if x t( ) = Ax cos 2π f0t +φx( )  then

y t( ) = Ay cos 2π f0t +φy( ).

Response of LTI Systems



 

If the Fourier transform of the excitation x t( )  is X f( )  and the
Fourier transform of the response y t( )  is Y f( ),  then
Y f( ) = H f( )X f( )  and Y f( ) = H f( ) X f( )  and 
Y f( ) = H f( ) +X f( ).
If x t( )  is an energy signal (finite signal energy) then, from Parseval's

theorem Ex = X f( ) 2 df
−∞

∞

∫  and Ey = Y f( ) 2 df
−∞

∞

∫ = H f( ) 2 X f( ) 2 df
−∞

∞

∫

Response of LTI Systems



Signal Distortion in Transmission

 

Distortion means changing the shape of a signal.  Two
changes to a signal are not considered distortion, multiplying
it by a constant and shifting it in time.  The impulse response
of an LTI system that does not distort is of the general form
h t( ) = Kδ t − td( ). where K  and td  are constants.  The corresponding 

frequency response of such a system is H f( ) = Ke− j2π ftd .  
H f( ) = K  and H f( ) = −2π ftd .  If H f( ) ≠ K  the system has 
amplitude distortion.  If H f( ) ≠ −2π ftd  the system has delay 
or phase distortion.  Both of these types of distortion are classified 
as linear distortions.



Signal Distortion in Transmission

 

If H f( ) = −2π ftd , then td = −
H f( )

2π f
 and td  is a constant

if  H f( ) = −Kf  (K  a constant).  If td  is not a constant,
phase distortion results.   

Frequency response of a 
distortionless LTI system

→



Signal Distortion in Transmission

Most real systems do not have simple delay.  They have phases
that are not linear functions of frequency.



 

For a bandpass signal with a small bandwidth W compared to
its center frequency fc ,  we can model the frequency response
phase variation as approximately linear over the frequency ranges
fc −W < f < fc +W ,  and the frequency response magnitude as
approximately constant, of the form 

           H f( ) ≅ Ae− j2π ftg e jφ0   ,       fc −W < f < fc +W
e− jφ0  ,  − fc −W < f < − fc +W

⎧
⎨
⎩⎪

where φ0 = H fc( ).

Signal Distortion in Transmission



If we now let the bandpass signal be
                  x t( )  = x1 t( )cos 2π fct( ) + x2 t( )sin 2π fct( )
Its Fourier transform is 

X f( ) =
X1 f( )∗ 1 / 2( ) δ f − fc( ) +δ f + fc( )⎡⎣ ⎤⎦
+X2 f( )∗ j / 2( ) δ f + fc( )−δ f − fc( )⎡⎣ ⎤⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

X f( ) = 1 / 2( ) X1 f − fc( ) + X1 f + fc( )⎡⎣ ⎤⎦ + j X2 f + fc( )− X2 f − fc( )⎡⎣ ⎤⎦{ }
The frequency response is modeled by 

           H f( ) ≅ Ae− j2π ftg e jφ0   ,       fc −W < f < fc +W
e− jφ0  ,  − fc −W < f < − fc +W

⎧
⎨
⎩⎪

then the Fourier transform of the response y t( )  is

Y f( ) ≅ H f( )X f( ) = A / 2( )
X1 f − fc( )e− j 2π ftg −φ0( ) + X1 f + fc( )e− j 2π ftg +φ0( )

+ jX2 f + fc( )e− j 2π ftg +φ0( ) − jX2 f − fc( )e− j 2π ftg −φ0( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Signal Distortion in Transmission



 

Y f( ) ≅ H f( )X f( ) = A / 2( )
X1 f − fc( )e− j 2π ftg −φ0( ) + X1 f + fc( )e− j 2π ftg +φ0( )

+ jX2 f + fc( )e− j 2π ftg +φ0( ) − jX2 f − fc( )e− j 2π ftg −φ0( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Inverse Fourier transforming, using the time and frequency shifting properties,

           y t( ) ≅ A / 2( )
e jφ0 x1 t − tg( )e j2π fct + e− jφ0 x1 t − tg( )e− j2π fct
+ je− jφ0 x2 t − tg( )e− j2π fct − je jφ0 x2 t − tg( )e j2π fct

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

                y t( ) ≅ A / 2( )
x1 t − tg( ) e j 2π fct+φ0( ) + e− j 2π fct+φ0( )⎡⎣ ⎤⎦

+x2 t − tg( ) j e− j 2π fct+φ0( ) − e j 2π fct+φ0( )⎡⎣ ⎤⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

       y t( ) ≅ A x1 t − tg( )cos 2π fct +φ0( ) + x2 t − tg( )sin 2π fct +φ0( ){ }
     y t( ) ≅ A x1 t − tg( )cos 2π fc t − td( )( ) + x2 t − tg( )sin 2π fc t − td( )( ){ }
where td = − φ0

2π fc
= −
H fc( )

2π fc
 is known as the phase or carrier delay.

Signal Distortion in Transmission



Signal Distortion in Transmission

 

From the approximate form of the system frequency response 

           H f( ) ≅ Ae− j2π ftg e jφ0   ,       fc −W < f < fc +W
e− jφ0  ,  − fc −W < f < − fc +W

⎧
⎨
⎩⎪

we get

           H f( ) ≅
−2π ftg +φ0   ,       fc −W < f < fc +W
−2π ftg −φ0  ,  − fc −W < f < − fc +W

⎧
⎨
⎩⎪

If we differentiate both sides w.r.t. f  we get

           d
df
H f( )( ) ≅ −2πtg   ,       fc −W < f < fc +W

or

          tg ≅ − 1
2π

d
df
H f( )( )  ,       fc −W < f < fc +W

tg  is known as the group delay.



Signal Distortion in Transmission
Phase and Group Delay



Signal Distortion in Transmission

Linear distortion can be corrected (theoretically) by an equalization
network.  If the communication channel's frequency response is HC f( )
and it is followed by an equalization network with frequency response
Heq f( )  then the overall frequency response is H f( ) = HC f( )Heq f( )
and the overall frequency response will be distortionless if 
H f( ) = HC f( )Heq f( ) = Ke− jωtd .  Therefore, the frequency response

of the equalization network should be Heq f( ) = Ke− jωtd

HC f( ) .  It is very rare

in practice that this can be done exactly but in many cases an excellent
approximation can be made that greatly reduces linear distortion.



Signal Distortion in Transmission
Communication systems can also have nonlinear distortion caused by
elements in the system that are statically nonlinear.  In that case
the excitation and response are related through a transfer characteristic
of the form y t( ) = T x t( )( ).  For example, some amplifiers experience
a "soft" saturation in which the ratio of the response to the excitation 
decreases with an increase in the excitation level.



Signal Distortion in Transmission

 

The transfer characteristic is usually not a simple known function
but can often be closely approximated by a polynomial curve fit
of the form y t( ) = a1 x t( ) + a2 x2 t( ) + a3 x3 t( ) +.  The Fourier
transform of y t( )  is

Y f( ) = a1 X f( ) + a2 X f( )∗X f( ) + a3 X f( )∗X f( )∗X f( ) +

In a linear system if the excitation is bandlimited, the response has
the same band limits.  The response cannot contain frequencies not
present in the excitation.  But in a nonlinear system of this type
if X f( )  contains a range of frequencies, X f( )∗X f( )  contains
a greater range of frequencies and X f( )∗X f( )∗X f( )  contains
a still greater range of frequencies.



Signal Distortion in Transmission

If X f( )∗X f( )  contains frequencies that are all outside the range of 
X f( )  then a filter can be used to eliminate them.  But often X f( )∗X f( )
contains frequencies both inside and outside that range, and those inside
the range cannot be filtered out without affecting the spectrum of X f( ).
As a simple example of the kind of nonlinear distortion that can occur 
let x t( ) = A1 cos ω1t( ) + A2 cos ω2t( )  and let y t( ) = x2 t( ).  Then

y t( ) = A1 cos ω1t( ) + A2 cos ω2t( )⎡⎣ ⎤⎦
2

      = A1
2 cos2 ω1t( ) + A2

2 cos2 ω2t( ) + 2A1A2 cos ω1t( )cos ω2t( )
       = A1

2 / 2( ) 1+ cos 2ω1t( )⎡⎣ ⎤⎦ + A2
2 / 2( ) 1+ cos 2ω2t( )⎡⎣ ⎤⎦

         + A1A2 cos ω1 −ω2( )t( ) + cos ω1 +ω2( )t( )⎡⎣ ⎤⎦



Signal Distortion in Transmission

y t( )  = A1
2 / 2( ) 1+ cos 2ω1t( )⎡⎣ ⎤⎦ + A2

2 / 2( ) 1+ cos 2ω2t( )⎡⎣ ⎤⎦
         + A1A2 cos ω1 −ω2( )t( ) + cos ω1 +ω2( )t( )⎡⎣ ⎤⎦
y t( )  contains frequencies 2ω1, 2ω2 ,  ω1 −ω2  and ω1 +ω2 .  The
frequencies ω1 −ω2  and ω1 +ω2  are called intermodulation
distortion products.  When the excitation contains more 
frequencies (which it usually does) and the nonlinearity is of
higher order (which it often is), many more intermodulation 
distortion products occur.  All systems have nonlinearities 
and intermodulation disortion will occur.  But, by careful design, 
it can often be reduced to a negligible level.



Transmission Loss and Decibels
Communication systems affect the power of a signal.  If the 
signal power at the input is Pin  and the signal power at the 
output is Pout ,  the power gain g of the system is g = Pout / Pin .  
It is very common to express this gain in decibels.  A decibel 
is one-tenth of a bel, a unit named in honor of Alexander
Graham Bell.  The system gain g expressed in decibels would
be gdB = 10 log10 Pout / Pin( ).

      
g 0.1 1 10 100 1000 10,000 100,000
gdB −10 0 10 20 30 40 50

Because gains expressed in dB are logarithmic, they compress the
range of numbers.  If two systems are cascaded, the overall power
gain is the product of the two individual power gains g = g1g2 .  
The overall power gain expressed in dB is the sum of the two power
gains expressed in dB , gdB = g1,dB + g2,dB .



Transmission Loss and Decibels

The decibel was defined based on a power ratio, but it is often
used to indicate the power of a single signal.  Two common types
of power indication of this type are dBW and dBm.  dBW is
the power of a signal with reference to one watt.  That is, a one
watt signal would have a power expressed in dBW of 0 dBW.  dBm
is the power of a signal with reference to one milliwatt.  A 20 mW
signal would have a power expressed in dBm of 13.0103 dBm.  Signal
power gain as a function of frequency is the square of the magnitude 

of frequency response H f( ) 2 .  Frequency response magnitude is often 

expressed in dB also.  H f( )
dB
= 10 log10 H f( ) 2( ) = 20 log10 H f( )( ).



Transmission Loss and Decibels

A communication system generally consists of components
that amplify a signal and components that attenuate a signal.
Any cable, optical or copper, attenuates the signal as it 
propagates.  Also there are noise processes in all cables and
amplifiers that generate random noise.  If the power level 
gets too low, the signal power becomes comparable to the noise 
power and the fidelity of analog signals is degraded too far or the
detection probability for digital signals becomes too low.  So, 
before that signal level is reached, we must boost the signal power
back up to transmit it further.  Amplifiers used for this purpose
are called repeaters.



Transmission Loss and Decibels

On a signal cable of 100's or 1000's of kilometers many repeaters
will be needed.  How many are needed depends on the attenuation
per kilometer of the cable and the power gains of the repeaters.
Attenuation will be symbolized by L = 1 / g = Pin / Pout  or 
LdB = −gdB = 10 log10 Pin / Pout( )   ,  (L  for "loss".)  For optical and copper

cables the attenuation is typically exponential and Pout = 10−αl /10Pin  where
l  is the length of the cable and α  is the attenuation coefficient  in dB/unit
length.  Then L = 10αl /10  and LdB =αl.



Filters and Filtering
An ideal bandpass filter has the frequency response

                        H f( ) = Ke− jωtd   ,  fl ≤ f ≤ fh
0           ,  otherwise

⎧
⎨
⎩

where fl  is the lower cutoff frequency and fh  is the upper cutoff
frequency and K  and td  are constants.  The filter's bandwidth is 
B = fh − fl .  An ideal lowpass filter has the same frequency response 
but with fl = 0 and B = fh .  An ideal highpass filter has the same 
frequency response but with  fh →∞ and B→∞.  These filters are 
called ideal because they cannot actually be built.  They cannot be 
built because they are non-causal.  But they are useful fictions for 
introducing in a simplified way some of the concepts of communication 
systems.



Filters and Filtering

 

Strictly speaking a signal cannot be both bandlimited and timelimited.
But many signals are almost bandlimited and timelimited.  That is,
many signals have very little signal energy outside a defined bandwidth
and, at the same time, very little signal energy outside a defined time
range.  A good example of this is a Gaussian pulse

                             x t( ) = e−π t2 F← →⎯ X f( ) = e−π f 2

Strictly speaking, this signal is not bandlimited or timelimited.  The 

total signal energy of this signal is 1/ 2  .  99% of its energy lies
in the time range − 0.74 < t < 0.74  and in the frequency range 
−0.74 < f < 0.74.  So in many practical calculations this signal could
be considered both bandlimited and timelimited with very little error.



Filters and Filtering
Real filters cannot have constant amplitude response and linear
phase response in their passbands like ideal filters.  



Filters and Filtering
There are many types of standardized filters.  One very common and
useful one is the Butterworth filter.  The frequency response of a

lowpass Butterworth filter is of the form H f( )  = 1

1+ f / B( )2n
 where 

n is the order of the filter.  As the order is increased, its magnitude 
response approaches that of an ideal filter, constant in the passband 
and zero outside the passband.  (Below is
illustrated the magnitude frequency response 
of a normalized lowpass Butterworth filter 
with a corner frequency of 1 radian/s.)



Filters and Filtering
The Butterworth filter is said to be maximally flat  in its passband.  It is given 
this description because the first n derivatives of its magnitude frequency 
response are all zero at f = 0 (for a lowpass filter).  The passband of a lowpass 
Butterworth filter is defined as the frequency at which its magnitude frequency 

response is reduced from its maximum by a factor of 1/ 2.  This is also known 
as its half -power bandwidth because, at this frequency the power gain of the filter 
is half its maximum value.



Filters and Filtering

 

The step response of a filter is

                 h−1 t( ) = h λ( )u t − λ( )dλ
−∞

∞

∫ = h λ( )dλ
−∞

t

∫
(g t( )  in the book).  That is, the step response is the integral of the impulse 
response.  The impulse response of a unity-gain ideal lowpass filter with
no delay is h t( ) = 2Bsinc 2Bt( )  where B is its bandwidth.  Its step response 
is therefore

    h−1 t( ) = 2Bsinc 2Bλ( )dλ
−∞

t

∫ = 2B sinc 2Bλ( )dλ
−∞

0

∫ + sinc 2Bλ( )dλ
0

t

∫
⎡

⎣
⎢

⎤

⎦
⎥

This result can be further simplified by using the definition of the sine 
integral function

                     Si θ( )  sin α( )
α

dα
0

θ

∫ = π sinc λ( )dλ
0

θ /π

∫



Filters and Filtering
The Sine Integral Function



Filters and Filtering

    h−1 t( ) = 2B sinc 2Bλ( )dλ
−∞

0

∫ + sinc 2Bλ( )dλ
0

t

∫
⎡

⎣
⎢

⎤

⎦
⎥

Let 2Bλ =α.  Then h−1 t( ) = sinc α( )dα
−∞

0

∫ + sinc α( )dα
0

2Bt

∫ .

Using the fact that sinc is an even function, sinc α( )dα
−∞

0

∫ = sinc α( )dα
0

∞

∫ .

Then, using Si θ( ) = π sinc α( )dα
0

θ /π

∫  and Si ∞( ) = π / 2,we get 

             h−1 t( ) = Si ∞( )
π

+ 1
π

Si 2πBt( ) = 1
2
+ 1
π

Si 2πBt( )



Filters and Filtering

                              h−1 t( ) = 1
2
+ 1
π

Si 2πBt( )
This step response has precursors,  overshoot, and oscillations 
(ringing).  Risetime is defined as the time required to move from
10% of the final value to 90% of the final value.  For this ideal
lowpass filter the rise time is 0.44/B. The rise time for a single-pole, 
lowpass filter is 0.35/B.

Step response of an Ideal
Lowpass Filter with B = 1

→



Filters and Filtering
The response of an ideal lowpass filter to a rectangular pulse of width τ  is

 y t( ) = h−1 t( )− h−1 t −τ( ) = 1
π

Si 2πBt( )− Si 2πB t −τ( )( )⎡⎣ ⎤⎦.

From the graph (in which B = 1) we see that, to reproduce the 
rectangular pulse shape, even very crudely, requires a bandwidth
much greater than 1/τ .  If we have a pulse train with pulse widths
τ  and spaces between pulses also τ  and we 
want to simply detect whether or not a pulse 
is present at some time, we will need at least 
B ≥1 / 2τ .  If the bandwidth is any lower the 
overlap between pulses makes them very 
hard to resolve.



Quadrature Filters and Hilbert Transforms

 

A quadrature filter is an allpass network that shifts the phase of
positive frequency components by − 90° and negative frequency
components by + 90°.  Its frequency response is therefore

                       HQ f( ) = − j   ,  f > 0
  j    ,  f < 0

⎧
⎨
⎩

⎫
⎬
⎭
= − j sgn f( ).

Its magnitude is one at all frequencies, therefore an even function
of  f  and its phase is an odd function of  f .  The inverse Fourier
transform of HQ f( )  is the impulse response hQ t( ) = 1 /πt.  The Hilbert
transform x̂ t( )  of a signal x t( )  is defined as the response of a 

quadrature filter to x t( ).  That is x̂ t( ) = x t( )∗hQ t( ) = 1
π

x λ( )
t − λ

dλ
−∞

∞

∫ .

                                    F x̂ t( )( ) = − j sgn f( )X f( )



Quadrature Filters and Hilbert Transforms
The impulse response of a quadrature filter hQ t( ) = 1 /πt  is non-causal.
That means it is physically unrealizable.  Some important properties of
the Hilbert transform are
1.    The Fourier transforms of a signal and its Hilbert transform have 
       the same magnitude.  Therefore the signal and its Hilbert transform
      have the same signal energy.
2.    If x̂ t( )  is the Hilbert transform of x t( )  then − x t( )  is the Hilbert
       transform of x̂ t( ).
3.    A signal x t( )  and its Hilbert transform are orthogonal on the entire

       real line.  That means for energy signals x t( ) x̂ t( )dt
−∞

∞

∫ = 0 and for

       power signals lim
T→∞

1
2T

x t( ) x̂ t( )dt
−T

T

∫ = 0.



Quadrature Filters and Hilbert Transforms
The Hilbert transform will appear later in the exploration of single-sideband
modulation.  Let g t( )  be a real signal and let g+ t( ) = 1 / 2( ) g t( ) + j ĝ t( )⎡⎣ ⎤⎦  and

let g− t( ) = 1 / 2( ) g t( )− j ĝ t( )⎡⎣ ⎤⎦.  Now look at their Fourier transforms.

G+ f( ) = 1 / 2( ) G f( ) + j − j sgn f( )( )G f( )⎡⎣ ⎤⎦ = 1 / 2( )G f( ) 1+ sgn f( )⎡⎣ ⎤⎦ = G f( )u f( )
G− f( ) = 1 / 2( ) G f( )− j − j sgn f( )( )G f( )⎡⎣ ⎤⎦ = 1 / 2( )G f( ) 1− sgn f( )⎡⎣ ⎤⎦ = G f( )u − f( )
So G+ f( )  is the positive-frequency half 
of G f( )  and G− f( )  is the negative-
frequency half of G f( ).  This separation 
of the spectrum of a signal into two halves
will be useful in describing single-sideband 
modulation later.



Quadrature Filters and Hilbert Transforms

 

g t( ) ĝ t( )
a1 g1 t( ) + a2 g2 t( );  a1,a2 ∈ a1 ĝ1 t( ) + a2 ĝ2 t( )

h t − t0( ) ĥ t − t0( )
h at( );a ≠ 0 sgn a( ) ĥ at( )
d
dt

h t( )( ) d
dt

ĥ t( )( )
δ t( ) 1

πt
e jt − je jt

e− jt je− jt

cos t( ) sin t( )

rect t( ) 1
π

ln 2t +1
2t −1

sinc t( ) πt / 2( )sinc2 t / 2( ) = sin πt / 2( )sinc t / 2( )
1

1+ t 2
t

1+ t 2



  

The distribution function of a random variable X  is the
probability that it is less than or equal to some value,
as a function of that value.
                                 FX x( ) = P X ≤ x⎡⎣ ⎤⎦
Since the distribution function is a probability it must satisfy
the requirements for a probability.
                         0 ≤ FX x( ) ≤1 , − ∞ < x < ∞

                      P x1 < X ≤ x2⎡⎣ ⎤⎦ = FX x2( )− FX x1( )
FX x( )  is a monotonic function and its derivative is never negative.

Distribution Functions



Distribution Functions

A possible distribution function for a continuous random
variable.



   

The derivative of the distribution function is the probability 
density function (PDF)

                                pX x( ) ≡ d
dx

FX x( )( )
Probability density can also be defined by
                         pX x( )dx = P x < X ≤ x + dx⎡⎣ ⎤⎦
Properties

          pX x( ) ≥ 0 , − ∞ < x < +∞            pX x( )dx
−∞

∞

∫ = 1

         FX x( ) = pX λ( )dλ
−∞

x

∫         P x1 < X ≤ x2⎡⎣ ⎤⎦ = pX x( )dx
x1

x2

∫

Probability Density



Expectation and Moments

  

The first moment of a random variable is its expected value

E X( ) = x pX x( )dx
−∞

∞

∫ .  The second moment of a random variable 

is its mean-squared value (which is the mean of its square, not the 
square of its mean).

                                      E X 2( ) = x2 pX x( )dx
−∞

∞

∫



Expectation and Moments

   

A central moment  of a random variable is the moment of
that random variable after its expected value is subtracted.

         E X − E X( )⎡⎣ ⎤⎦
n⎛

⎝
⎞
⎠ = x − E X( )⎡⎣ ⎤⎦

n
pX x( )dx

−∞

∞

∫
The first central moment is always zero.  The second central
moment (for real-valued random variables) is the variance,

        σ X
2 = E X − E X( )⎡⎣ ⎤⎦

2⎛
⎝

⎞
⎠ = x − E X( )⎡⎣ ⎤⎦

2
pX x( )dx

−∞

∞

∫
The positive square root of the variance is the standard
deviation.



Positively Correlated 
Sinusoids with

Non-Zero Mean

Uncorrelated Sinusoids 
with Non-Zero Mean

Negatively  Correlated 
Sinusoids with 
Non-Zero Mean

Correlation



 

Let v t( )  be a power signal, not necessarily real-valued or periodic, but
with a well-defined average signal power

                      Pv  v t( ) 2 = v t( )v* t( ) ≥ 0

where ⋅  means "time average of" and mathematically means

                          z t( ) = lim
T→∞

1
T

z t( )dt
−T /2

T /2

∫ .

Time averaging has the properties  z* t( ) = z t( ) *   ,  z t − td( ) = z t( )   for 

any td  and a1 z1 t( ) + a2 z2 t( ) = a1 z1 t( ) + a2 z2 t( ) .  If v t( )  and w t( )  are 

power signals, v t( )w* t( )  is the scalar product  of v t( )  and w t( ).  The 
scalar product is a measure of the similarity between two signals.

Correlation



Let z t( ) = v t( )− aw t( )  with a real.  Then the average power of 
z t( )  is 
   Pz = z t( )z* t( ) = v t( )− aw t( )⎡⎣ ⎤⎦ v* t( )− a*w* t( )⎡⎣ ⎤⎦ .

Expanding,

Pz = v t( )v* t( )− aw t( )v* t( )− v t( )a*w* t( ) + a2 w t( )w* t( )
Using the fact that aw t( )v* t( )  and v t( )a*w* t( )  are complex 
conjugates, and that the sum of a complex number and its complex
conjugate is twice the real part of either one,

             Pz = Pv + a
2Pw − 2aRe v t( )w* t( )⎡⎣ ⎤⎦ = Pv + a

2Pw − 2aRvw

Correlation


