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Continuous-Time Sinusoids 

  

g t( ) = Acos 2π t / T0 +θ( ) = Acos 2π f0t +θ( ) = Acos ω0t +θ( )
          ↑               ↑   ↑                    ↑                       ↑
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Continuous-Time Exponentials 

g t( ) = Ae− t /τ
          ↑   ↑
     Amplitude  Time Constant (s)
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Complex Sinusoids 

Euler's Identity:  e jx = cos x( ) + j sin x( )

cos x( ) = e
jx + e− jx

2
  ,  sin x( ) = e

jx − e− jx

j2
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The Signum Function 

sgn t( ) =
 1 , t > 0
 0 , t = 0
−1  , t < 0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

The signum function, in a sense, returns an indication of 
the sign of its argument. 

t
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The Unit Step Function 

        u t( ) =

1               , t > 0
0               , t < 0
Undefined  ,  t = 0
(but finite)

⎧

⎨
⎪⎪

⎩
⎪
⎪

  ,  u t( ) = 1
2

sgn t( ) +1⎡⎣ ⎤⎦   ,  t ≠ 0

The product signal g t( )u t( )  can be thought of as the signal g t( )
“turned on” at time t  =  0. 

t

u(t)
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t

u(t)
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The Unit Ramp Function 

ramp t( ) = t , t > 0
0 , t ≤ 0

⎧
⎨
⎩

⎫
⎬
⎭
= u λ( )dλ

−∞

t

∫ = t u t( )

t

ramp(t)

1

1
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The Impulse 

The continuous-time unit impulse is implicitly defined by

                               g 0( ) = δ t( )g t( )dt
−∞

∞

∫
The unit step is the integral of the unit impulse and 
the unit impulse is the generalized derivative of the
unit step.
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Properties of the Impulse 
The Sampling Property

                            g t( )δ t − t0( )dt
−∞

∞

∫ = g t0( )
The sampling property “extracts” the value of a function at
a point.  (In Ziemer and Tranter this is called the "sifting" property.)
The Scaling Property

                              δ a t − t0( )( ) = 1
a
δ t − t0( )

This property illustrates that the impulse is different from 
ordinary mathematical functions.
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The Unit Periodic Impulse 
The unit periodic impulse is defined by

                δT t( ) = δ t − nT( )
n=−∞

∞

∑ , n an integer

The periodic impulse is a sum of infinitely many impulses
uniformly-spaced apart by T .

                 δT a t − t0( )( ) = 1
a
δT /a t − t0( ) , n an integer

t
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The Unit Rectangle Function 

    Π t( ) = rect t( ) =
  1   , t ≤1/ 2
  0   , t >1/ 2

⎧
⎨
⎩

⎫
⎬
⎭
= u t +1/ 2( )− u t −1/ 2( )   ,  t ≠ 1

2

The product signal g t( )rect t( )  can be thought of as the signal g t( )
“turned on” at time t  =  −1/ 2 and “turned back off” at time t  =  +1/ 2. 

t
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Random Signals 
The sinusoid, exponential, signum, unit step, unit ramp, and unit 
rectangle are all deterministic signals.  The term deterministic 
means that their values are specified at all times.  Signals that are not
deterministic are random.  The exact values of random signals are 
unpredictable although their general behavior may be known to some
degree. x(t)

t
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Amplitude Scaling, 

� 

g t( )→ Ag t( )
Shifting and Scaling Functions 
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Shifting and Scaling Functions 

Time shifting,   t→ t − t0
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Time scaling,     t→ t / a

Shifting and Scaling Functions 
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Differentiation 
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Integration 
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Even and Odd Signals 
Even Functions            Odd Functions
g t( ) = g −t( )                  g t( ) = −g −t( )

t

g(t)
Even Function

t

g(t)
Odd Function

t

g(t)

t

g(t)
Even Function Odd Function
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Even and Odd Parts of Functions 

The even part  of a function is ge t( ) = g t( ) + g −t( )
2

.

The odd part  of a function is go t( ) = g t( )− g −t( )
2

.

A function whose even part is zero is odd and a function
whose odd part is zero is even.
The derivative of an even function is odd and the derivative
of an odd function is even.
The integral of an even function is an odd function, plus a
constant, and the integral of an odd function is even.
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Integrals of Even and Odd Functions 

g t( )dt
−a

a

∫ = 2 g t( )dt
0

a

∫                           g t( )dt
−a

a

∫ = 0

The integral of an odd function, over limits that are
symmetrical about zero, is zero.

-a a
-a

at t

g(t) g(t)
Area #1

Area #1 = Area #2

Area #2

Area #1
Area #1 = - Area #2

Area #2

Even Function Odd Function
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Periodic Signals 

A function that is not periodic is aperiodic. 

If a function g(t) is periodic, g t( ) = g t + nT( )where n is any integer
and T  is a period of the function.  The minimum positive value of T  
for which g t( ) = g t +T( )  is called the fundamental period T0  of the 
function.  The reciprocal of the fundamental period is the fundamental 
frequency f0 = 1 /T0 .

t

x(t)

T
t

x(t)

T
t

x(t)

T0 0 0

... ... ... .........
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Signal Energy and Power 

The signal energy of a signal x t( )  is 

                  Ex = x t( ) 2 dt
−∞

∞

∫
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Signal Energy and Power 

Some signals have infinite signal energy.  In that case
it is more convenient to deal with average signal power.
The average signal power of a signal x t( )  is

                               Px = lim
T→∞

1
T

x t( ) 2 dt
−T /2

T /2

∫
For a periodic signal x t( )  the average signal power is

                                  Px =
1
T

x t( ) 2 dt
T∫

where T  is any period of the signal.
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Signal Energy and Power 

A signal with finite signal energy is  
called an energy signal. 
 
A signal with infinite signal energy and  
finite average signal power is called a  
power signal. 
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Sampling and Discrete Time 

  

Sampling is the acquisition of the values of a continuous-time signal 

at discrete points in time.  x t( )  is a continuous-time signal, x n⎡⎣ ⎤⎦  is a 

discrete-time signal.

            x n⎡⎣ ⎤⎦ = x nTs( )  where Ts  is the time between samples

Sampling Uniform Sampling

x t( ) x t( )x n[ ] x n[ ]

ω s  or  fs



Sampling and Discrete Time 
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Exponentials 

 

The form of the exponential is
x n[ ] = Aα n

Preferred
    or x n[ ] = Aeβn   where α = eβ

Real α Complex α

z > 1

0  <  z < 1
-1  <  z < 0

z < -1

n

n

n

n

n

n

n

n

|z| > 1

|z| < 1
Re(g[n]) Im(g[n])

Re(g[n]) Im(g[n])
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The Unit Impulse Function 

                                                               δ n[ ] = 1 , n = 0
0 , n ≠ 0

⎧
⎨
⎩

The discrete-time unit impulse (also known as the “Kronecker 
delta function”) is a function in the ordinary sense (in contrast 
with the continuous-time unit impulse).  It has a sampling property,

                        Aδ n − n0[ ]x n[ ]
n=−∞

∞

∑ = Ax n0[ ]
but no scaling property.  That is,
              δ n[ ] = δ an[ ]  for any non-zero, finite integer a.

n

δ[n]
1



8/25/15 M. J. Roberts - All Rights Reserved 29 

The Unit Sequence Function 

u n[ ] =
1 , n ≥ 0
0 , n < 0

⎧
⎨
⎩

n

u[n]
1 ......
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The Signum Function 

  

sgn n⎡⎣ ⎤⎦ =
1    ,  n > 0
0   ,  n = 0
−1 ,  n < 0

⎧

⎨
⎪

⎩
⎪

= 2u n⎡⎣ ⎤⎦ −δ n⎡⎣ ⎤⎦ −1

n

sgn[n]
1

-1

...
...
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The Unit Ramp Function 

ramp n[ ] = n , n ≥ 0
0 , n < 0

⎧
⎨
⎩

⎫
⎬
⎭
= nu n[ ] = u m −1[ ]

m=−∞

n

∑

n

ramp[n]

4

4

......
8

8
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The Periodic Impulse Function 

δ N n[ ] = δ n −mN[ ]
m=−∞

∞

∑

n

�  [n]

!

N-N 2N
......

N
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Time shifting       n→ n + n0 , n0  an integer

Scaling and Shifting Functions 
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Time compression

        n→ Kn

K  an integer > 1

Scaling and Shifting Functions 
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Time expansion       n→ n / K , K >1

For all n such that n / K  is an integer, g n / K[ ]  is defined.

For all n such that n / K  is not an integer, g n / K[ ]  is not defined.

Scaling and Shifting Functions 



Scaling and Shifting Functions 
There is a form of time expansion that is useful.  Let

         y n[ ] = x n /m[ ]     ,    n /m an integer
0                ,    otherwise

⎧
⎨
⎩

All values of y are defined.  
This type of time expansion
is actually used in some 
digital signal processing 
operations.
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Differencing 
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Accumulation 

g n[ ] = h m[ ]
m=−∞

n

∑
n

-5 20

h[n]

-2

2

n
-5 20

g[n]

-2

2

n
-10 10

h[n]
2

n
-10 10

g[n]
8
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Even and Odd Signals 

ge n[ ] = g n[ ]+ g −n[ ]
2

               go n[ ] = g n[ ]− g −n[ ]
2

g n[ ] = g −n[ ]                        g n[ ] = −g −n[ ]

......
n

g[n]

......
n

g[n]
Even Function Odd Function
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Symmetric Finite Summation 

g n[ ]
n=−N

N

∑ = g 0[ ]+ 2 g n[ ]
n=1

N

∑                      g n[ ]
n=−N

N

∑ = 0

......
n

g[n]

......
n

g[n]
Even Function Odd Function

-N N

-N
N

Sum #1

Sum #1 = Sum #2

Sum #2
Sum #1

Sum #1 = - Sum #2
Sum #2
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Periodic Functions 

A periodic function is one that is invariant to the
change of variable n→ n + mN  where N  is a period of the
function and m is any integer.

The minimum positive integer value of N  for which
g n[ ] = g n + N[ ]  is called the fundamental period N0 .
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Signal Energy and Power 

The signal energy of a signal x n[ ]  is

                 Ex = x n[ ] 2

n=−∞

∞

∑



8/25/15 M. J. Roberts - All Rights Reserved 43 

Signal Energy and Power 
Some signals have infinite signal energy.  In that case
It is usually more convenient to deal with average signal 
power. The average signal power of a signal x n[ ]  is

                       Px = lim
N→∞

1
2N

x n[ ] 2

n=−N

N−1

∑
For a periodic signal x n[ ]  the average signal power is

                          Px =
1
N

x n[ ] 2

n= N
∑

The notation  
n= N∑  means the sum over any set of 

consecutive n 's exactly N  in length.

⎛

⎝
⎜

⎞

⎠
⎟
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Signal Energy and Power 

A signal with finite signal energy is  
called an energy signal. 
 
A signal with infinite signal energy and  
finite average signal power is called a  
power signal. 
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Linearity and LTI Systems 
•  If a system is both homogeneous and additive 

it is linear. 
•  If a system is both linear and time-invariant it 

is called an LTI system 
•  Some systems that are non-linear can be 

accurately approximated for analytical 
purposes by a linear system for small 
excitations 



An LTI system is completely characterized by its impulse response
h t( ).  The response y t( )of an LTI system to an excitation x t( )  is the 
convolution of x t( )  with h t( ).

                        y t( ) = x t( )∗h t( ) = x λ( )h t − λ( )dλ
−∞

∞

∫

Response of LTI Systems

8/25/15 M. J. Roberts - All Rights Reserved 46 



8/25/15	

 M. J. Roberts - All Rights Reserved	

 47	



Convolution Integral Properties 
                      x t( )∗Aδ t − t0( ) = Ax t − t0( )
If g t( ) = g0 t( )∗δ t( )  then g t − t0( ) = g0 t − t0( )∗δ t( ) = g0 t( )∗δ t − t0( )
     If y t( ) = x t( )∗h t( )  then ′y t( ) = ′x t( )∗h t( ) = x t( )∗ ′h t( )
                         and y at( ) = a x at( )∗h at( )
Commutativity
                               x t( )∗y t( ) = y t( )∗x t( )
Associativity
                  x t( )∗y t( )⎡⎣ ⎤⎦ ∗z t( ) = x t( )∗ y t( )∗z t( )⎡⎣ ⎤⎦
Distributivity
                 x t( ) + y t( )⎡⎣ ⎤⎦ ∗z t( ) = x t( )∗z t( ) + y t( )∗z t( )
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The Unit Triangle Function 

The unit triangle, is the convolution of a unit rectangle with  
Itself. 

tri t( ) =
1− t  , t <1
0       , t ≥1

⎧
⎨
⎩
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Systems Described by 
Differential Equations	



 

The  transfer function:

            H s( ) = bM s
M + bM−1s

M−1 +!+ b2s
2 + b1s + b0

aNs
N + aN−1s

N−1 +!+ a2s
2 + a1s + a0

This type of function is called a rational function because it is
a ratio of polynomials in s.  The transfer function encapsulates
all the system characteristics and is of great importance in signal
and system analysis.
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If the excitation x t( )  is a phasor or complex sinusoid of 
frequency f0 ,  of the form
                                   x t( ) = Axe

jφxe j2π f0t

then the response y t( )  is of the form

                      y t( ) = H f0( )x t( ) = H f0( )Axe
jφxe j2π f0t .

The response can also be written in the form

y t( ) = Aye
jφye j2π f0t  where Ay = H f0( ) Ax  and φy = φx +!H f0( ).

Applying this to real sinusoids, if x t( ) = Ax cos 2π f0t +φx( )  then

y t( ) = Ay cos 2π f0t +φy( ).

Response of LTI Systems
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The Convolution Sum 

The response y n[ ]  of an LTI system with impulse response h n[ ]  
to an arbitrary excitation x n[ ]  is 

                            y n[ ] = x m[ ]h n −m[ ]
m=−∞

∞

∑
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Convolution Sum Properties 

                       x n[ ]∗Aδ n − n0[ ] = Ax n − n0[ ]
Let y n[ ] = x n[ ]∗h n[ ]  then

       y n − n0[ ] = x n[ ]∗h n − n0[ ] = x n − n0[ ]∗h n[ ]
y n[ ]− y n −1[ ] = x n[ ]∗ h n[ ]− h n −1[ ]( ) = x n[ ]− x n −1[ ]( )∗h n[ ]
and the sum of the impulse strengths in y is the product of
the sum of the impulse strengths in x and the sum of the 
impulse strengths in h.
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The transfer function is    

       H z( ) =
bkz

−k
k=0

M∑
akz

−k
k=0

N∑
= b0 + b1z

−1 + b2z
−2 +!+ bM z

−M

a0 + a1z
−1 + a2z

−2 +!+ aNz
−N

or, alternately,

      H z( ) =
bkz

−k
k=0

M∑
akz

−k
k=0

N∑
= zN−M b0z

M + b1z
M−1 +!+ bM−1z + bM

a0z
N + a1z

N−1 +!+ aN−1z + aN
The transfer function can be written directly from the system 

difference equation and vice versa.  H e jΩ( )  is the system's 

frequency response.  It is the transfer function H z( )  with z 

replaced by e jΩ .

Systems Described by Difference 
Equations	





 

      x t( ) = Xne
j2πnt /T

n=−∞

∞

∑     and    Xn =
1
T

x t( )e− j2πnt /T dt
t0

t0+T

∫ .

The signal and its harmonic function form a Fourier series
pair x t( ) FS

T← →⎯⎯ Xn  where T  is the representation time and, 
therefore, the fundamental period of the continuous-time Fourier
series CTFS( )  representation of x t( ).  If T  is also a period of x t( ),  
the CTFS representation of x t( )  is valid for all time.  This is, by far, 
the most common use of the CTFS in engineering applications.  If T  
is not a period of x t( ), the CTFS representation is generally valid 
only in the interval t0 ≤ t < t0 +T .

Continuous-Time Fourier Series 
Definition	
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CTFS of a Real Function	


It can be shown that the continuous-time Fourier series (CTFS) 
harmonic function of any real-valued function x t( )  has the property 
that  Xn = X−n

* .

One implication of this fact is that, for real-valued functions,
the magnitudes of their harmonic functions are even functions 
and their phases can be expressed as odd functions of harmonic 
number k.  
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The Sinc Function	



 

Let x t( ) = A rect t /w( )∗δT0
t( )  , w < T0 .  Then 

x t( ) = A rect t /w( )∗δT0
t( ) FS

T0
← →⎯⎯ Xn = A

sin πnw /T0( )
πn

The mathematical form 
sin π x( )
π x

 arises frequently enough

to be given its own name, "sinc".  That is sinc t( ) = sin πt( )
πt

.
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The Uniqueness Property	


If we find a Fourier series representation of a signal, it is
unique.  That is, no other or alternate Fourier series 
representation exists.
Example:  Let x t( ) = 3cos 8πt −π / 4( ) + 4sin 4πt( )
Using trigonometric identities, this can be rewritten as

x t( ) = 3 cos 8πt( )cos π / 4( )− sin 8πt( )sin π / 4( )⎡⎣ ⎤⎦ + 4sin 4πt( )

x t( ) = 3 2
2

cos 8πt( )− sin 8πt( )⎡⎣ ⎤⎦ + 4sin 4πt( )
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x t( ) = 3 2
2

e j8πt + e− j8πt

2
− e

j8πt − e− j8πt

j2
⎡

⎣⎢
⎤

⎦⎥
+ 4 e

j4πt − e− j4πt

j2

x t( ) = 3 2
4

1+ j( )e j8πt + 1− j( )e− j8πt⎡⎣ ⎤⎦ − j2 e j4πt − e− j4πt( )

x t( ) = 3 2
4

1+ j( )e j8πt + 3 2
4

1− j( )e− j8πt − j2e j4πt + j2e− j4πt

This is THE complex( )CTFS representation of x t( )  in which

x t( ) = Xne
j2πnf0t  , 

n=−∞

∞

∑  f0 = 2 , X−2 =
3 2

4
1− j( )  , X−1 = j2 , X1 = − j2 , 

 X2 =
3 2

4
1+ j( )  and all other CTFS coefficients are zero.

The Uniqueness Property	
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1 FS
T← →⎯ δ n[ ]  , T  arbitrary

δT0
t( ) FS

mT0
← →⎯⎯

1/T0( )   ,  n /m an integer
0           , otherwise

⎧
⎨
⎩

e j2πqt /T0 FS

mT0
← →⎯⎯δ n −mq[ ]

sin 2πqt /T0( ) FS
mT0

← →⎯⎯ j / 2( ) δ n +mq[ ]−δ n −mq[ ]( )
cos 2πqt /T0( ) FS

mT0
← →⎯⎯ 1/ 2( ) δ n −mq[ ]+δ n +mq[ ]( )

rect t /w( )∗δT0
t( ) FS

mT0
← →⎯⎯ w /T0( )sinc wn /mT0( )δm n[ ]

tri t /w( )∗δT0
t( ) FS

mT0
← →⎯⎯ w /T0( )sinc2 wn /mT0( )δm n[ ]

                       m an integer( )

Some Common CTFS Pairs	
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                     Forward                f  form                  Inverse

X f( ) = F x t( )( ) = x t( )e− j2π ft dt
−∞

∞

∫     x t( ) = F -1 X f( )( ) = X f( )e+ j2π ft df
−∞

∞

∫

                         Forward             ω  form                   Inverse

X jω( ) = F x t( )( ) = x t( )e− jωt dt
−∞

∞

∫     x t( ) = F -1 X jω( )( ) = 1
2π

X jω( )e+ jωt dω
−∞

∞

∫
Commonly-used notation:

                          x t( ) F← →⎯ X f( )     or    x t( ) F← →⎯ X jω( )

Definition of the CTFT	





   

                                                                                  δ t( ) F← →⎯ 1

                   e−αt u t( ) F← →⎯ 1/ jω +α( ) , α > 0                             − e−αt u −t( ) F← →⎯ 1/ jω +α( ) , α < 0

                  te−αt u t( ) F← →⎯ 1/ jω +α( )2
, α > 0                           − te−αt u −t( ) F← →⎯ 1/ jω +α( )2

, α < 0

                t ne−αt u t( ) F← →⎯ n!

jω +α( )n+1 , α > 0                            − t ne−αt u −t( ) F← →⎯ n!

jω +α( )n+1 , α < 0

    e−αt sin ω0t( )u t( ) F← →⎯
ω0

jω +α( )2
+ω0

2
, α > 0             − e−αt sin ω0t( )u −t( ) F← →⎯

ω0

jω +α( )2
+ω0

2
, α < 0

   e−αt cos ω0t( )u t( ) F← →⎯ jω +α

jω +α( )2
+ω0

2
, α > 0             − e−αt cos ω0t( )u −t( ) F← →⎯ jω +α

jω +α( )2
+ω0

2
, α < 0

                                                                        e−α t F← →⎯ 2α
ω 2 +α 2 , α > 0

Some CTFT Pairs	
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More CTFT Pairs 

   

          δ t( ) F← →⎯ 1                                                                 1 F← →⎯ δ f( )
       sgn t( ) F← →⎯ 1/ jπ f                                                  u t( ) F← →⎯ 1/ 2( )δ f( ) +1/ j2π f

      rect t( ) F← →⎯ sinc f( )                                             sinc t( ) F← →⎯ rect f( )
         tri t( ) F← →⎯ sinc2 f( )                                          sinc2 t( ) F← →⎯ tri f( )
        δT0

t( ) F← →⎯ f0δ f0
f( )  ,  f0 = 1/ T0                         T0δT0

t( ) F← →⎯ δ f0
f( )  ,  T0 = 1/ f0

cos 2π f0t( ) F← →⎯ 1/ 2( ) δ f − f0( ) +δ f + f0( )⎡⎣ ⎤⎦     sin 2π f0t( ) F← →⎯ j / 2( ) δ f + f0( )−δ f − f0( )⎡⎣ ⎤⎦
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Numerical Computation of the CTFT	


It can be shown that the DFT can be used to approximate 
samples from the CTFT.  If the signal x t( )  is a causal energy 
signal and N  samples are taken from it over a finite time 
beginning at t = 0, at a rate fs  then the relationship between the 
CTFT of x t( )  and the DFT of the samples taken from it is

                 X kfs / N( ) ≅ Tse− jπ k /N sinc k / N( )XDFT k[ ]
For those harmonic numbers k  for which k << N
                               X kfs / N( ) ≅ Ts XDFT k[ ]
As the sampling rate and number of samples are increased, 
this approximation is improved.
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The Discrete-Time Fourier Series	



The discrete-time Fourier series (DTFS) is similar to the CTFS.
A periodic discrete-time signal can be expressed as

 x n[ ] = cx k[ ]e j2πkn/N

k= N
∑     cx k[ ] = 1

N
x n[ ]e− j2πkn/N

n=n0

n0+N−1

∑
where cx k[ ]  is the harmonic function,  N  is any period of x n[ ]  
and the notation, 

k= N
∑ means a summation over any range of 

consecutive k’s exactly N  in length.
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The Discrete Fourier Transform	



The discrete Fourier transform (DFT) is almost identical to the DTFS.
A periodic discrete-time signal can be expressed as

          x n[ ] = 1
N

X k[ ]e j2πkn /N

k= N
∑     X k[ ] = x n[ ]e− j2πkn /N

n=n0

n0 +N−1

∑
where X k[ ]  is the DFT harmonic function and  N  is any period of x n[ ]. 
The main difference between the DTFS and the DFT is the location of 
the 1/N  term.  So X k[ ] = N cx k[ ].
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The Discrete Fourier Transform	



Because the DTFS and DFT are so similar, and because the DFT is
so widely used in digital signal processing (DSP), we will concentrate
on the DFT realizing we can always form the DTFS from 
cx k[ ] = X k[ ] / N .
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The Discrete Fourier Transform	



 

Notice that in

                             x n[ ] = 1
N

X k[ ]e j2π kn/N

k= N
∑

the summation is over N  values of k, a finite  summation.  This is 
because of the periodicity of the complex sinusoid, e− j2π kn/N

in harmonic number k.  If k  is increased by any integer
multiple of N  the complex sinusoid does not change. 

           e− j2π kn/N = e− j2π k+mN( )n/N = e− j2π kn/N e− j2πmn
=1

   ,  m an integer

This occurs because discrete time n is always an integer.
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The Dirichlet Function	



The functional form 
sin πNt( )
N sin πt( )  

appears often in discrete-time 
signal analysis and is given the 
special name Dirichlet  function.  
That is 

    drcl t,N( ) = sin πNt( )
N sin πt( )

t-2 2

drcl(t,4)

-1

1

t-2 2

drcl(t,5)

-1

1

t-2 2

drcl(t,7)

-1

1

t-2 2

drcl(t,13)

-1

1



 

If the Fourier transform of the excitation x t( )  is X f( )  and the
Fourier transform of the response y t( )  is Y f( ),  then

Y f( ) = H f( )X f( )  and Y f( ) = H f( ) X f( )  and 

!Y f( ) = !H f( ) +!X f( ).
If x t( )  is an energy signal (finite signal energy) then, from Parseval's

theorem Ex = X f( ) 2 df
−∞

∞

∫  and Ey = Y f( ) 2 df
−∞

∞

∫ = H f( ) 2 X f( ) 2 df
−∞

∞

∫

Response of LTI Systems
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Signal Distortion in Transmission

 

Distortion means changing the shape of a signal.  Two
changes to a signal are not considered distortion, multiplying
it by a constant and shifting it in time.  The impulse response
of an LTI system that does not distort is of the general form
h t( ) = Kδ t − td( ). where K  and td  are constants.  The corresponding 

frequency response of such a system is H f( ) = Ke− j2π ftd .  

H f( ) = K  and !H f( ) = −2π ftd .  If H f( ) ≠ K  the system has 

amplitude distortion.  If !H f( ) ≠ −2π ftd  the system has delay 
or phase distortion.  Both of these types of distortion are classified 
as linear distortions.
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Signal Distortion in Transmission

 

If !H f( ) = −2π ftd , then td = −
!H f( )

2π f
 and td  is a constant

if  !H f( ) = −Kf  (K  a constant).  If td  is not a constant,
phase distortion results.   

Frequency response of a 
distortionless LTI system

→

f 

f

A

f  = 1td

-2π
 

 

H f( )

!H f( )
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Signal Distortion in Transmission

f  

!H f( )

f  

!H f( )

Most real systems do not have simple delay.  They have phases
that are not linear functions of frequency.
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For a bandpass signal with a small bandwidth W compared to
its center frequency fc ,  we can model the frequency response
phase variation as approximately linear over the frequency ranges
fc −W < f < fc +W ,  and the frequency response magnitude as
approximately constant, of the form 

           H f( ) ≅ Ae− j2π ftg e jφ0   ,       fc −W < f < fc +W
e− jφ0  ,  − fc −W < f < − fc +W

⎧
⎨
⎩⎪

where φ0 = !H fc( ).

Signal Distortion in Transmission

f  

!H f( )

2W
fc2W

− fc

−φ0

φ0
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If we now let the bandpass signal be
                  x t( )  = x1 t( )cos 2π fct( ) + x2 t( )sin 2π fct( )
Its Fourier transform is 

X f( ) =
X1 f( )∗ 1 / 2( ) δ f − fc( ) +δ f + fc( )⎡⎣ ⎤⎦
+X2 f( )∗ j / 2( ) δ f + fc( )−δ f − fc( )⎡⎣ ⎤⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

X f( ) = 1 / 2( ) X1 f − fc( ) + X1 f + fc( )⎡⎣ ⎤⎦ + j X2 f + fc( )− X2 f − fc( )⎡⎣ ⎤⎦{ }
The frequency response is modeled by 

           H f( ) ≅ Ae− j2π ftg e jφ0   ,       fc −W < f < fc +W
e− jφ0  ,  − fc −W < f < − fc +W

⎧
⎨
⎩⎪

then the Fourier transform of the response y t( )  is

Y f( ) ≅ H f( )X f( ) = A / 2( )
X1 f − fc( )e− j 2π ftg −φ0( ) + X1 f + fc( )e− j 2π ftg +φ0( )

+ jX2 f + fc( )e− j 2π ftg +φ0( ) − jX2 f − fc( )e− j 2π ftg −φ0( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Signal Distortion in Transmission
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Y f( ) ≅ H f( )X f( ) = A / 2( )
X1 f − fc( )e− j 2π ftg −φ0( ) + X1 f + fc( )e− j 2π ftg +φ0( )

+ jX2 f + fc( )e− j 2π ftg +φ0( ) − jX2 f − fc( )e− j 2π ftg −φ0( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Inverse Fourier transforming, using the time and frequency shifting properties,

           y t( ) ≅ A / 2( )
e jφ0 x1 t − tg( )e j2π fct + e− jφ0 x1 t − tg( )e− j2π fct
+ je− jφ0 x2 t − tg( )e− j2π fct − je jφ0 x2 t − tg( )e j2π fct

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

                y t( ) ≅ A / 2( )
x1 t − tg( ) e j 2π fct+φ0( ) + e− j 2π fct+φ0( )⎡⎣ ⎤⎦

+x2 t − tg( ) j e− j 2π fct+φ0( ) − e j 2π fct+φ0( )⎡⎣ ⎤⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

       y t( ) ≅ A x1 t − tg( )cos 2π fct +φ0( ) + x2 t − tg( )sin 2π fct +φ0( ){ }
     y t( ) ≅ A x1 t − tg( )cos 2π fc t − td( )( ) + x2 t − tg( )sin 2π fc t − td( )( ){ }
where td = − φ0

2π fc
= −
!H fc( )

2π fc
 is known as the phase or carrier delay.

Signal Distortion in Transmission
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Signal Distortion in Transmission

 

From the approximate form of the system frequency response 

           H f( ) ≅ Ae− j2π ftg e jφ0   ,       fc −W < f < fc +W
e− jφ0  ,  − fc −W < f < − fc +W

⎧
⎨
⎩

we get

           !H f( ) ≅
−2π ftg +φ0   ,       fc −W < f < fc +W
−2π ftg −φ0  ,  − fc −W < f < − fc +W

⎧
⎨
⎩

If we differentiate both sides w.r.t. f  we get

           d
df
!H f( )( ) ≅ −2πtg   ,       fc −W < f < fc +W

or

          tg ≅ − 1
2π

d
df
!H f( )( )  ,       fc −W < f < fc +W

tg  is known as the group delay.
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Signal Distortion in Transmission

t

t

Modulation

Modulation

Modulated Carrier

Modulated Carrier

Excitation

Response

Group DelayPhase Delay

t

x(t)

-1

1

Excitation

t

y(t)

-1

1

Response

Phase and Group Delay
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Signal Distortion in Transmission

Linear distortion can be corrected (theoretically) by an equalization
network.  If the communication channel's frequency response is HC f( )
and it is followed by an equalization network with frequency response
Heq f( )  then the overall frequency response is H f( ) = HC f( )Heq f( )
and the overall frequency response will be distortionless if 
H f( ) = HC f( )Heq f( ) = Ke− jωtd .  Therefore, the frequency response

of the equalization network should be Heq f( ) = Ke− jωtd

HC f( ) .  It is very rare

in practice that this can be done exactly but in many cases an excellent
approximation can be made that greatly reduces linear distortion.
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Signal Distortion in Transmission
Communication systems can also have nonlinear distortion caused by
elements in the system that are statically nonlinear.  In that case
the excitation and response are related through a transfer characteristic
of the form y t( ) = T x t( )( ).  For example, some amplifiers experience
a "soft" saturation in which the ratio of the response to the excitation 
decreases with an increase in the excitation level.

x t( )

y t( )
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Signal Distortion in Transmission

 

The transfer characteristic is usually not a simple known function
but can often be closely approximated by a polynomial curve fit
of the form y t( ) = a1 x t( ) + a2 x2 t( ) + a3 x3 t( ) +!.  The Fourier
transform of y t( )  is

Y f( ) = a1 X f( ) + a2 X f( )∗X f( ) + a3 X f( )∗X f( )∗X f( ) +!

In a linear system if the excitation is bandlimited, the response has
the same band limits.  The response cannot contain frequencies not
present in the excitation.  But in a nonlinear system of this type
if X f( )  contains a range of frequencies, X f( )∗X f( )  contains
a greater range of frequencies and X f( )∗X f( )∗X f( )  contains
a still greater range of frequencies.

8/25/15 M. J. Roberts - All Rights Reserved 80 



Signal Distortion in Transmission

If X f( )∗X f( )  contains frequencies that are all outside the range of 
X f( )  then a filter can be used to eliminate them.  But often X f( )∗X f( )
contains frequencies both inside and outside that range, and those inside
the range cannot be filtered out without affecting the spectrum of X f( ).
As a simple example of the kind of nonlinear distortion that can occur 
let x t( ) = A1 cos ω1t( ) + A2 cos ω2t( )  and let y t( ) = x2 t( ).  Then

y t( ) = A1 cos ω1t( ) + A2 cos ω2t( )⎡⎣ ⎤⎦
2

      = A1
2 cos2 ω1t( ) + A2

2 cos2 ω2t( ) + 2A1A2 cos ω1t( )cos ω2t( )
       = A1

2 / 2( ) 1+ cos 2ω1t( )⎡⎣ ⎤⎦ + A2
2 / 2( ) 1+ cos 2ω2t( )⎡⎣ ⎤⎦

         + A1A2 cos ω1 −ω2( )t( ) + cos ω1 +ω2( )t( )⎡⎣ ⎤⎦
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Signal Distortion in Transmission

y t( )  = A1
2 / 2( ) 1+ cos 2ω1t( )⎡⎣ ⎤⎦ + A2

2 / 2( ) 1+ cos 2ω2t( )⎡⎣ ⎤⎦
         + A1A2 cos ω1 −ω2( )t( ) + cos ω1 +ω2( )t( )⎡⎣ ⎤⎦
y t( )  contains frequencies 2ω1, 2ω2 ,  ω1 −ω2  and ω1 +ω2 .  The
frequencies ω1 −ω2  and ω1 +ω2  are called intermodulation
distortion products.  When the excitation contains more 
frequencies (which it usually does) and the nonlinearity is of
higher order (which it often is), many more intermodulation 
distortion products occur.  All systems have nonlinearities 
and intermodulation disortion will occur.  But, by careful design, 
it can often be reduced to a negligible level.
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Transmission Loss and Decibels
Communication systems affect the power of a signal.  If the 
signal power at the input is Pin  and the signal power at the 
output is Pout ,  the power gain g of the system is g = Pout / Pin .  
It is very common to express this gain in decibels.  A decibel 
is one-tenth of a bel, a unit named in honor of Alexander
Graham Bell.  The system gain g expressed in decibels would
be gdB = 10 log10 Pout / Pin( ).

      
g 0.1 1 10 100 1000 10,000 100,000
gdB −10 0 10 20 30 40 50

Because gains expressed in dB are logarithmic, they compress the
range of numbers.  If two systems are cascaded, the overall power
gain is the product of the two individual power gains g = g1g2 .  
The overall power gain expressed in dB is the sum of the two power
gains expressed in dB , gdB = g1,dB + g2,dB .
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Transmission Loss and Decibels

The decibel was defined based on a power ratio, but it is often
used to indicate the power of a single signal.  Two common types
of power indication of this type are dBW and dBm.  dBW is
the power of a signal with reference to one watt.  That is, a one
watt signal would have a power expressed in dBW of 0 dBW.  dBm
is the power of a signal with reference to one milliwatt.  A 20 mW
signal would have a power expressed in dBm of 13.0103 dBm.  Signal
power gain as a function of frequency is the square of the magnitude 

of frequency response H f( ) 2 .  Frequency response magnitude is often 

expressed in dB also.  H f( )
dB
= 10 log10 H f( ) 2( ) = 20 log10 H f( )( ).
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Transmission Loss and Decibels

A communication system generally consists of components
that amplify a signal and components that attenuate a signal.
Any cable, optical or copper, attenuates the signal as it 
propagates.  Also there are noise processes in all cables and
amplifiers that generate random noise.  If the power level 
gets too low, the signal power becomes comparable to the noise 
power and the fidelity of analog signals is degraded too far or the
detection probability for digital signals becomes too low.  So, 
before that signal level is reached, we must boost the signal power
back up to transmit it further.  Amplifiers used for this purpose
are called repeaters.
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Transmission Loss and Decibels

On a signal cable of 100's or 1000's of kilometers many repeaters
will be needed.  How many are needed depends on the attenuation
per kilometer of the cable and the power gains of the repeaters.
Attenuation will be symbolized by L = 1 / g = Pin / Pout  or 
LdB = −gdB = 10 log10 Pin / Pout( )   ,  (L  for "loss".)  For optical and copper

cables the attenuation is typically exponential and Pout = 10−αl /10Pin  where
l  is the length of the cable and α  is the attenuation coefficient  in dB/unit
length.  Then L = 10αl /10  and LdB =αl.
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Filters and Filtering
An ideal bandpass filter has the frequency response

                        H f( ) = Ke− jωtd   ,  fl ≤ f ≤ fh
0           ,  otherwise

⎧
⎨
⎩

where fl  is the lower cutoff frequency and fh  is the upper cutoff
frequency and K  and td  are constants.  The filter's bandwidth is 
B = fh − fl .  An ideal lowpass filter has the same frequency response 
but with fl = 0 and B = fh .  An ideal highpass filter has the same 
frequency response but with  fh →∞ and B→∞.  These filters are 
called ideal because they cannot actually be built.  They cannot be 
built because they are non-causal.  But they are useful fictions for 
introducing in a simplified way some of the concepts of communication 
systems.
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Filters and Filtering

 

Strictly speaking a signal cannot be both bandlimited and timelimited.
But many signals are almost bandlimited and timelimited.  That is,
many signals have very little signal energy outside a defined bandwidth
and, at the same time, very little signal energy outside a defined time
range.  A good example of this is a Gaussian pulse

                             x t( ) = e−π t2 F← →⎯ X f( ) = e−π f 2

Strictly speaking, this signal is not bandlimited or timelimited.  The 

total signal energy of this signal is 1/ 2  .  99% of its energy lies
in the time range − 0.74 < t < 0.74  and in the frequency range 
−0.74 < f < 0.74.  So in many practical calculations this signal could
be considered both bandlimited and timelimited with very little error.
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Filters and Filtering
Real filters cannot have constant amplitude response and linear
phase response in their passbands like ideal filters.  

f

|H( f )|
Passband Ripple

Pass BandStop Band Stop Band

Transition Bands

f

|H( f )|    

Stop Band

dB

Minimum Stopband 
Attenuation
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Filters and Filtering
There are many types of standardized filters.  One very common and
useful one is the Butterworth filter.  The frequency response of a

lowpass Butterworth filter is of the form H f( )  = 1

1+ f / B( )2n
 where 

n is the order of the filter.  As the order is increased, its magnitude 
response approaches that of an ideal filter, constant in the passband 
and zero outside the passband.  (Below is
illustrated the magnitude frequency response 
of a normalized lowpass Butterworth filter 
with a corner frequency of 1 radian/s.)

-5 -4 -3 -2 -1 1 2 3 4 5

1

ω

|H (jω)|

n = 1

n = 2
n = 4n = 8

1
2

a
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Filters and Filtering
The Butterworth filter is said to be maximally flat  in its passband.  It is given 
this description because the first n derivatives of its magnitude frequency 
response are all zero at f = 0 (for a lowpass filter).  The passband of a lowpass 
Butterworth filter is defined as the frequency at which its magnitude frequency 

response is reduced from its maximum by a factor of 1/ 2.  This is also known 
as its half -power bandwidth because, at this frequency the power gain of the filter 
is half its maximum value.

-5 -4 -3 -2 -1 1 2 3 4 5

1

ω

|H (jω)|

n = 1

n = 2
n = 4n = 8

1
2

a
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Filters and Filtering

 

The step response of a filter is

                 h−1 t( ) = h λ( )u t − λ( )dλ
−∞

∞

∫ = h λ( )dλ
−∞

t

∫
(g t( )  in the book).  That is, the step response is the integral of the impulse 
response.  The impulse response of a unity-gain ideal lowpass filter with
no delay is h t( ) = 2Bsinc 2Bt( )  where B is its bandwidth.  Its step response 
is therefore

    h−1 t( ) = 2Bsinc 2Bλ( )dλ
−∞

t

∫ = 2B sinc 2Bλ( )dλ
−∞

0

∫ + sinc 2Bλ( )dλ
0

t

∫
⎡

⎣
⎢

⎤

⎦
⎥

This result can be further simplified by using the definition of the sine 
integral function

                     Si θ( ) ! sin α( )
α

dα
0

θ

∫ = π sinc λ( )dλ
0

θ /π

∫
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Filters and Filtering
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t
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t)
The Sine Integral Function
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Filters and Filtering

    h−1 t( ) = 2B sinc 2Bλ( )dλ
−∞

0

∫ + sinc 2Bλ( )dλ
0

t

∫
⎡

⎣
⎢

⎤

⎦
⎥

Let 2Bλ =α.  Then h−1 t( ) = sinc α( )dα
−∞

0

∫ + sinc α( )dα
0

2Bt

∫ .

Using the fact that sinc is an even function, sinc α( )dα
−∞

0

∫ = sinc α( )dα
0

∞

∫ .

Then, using Si θ( ) = π sinc α( )dα
0

θ /π

∫  and Si ∞( ) = π / 2,we get 

             h−1 t( ) = Si ∞( )
π

+ 1
π

Si 2πBt( ) = 1
2
+ 1
π

Si 2πBt( )
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Filters and Filtering
                              h−1 t( ) = 1

2
+ 1
π

Si 2πBt( )
This step response has precursors,  overshoot, and oscillations 
(ringing).  Risetime is defined as the time required to move from
10% of the final value to 90% of the final value.  For this ideal
lowpass filter the rise time is 0.44/B. The rise time for a single-pole, 
lowpass filter is 0.35/B.

Step response of an Ideal
Lowpass Filter with B = 1

→

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-0.5

0

0.5

1

1.5

t

h -1
(t)
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Filters and Filtering
The response of an ideal lowpass filter to a rectangular pulse of width τ  is

 y t( ) = h−1 t( )− h−1 t −τ( ) = 1
π

Si 2πBt( )− Si 2πB t −τ( )( )⎡⎣ ⎤⎦.

From the graph (in which B = 1) we see that, to reproduce the 
rectangular pulse shape, even very crudely, requires a bandwidth
much greater than 1/τ .  If we have a pulse train with pulse widths
τ  and spaces between pulses also τ  and we 
want to simply detect whether or not a pulse 
is present at some time, we will need at least 
B ≥1 / 2τ .  If the bandwidth is any lower the 
overlap between pulses makes them very 
hard to resolve.
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τ = 1/4
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Pulse Width and Bandwidth
Pulses (and their Fourier transforms) can have many shapes
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Pulse Width and Bandwidth
We need a practical general relationship between pulse width
and bandwidth.

T
2

T
2

x(0)

x(t)

t

Equal
Areas

X(0)

|X( f )|

f

Equal
Areas

W−W

Let the rectangular pulse approximate the general pulse with the

same height and area.  Then T x 0( ) = x t( ) dt
−∞

∞

∫ ≥ x t( )dt
−∞

∞

∫ = X 0( ).

Let the rectangular bandwidth approximate the general pulse bandwidth

with the same height and area.  Then 2W X 0( ) = X f( ) df
−∞

∞

∫ ≥ X f( )df
−∞

∞

∫ = x 0( ).

8/25/15 98 M. J. Roberts - All Rights Reserved 



Pulse Width and Bandwidth

Now we have the relationships

                           
x 0( )
X 0( ) ≥

1
T

 and 2W ≥
x 0( )
X 0( )

which combine to 2W ≥ 1
T

 or W ≥ 1
2T

.  This is a handy, practical

rule of thumb for the approximate bandwidth of a pulse.
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Quadrature Filters and Hilbert Transforms

 

A quadrature filter is an allpass network that shifts the phase of
positive frequency components by − 90° and negative frequency
components by + 90°.  Its frequency response is therefore

                       HQ f( ) = − j   ,  f > 0
  j    ,  f < 0

⎧
⎨
⎩

⎫
⎬
⎭
= − j sgn f( ).

Its magnitude is one at all frequencies, therefore an even function
of  f  and its phase is an odd function of  f .  The inverse Fourier
transform of HQ f( )  is the impulse response hQ t( ) = 1 /πt.  The Hilbert

transform x̂ t( )  of a signal x t( )  is defined as the response of a 

quadrature filter to x t( ).  That is x̂ t( ) = x t( )∗hQ t( ) = 1
π

x λ( )
t − λ

dλ
−∞

∞

∫ .

                                    F x̂ t( )( ) = − j sgn f( )X f( )
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Quadrature Filters and Hilbert Transforms
The impulse response of a quadrature filter hQ t( ) = 1 /πt  is non-causal.
That means it is physically unrealizable.  Some important properties of
the Hilbert transform are
1.    The Fourier transforms of a signal and its Hilbert transform have 
       the same magnitude.  Therefore the signal and its Hilbert transform
      have the same signal energy.
2.    If x̂ t( )  is the Hilbert transform of x t( )  then − x t( )  is the Hilbert
       transform of x̂ t( ).
3.    A signal x t( )  and its Hilbert transform are orthogonal on the entire

       real line.  That means for energy signals x t( ) x̂ t( )dt
−∞

∞

∫ = 0 and for

       power signals lim
T→∞

1
2T

x t( ) x̂ t( )dt
−T

T

∫ = 0.
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Quadrature Filters and Hilbert Transforms

 

g t( ) ĝ t( )
a1 g1 t( ) + a2 g2 t( );  a1,a2 ∈! a1 ĝ1 t( ) + a2 ĝ2 t( )

h t − t0( ) ĥ t − t0( )
h at( );a ≠ 0 sgn a( ) ĥ at( )
d
dt

h t( )( ) d
dt

ĥ t( )( )
δ t( ) 1

πt
e jt − je jt

e− jt je− jt

cos t( ) sin t( )

rect t( ) 1
π

ln 2t +1
2t −1

sinc t( ) πt / 2( )sinc2 t / 2( ) = sin πt / 2( )sinc t / 2( )
1

1+ t 2

t
1+ t 2
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Analytic Signals and Complex Envelopes

An analytic signal x p t( )  corresponding to a real signal x t( )  is
defined by x p t( ) = x t( ) + j x̂ t( ).  The envelope of a signal x t( )is 
defined as the magnitude of the analytic signal x p t( ).  It follows 
that 

X p f( ) = X f( ) + j × − j( )sgn f( )X f( ) = X f( ) 1+ sgn f( )⎡⎣ ⎤⎦ = 2 X f( )u f( )

Therefore X p f( ) = 2 X f( )   ,  f > 0
0            , f < 0

⎧
⎨
⎩

.  Similarly, 

xn t( ) = x t( )− j x̂ t( )  and Xn f( ) = 2 X f( )u − f( ) =
0          ,  f > 0
2 X f( )  , f < 0

⎧
⎨
⎩

.
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Analytic Signals and Complex Envelopes

 

The complex envelope of a real signal x t( )  is defined as
!x t( ) = x p t( )e− j2π f0t  where f0  is a reference frequency chosen for

convenience.  Therefore x p t( ) = !x t( )e j2π f0t = x t( ) + j x̂ t( )
and x t( ) = Re !x t( )e j2π f0t( )  and x̂ t( ) = Im !x t( )e j2π f0t( ).  
x t( ) = Re !x t( ) cos 2π f0t( ) + j sin 2π f0t( )( )( )

x t( ) = Re
Re !x t( )( )cos 2π f0t( ) + j Im !x t( )( )cos 2π f0t( )
+ jRe !x t( )( )sin 2π f0t( ) + j × j

=−1
" Im !x t( )( )sin 2π f0t( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x t( ) = xR t( )cos 2π f0t( )− x I t( )sin 2π f0t( )
where xR t( ) = Re !x t( )( )  and x I t( ) = Im !x t( )( ),
!x t( ) = xR t( ) + j x I t( )  , xR t( )  is the "in-phase" component of x t( )  
and x I t( )  is the "quadrature" component of x t( ).



8/25/15 M. J. Roberts - All Rights Reserved 105 

Analytic Signals and Complex Envelopes

  

It can be shown (page 89 in the text) that if a system has a 
bandpass response with impulse response h t( )  and it is 
excited by a bandpass signal x t( ),  that the complex envelope 

of the system response is !y t( ) = !x t( )∗ !h t( ) = F −1 !X f( ) !H f( )( )  
and the system response is y t( ) = 1

2
Re !y t( )e j2π f0t( ).  (The term

"bandpass" means that there is a finite-width band of frequencies, 
including  f = 0,  in which the Fourier magnitude spectrum is zero 
or, as a practical matter, small enough to be considered negligible.)
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Analytic Signals and Complex Envelopes

 

In the previous two slides a real signal x t( )was related to its complex

envelope !x t( )  by x t( ) = Re !x t( )e j2π f0t( )  and a real system impulse

response h t( )  was related to its complex envelope !h t( )  by 

h t( ) = Re !h t( )e j2π f0t( ).  But then whenx t( )  is applied to the system

and the response is y t( ), we found !y t( ) = !x t( )∗ !h t( )  and related it 

to y t( )  by y t( ) = 1
2

Re !y t( )e j2π f0t( ).  Where did the factor of 1
2

 come 

from?  It can be seen in the derivation on page 89.  But it can also be 
seen in concept by looking at what happens when we convolve a 
bandpass signal and a bandpass impulse response and compare that 
to convolving the corresponding complex envelopes.
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Analytic Signals and Complex Envelopes
Let x t( ) =Π t( )sin 8πt( )  and h t( ) = −Π t( )sin 8πt( ).  The complex
envelope of x t( )  has twice the signal energy of x t( ).  The same is
true for h t( ).  As 
a result, the 
complex envelope 
of y t( )  has four 
times the signal 
energy of y t( ).
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Example
Let x t( ) = sinc t( )cos 4πt( ).

Then X f( ) = rect f( )∗ 1
2

δ f − 2( ) +δ f + 2( )⎡⎣ ⎤⎦

X f( ) = 1
2

rect f − 2( ) + rect f + 2( )⎡⎣ ⎤⎦  and X̂ f( ) = − j sgn f( )X f( ).

X̂ f( ) = − j
2

rect f − 2( ) + j
2

rect f + 2( )

        = rect f( )∗ j
2

δ f + 2( )−δ f − 2( )⎡⎣ ⎤⎦

x̂ t( ) = sinc t( )sin 4πt( ).
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          x t( ) = sinc t( )cos 4πt( )     x̂ t( ) = sinc t( )sin 4πt( )
                 x p t( ) = sinc t( ) cos 4πt( ) + j sin 4πt( )⎡⎣ ⎤⎦
x p t( )  is the envelope of x t( ).  The concept of an envelope will

be very useful later in the exploration of modulation techniques.
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Analytic Signals and Complex Envelopes



 

Example 2.32 in the text :

Let x t( ) =Π t
τ

⎛
⎝⎜

⎞
⎠⎟ cos 2π f0t( )  and let h t( ) =αe−αt u t( )cos 2π f0t( ).

Find the system output signal y t( )  using complex envelope techniques.

x p t( ) = x t( ) + j x̂ t( ) =Π t
τ

⎛
⎝⎜

⎞
⎠⎟ cos 2π f0t( ) + jΠ t

τ
⎛
⎝⎜

⎞
⎠⎟ sin 2π f0t( )

x p t( ) =Π t
τ

⎛
⎝⎜

⎞
⎠⎟ e

j2π f0t ⇒ !x t( ) = Re x p t( )e− j2π f0t( ) =Π t
τ

⎛
⎝⎜

⎞
⎠⎟ .  Similarly,

!h t( ) =αe−αt u t( ).  Therefore !y t( ) = !x t( )∗ !h t( ) =Π t
τ

⎛
⎝⎜

⎞
⎠⎟ ∗αe

−αt u t( )

!y t( ) = Π λ
τ

⎛
⎝⎜

⎞
⎠⎟αe

−α t−λ( ) u t − λ( )dλ
−∞

∞

∫
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!y t( ) =α
u λ +τ / 2( )e−α t−λ( ) u t − λ( )dλ

−∞

∞

∫

− u λ −τ / 2( )e−α t−λ( ) u t − λ( )dλ
−∞

∞

∫

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

!y t( ) = 1− e−α t+τ /2( )( )u t +τ / 2( )− 1− e−α t−τ /2( )( )u t −τ / 2( )⎡
⎣

⎤
⎦

y t( ) = 1
2
Re !y t( )e j2π f0t( )

y t( ) = 1
2
Re 1− e−α t+τ /2( )( )u t +τ / 2( )− 1− e−α t−τ /2( )( )u t −τ / 2( )( )e j2π f0t( )

y t( ) = 1
2
1− e−α t+τ /2( )( )u t +τ / 2( )− 1− e−α t−τ /2( )( )u t −τ / 2( )⎡

⎣
⎤
⎦cos 2π f0t( )
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According to Parseval's Theorem, the signal energy of a signal can be

found directly from its Fourier transform, Ex = X f( ) 2
df

−∞

∞

∫ .  X f( )
indicates the variation of the amplitudes of the complex sinusoidal
components of x t( )  as a function of their frequencies, f .  So the units

are 
V
Hz

(if x t( )  is a voltage signal).  Therefore the units of X f( ) 2
 

must be 
V
Hz

⎛
⎝⎜

⎞
⎠⎟

2

.  When we integrate X f( ) 2
over all frequencies we 

get signal energy whose units are 
V
Hz

⎛
⎝⎜

⎞
⎠⎟

2

Hz  or V2⋅s, the units of

signal energy.

Energy Spectral Density
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Therefore X f( ) 2
is the density of signal energy as a function of 

frequency.  It is known as Energy Spectral Density (ESD).  The
term "spectral density" means "variation with respect to frequency".

A common symbol for ESD is G f( ) = X f( ) 2
.

Energy Spectral Density

8/25/15 M. J. Roberts - All Rights Reserved 113 



   

Energy Spectral Density is the variation of signal energy with
frequency.  It applies to energy signals.  The corresponding quantity
that applies to power signals is Power Spectral Density (PSD).

Power spectral density S f( )  is defined by P = S f( )df
−∞

∞

∫ .  That is,

its integral over all frequency yields total average signal power.

Therefore S f( )  indicates the variation of average signal power as

a function of frequency.

Power Spectral Density
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Suppose we take the inverse Fourier transform of energy spectral 
density 

F −1 G f( )( ) = F −1 X f( ) 2⎛
⎝

⎞
⎠= F −1 X f( )X* f( )( )

                   = F −1 X f( )( )
=x t( )

! "# $#
∗F −1 X* f( )( )

=x − t( )
! "## $##

So F −1 G f( )( ) = x t( )∗x −t( ) = x τ( )x t +τ( )dτ
−∞

∞

∫ .

We can exchange the meanings of t  and τ  to form

φ τ( ) = x τ( )∗x −τ( ) = x t( )x t +τ( )dt
−∞

∞

∫
This integral is the area under the product of a function x  and a
version of x  that has been shifted to the left by τ , as a function of
the shift amount.  This function is called autocorrelation.

Autocorrelation
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The autocorrelation function indicates how similar a signal is to

itself when shifted.  When the shift is zero (τ=0), φ 0( ) = x2 t( )
−∞

∞

∫ dt

which is the signal energy.  If the shift τ  is small and the value of

φ τ( )  does not change much, we say there is a strong correlation 

between x and the shifted version of x for small shifts.  So a slowly 

changing φ τ( )  indicates that the signal still looks like itself even

when shifted a significant amount.  A quickly changing φ τ( )  indicates

that even a small shift makes the signal look very different.

Autocorrelation
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The definition φ τ( ) = x t( )x t +τ( )dt
−∞

∞

∫  applies to energy signals.

For power signals, the definition of autocorrelation is

R τ( ) = x t( )x t +τ( )  and R τ( ) F← →⎯ S f( ).  Some properties of

autocorrelation are

1.  R 0( ) = S f( )df
−∞

∞

∫ = total average signal power

2.  R 0( ) ≥ R τ( )  , autocorrelation can never exceed the signal power

3.  R τ( )  is always an even function, that is R τ( ) = R −τ( )
4.  F R τ( )( )  is everywhere non-negative

5.  If x t( )  is periodic then R x τ( )  is also, with the same period

6.  If x t( )  contains no periodic components lim
τ →∞

R x τ( ) = x t( ) 2

Autocorrelation
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Autocorrelations of a cosine and sine "burst".
They are very similar but not exactly the same.
Notice that both are even functions, even though
cosine is even and sine is odd.

 Autocorrelation Examples



8/26/15 M. J. Roberts - All Rights Reserved 119 

Three random power signals with different frequency content	


and their autocorrelations.	



 Autocorrelation Examples



8/26/15 M. J. Roberts - All Rights Reserved 120 

Four Different 	


Random Signals 	



with Identical 	


Autocorrelations	



 Autocorrelation Examples
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Four Different 	


Random Signals 	



with Identical 	


Autocorrelations	



 Autocorrelation Examples



8/26/15 M. J. Roberts - All Rights Reserved 122 

 Sampling

  

Uniform sampling of a continuous-time signal can be represented by
multiplying the signal by a periodic impulse, forming a signal
consisting only of impulses.

                       xδ t( ) = x nTs( )δ t − nTs( )
n=−∞

∞

∑
where Ts  is the time between samples.  When sampling a signal, the 

salient question is always whether the original continuous-time signal 
can be recovered from the samples.  The sampling theorem says that 
if the signal is sampled for all time at a rate greater than twice the 
highest frequency in the signal, the original signal can be recovered 
exactly from the samples.
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 Sampling

 

Sampling Theorem:  If the signal is sampled for all time at a rate 
greater than twice the highest frequency in the signal, the original 
signal can be recovered exactly from the samples.
Practically speaking, a signal can never be sampled for all time.  Also
if a signal is not bandlimited its highest frequency is infinite, requiring
an infinite sampling rate, and no real signal can be bandlimited because
all real signals are time limited.  Therefore the sampling theorem can
never quite be satisfied.  The sampling theorem really just serves as a 
limiting requirement to be approached but never reached in practice.
Practically, sampling always yields an approximation, but one which 
can often be very good.
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 Sampling

   

The sampling rate that is twice the highest rate in a signal is called
the Nyquist rate in honor of Harry Nyquist, one of the earliest 
contributors to sampling theory.
There is a variation on the sampling theorem for signals that are 
narrowband.  That is, signals whose center frequency is much greater
than the bandwidth.  If the bandwidth is W  and the highest frequency
is fu  and the signal is sampled at a rate fs = 2 fu / m where m is the

greatest integer in fu / W ,  then the signal can be recovered from the 

samples by passing it through a bandpass filter.


