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1 Definition

The Hilbert transform H[g(t)] of a signal g(t) is defined as

H[g(t)] = g(t) ∗ 1

πt
=

1

π

∫ ∞

−∞

g(τ)

t− τ
dτ =

1

π

∫ ∞

−∞

g(t− τ)

τ
dτ. (1)

The Hilbert transform of g(t) is the convolution of g(t) with the signal 1/πt. It is the response
to g(t) of a linear time-invariant filter (called a Hilbert transformer) having impulse response
1/πt. The Hilbert transform H[g(t)] is often denoted as ĝ(t) or as [g(t)]∧.

A technicality arises immediately. The alert reader will already be concerned with the
definition (1) as the integral is improper: the integrand has a singularity and the limits of
integration are infinite. In fact, the Hilbert transform is properly defined as the Cauchy
principal value of the integral in (1), whenever this value exists. The Cauchy principal value
is defined—for the first integral in (1)—as

H[g(t)] =
1

π
lim

ε→0+

(∫ t−ε

t−1/ε

g(τ)

t− τ
dτ +

∫ t+1/ε

t+ε

g(τ)

t− τ
dτ

)
. (2)

We see that the Cauchy principal value is obtained by considering a finite range of inte-
gration that is symmetric about the point of singularity, but which excludes a symmetric
subinterval, taking the limit of the integral as the length of the interval approaches ∞ while,
simultaneously, the length of the excluded interval approaches zero. Henceforth, whenever
we write an integral as in (1), we will mean the Cauchy principal value of that integral (when
it exists).

1



2 Some Basic Properties

Some obvious properties of the Hilbert transform follow directly from the definition. Clearly
the Hilbert transform of a time-domain signal g(t) is another time-domain signal ĝ(t). If
g(t) is real-valued, then so is ĝ(t).

Linearity: The Hilbert transform is linear, i.e., if a1 and a2 are arbitrary (complex) scalars,
and g1(t) and g2(t) are signals, then

[a1g1(t) + a2g2(t)]
∧ = a1ĝ1(t) + a2ĝ2(t).

(This follows immediately from the fact that the Hilbert transform is the output of a linear
system.)

The Hilbert transform of a constant signal: Note that, for any constant c, the Hilbert
transform of the constant signal g(t) = c is ĝ(t) = ĉ = 0. (See Exercise 2.) From linearity
it follows that H[g(t) + c] = ĝ(t) + ĉ = ĝ(t). Thus, like an ideal differentiator, a Hilbert
transformer “loses” dc offsets. Later we will define an inverse Hilbert transform which can
recover the original signal up to an additive constant (in the same way that integration can
undo differentiation only up to an additive constant).

Time-shifting and time-dilation: If g(t) has Hilbert transform ĝ(t), then g(t− t0) has
Hilbert transform ĝ(t− t0), and g(at) has Hilbert transform sgn(a)ĝ(at) (assuming a 6= 0).

Convolution: The Hilbert transform behaves nicely with respect to convolution, since

[g1(t) ∗ g2(t)]
∧ = ĝ1(t) ∗ g2(t) = g1(t) ∗ ĝ2(t).

To see this, observe from the associative and commutative properties of convolution that
[g1(t) ∗ g2(t)] ∗ 1

πt
can be written as [g1(t) ∗ 1

πt
] ∗ g2(t) or as g1(t) ∗ [g2(t) ∗ 1

πt
].

Time-derivative: The Hilbert transform of the derivative of a signal is the derivative of
the Hilbert transform, i.e.,

H[
d

dt
g(t)] =

d

dt
H[g(t)].

To see this, recall Leibniz’s Integral Rule, which states that

d

dc

∫ b(c)

a(c)

f(x, c) dx =

∫ b(c)

a(c)

∂

∂c
f(x, c) dx + f(b, c)

d

dc
b(c)− f(a, c)

d

dc
a(c).
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In particular, if a and b are definite limits (independent of c), we have

d

dc

∫ b

a

f(x, c) dx =

∫ b

a

∂

∂c
f(x, c) dx.

Now

d

dt
H[g(t)] =

1

π

d

dt

∫ ∞

−∞

g(t− τ)

τ
dτ

=
1

π

∫ ∞

−∞

g′(t− τ)

τ
dτ

= H[g′(t)],

where g′(t) = d
dt

g(t).

3 Interaction with the Fourier Transform

The signal 1/(πt) has Fourier transform

− j sgn(f) =


− j , if f > 0

0, if f = 0
j , if f < 0

If g(t) has Fourier transform G(f), then, from the convolution property of the Fourier trans-
form, it follows that ĝ(t) has Fourier transform

Ĝ(f) = − j sgn(f)G(f).

Thus, the Hilbert transform is easier to understand in the frequency domain than in the time
domain: the Hilbert transform does not change the magnitude of G(f), it changes only the
phase. Fourier transform values at positive frequencies are multiplied by − j (correspond-
ing to a phase change of −π/2) while Fourier transform values at negative frequencies are
multiplied by j (corresponding to a phase change of π/2). Stated yet another way, suppose
that G(f) = a + b j for some f . Then Ĝ(f) = b− a j if f > 0 and Ĝ(f) = −b + a j if f < 0.
Thus the Hilbert transform essentially acts to exchange the real and imaginary parts of G(f)
(while changing the sign of one of them).

Energy Spectral Density: Suppose that g(t) is an energy signal. Then, since |Ĝ(f)| =
|G(f)|, both Ĝ(f) and G(f) have exactly the same energy spectral density. Thus, for exam-
ple, if G(f) is bandlimited to B Hz then so is Ĝ(f). It also follows that ĝ(t) has exactly the
same energy as g(t).
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Symmetry Properties: If g(t) is real-valued, then G(f) exhibits Hermitian symmetry,
i.e., G(−f) = G∗(f). Of course then Ĝ(−f) = − j sgn(−f)G(−f) = [− j sgn(f)G(f)]∗ =
Ĝ(f)∗, so Ĝ(f) also exhibits Hermitian symmetry, as expected.

Let g(t) be a real-valued signal. Recall that if g(t) is even (so that g(−t) = g(t)) then G(f) is
purely real-valued while if g(t) is odd (so that g(−t) = −g(t)) then G(f) is purely imaginary-
valued. Now if G(f) is purely real-valued then certainly Ĝ(f) is purely imaginary-valued
(and vice-versa). Thus if g(t) is even, then ĝ(t) is odd and if g(t) is odd, then ĝ(t) is even.

Orthogonality: If g(t) is a real-valued energy signal, then g(t) and ĝ(t) are orthogonal.
To see this recall that

〈g(t), ĝ(t)〉 =

∫ ∞

−∞
g(t)ĝ∗(t)dt

=

∫ ∞

−∞
G(f)Ĝ∗(f)df

=

∫ ∞

−∞
G(f)[− j sgn(f)G(f)]∗df

=

∫ ∞

−∞
j |G(f)|2 sgn(f)df

= 0,

where we have used the property that, since |G(f)|2 is an even function of f , |G(f)|2 sgn(f)
is an odd function of f and hence the value of the integral is zero.

Low-pass High-pass Products: Let g(t) be signal whose Fourier transform satisfies
G(f) = 0 for |f | ≥ W and let h(t) be a signal with H(f) = 0 for |f | < W . Then

H[g(t)h(t)] = g(t)ĥ(t),

i.e., to compute the Hilbert transform of the product of a low-pass signal with a high-pass
signal, only the high-pass signal needs to be transformed.

To see this, let s(t) = g(t)h(t) so that

S(f) = G(f) ∗H(f) = G(f) ∗ [H(f) u (f) + H(f) u (−f)],

where u denotes the unit step function. It is easy to see that G(f) ∗ (H(f) u (f)) is zero if
f < 0; similarly G(f) ∗ (H(f) u (−f)) is zero if f > 0. Thus

Ŝ(f) = − j sgn(f)S(f)

= − j G(f) ∗ (H(f) u (f)) + j G(f) ∗ (H(f) u (−f))

= G(f) ∗ [− j H(f) u (f) + j H(f) u (−f)]

= G(f) ∗ [− j sgn(f)H(f)]

= G(f) ∗ Ĥ(f).
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An important special case of this arises in the case of QAM modulation. Assuming that
mI(t) and mQ(t) are bandlimited to W Hz, then, if fc > W , we have

H[mI(t) cos(2πfct) + mQ(t) sin(2πfct)] = mI(t) sin(2πfct)−mQ(t) cos(2πfct). (3)

Amplitude-modulated Signals: The Hilbert transform of a general amplitude-modulated
signal is given by [1]

H[g(t) cos(2πfct + θ)] =

[
g(t) ∗ cos(2πfct)

πt

]
cos(2πfct + θ)

+

[
g(t) ∗ sin(2πfct)

πt

]
sin(2πfct + θ).

To see this, write g(t) as g(t) = gL(t) + gH(t), where gL(t), the “low-pass component” of
g(t), is given as

gL(t) = g(t) ∗ 2fc sinc(2fct) = g(t) ∗ sin(2πfct)

πt

and gH(t), the “high-pass component” of g(t), is given as

gH(t) = g(t)− gL(t) = g(t) ∗ [δ(t)− 2fc sinc(2fct)].

Clearly gL(t) contains all frequency components of g(t) from dc up to frequency fc, while
gH(t) contains the remaining components at higher frequencies. We have

H[g(t) cos(2πfct + θ)] = H[gL(t) cos(2πfct + θ)] +H[gH(t) cos(2πfct + θ)]

= gL(t)H[ cos(2πfct + θ)] +H[gH(t)] cos(2πfct + θ)

where the second equality follows from application of the “low-pass high-pass product” result.
Clearly H[ cos(2πfct + θ)] = sin(2πfct + θ). It remains to find H[gH(t)]. This is given as

H[gH(t)] = g(t) ∗ [δ(t)− 2fc sinc(2fct)] ∗
1

πt

= g(t) ∗ [
1

πt
− 2fc sinc(2fct) ∗

1

πt
]

(a)
= g(t) ∗ [

1

πt
− 2fc sinc(fct) sin(πfct)]

= g(t) ∗ [
1

πt
(1− 2 sin2(πfct)]

= g(t) ∗ cos(2πfct)

πt
,

and the main result follows directly. In the equality (a), we have used the fact that
H[ sinc(t)] = sinc(t/2) sin(πt/2); see Exercise 6.
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Inverse Hilbert Transform: Note that

[Ĝ(f)]∧ = (− j sgn(f))2G(f) = − sgn2(f)G(f).

Except at f = 0, sgn2(f) = 1. Thus, unless G(f) has some sort of singularity (e.g., a delta
function) at f = 0, we get H[H[g(t)]] = −g(t). A delta function at f = 0 corresponds
to a nonzero dc offset; which, as already remarked upon, is lost by the Hilbert transform.
Thus, assuming that g(t) has zero mean1, we may recover g(t) from ĝ(t): the inverse Hilbert
transform is given by applying the Hilbert transform again, and negating the result:

g(t) = −H[ĝ(t)] = −ĝ(t) ∗ 1

πt
.

In general, we have, for some constant c,

g(t) = −ĝ(t) ∗ 1

πt
+ c.

Zero-mean signals g(t) and ĝ(t) are often referred to as a Hilbert transform pair. For every
Hilbert transform pair g(t) and ĝ(t) there is also the dual pair ĝ(t) and −g(t). Table 1 lists
some Hilbert transform pairs.

Fig. 1 plots rect(t) and H[ rect(t)] = 1
π

ln|(2t + 1)/(2t − 1)|. (The rectangular pulse rect(t)
is defined as u (t + 1/2)− u (t− 1/2), where u (t) is the unit step.)

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Figure 1: The function rect(t) and its Hilbert transform 1
π

ln|(2t + 1)/(2t− 1)|.

1The mean of g(t) is defined as limT→∞
1
T

∫ T/2

−T/2
g(t) dt, when this limit exists.
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Table 1: Hilbert transform pairs. (See also [2].)

g(t) ĝ(t)

a1g1(t) + a2g2(t); a1, a2 ∈ C a1ĝ1(t) + a2ĝ2(t)

h(t− t0) ĥ(t− t0)

h(at); a 6= 0 sgn(a)ĥ(at)

d
dt

h(t) d
dt

ĥ(t)

δ(t) 1
πt

e j t − j e j t

e− j t j e− j t

cos(t) sin(t)

rect(t) 1
π

ln|(2t + 1)/(2t− 1)|

sinc(t) πt
2

sinc2(t/2) = sin(πt/2) sinc(t/2)

1/(1 + t2) t/(1 + t2)
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4 Single-sideband Modulation

For any signal g(t), let

g+(t) =
1

2
[g(t) + j ĝ(t)]

g−(t) =
1

2
[g(t)− j ĝ(t)]

be two complex-valued signals associated with g(t). The significance of these two signals can
be seen from their Fourier transforms. We have

G+(f) =
1

2
[G(f) + j Ĝ(f)] =

1

2
[G(f)− j 2 sgn(f)G(f)] = G(f)

1

2
[1 + sgn(f)]

= G(f) u (f)

where u (f) is the unit step function, and, similarly,

G−(f) = G(f) u (−f).

Thus g+(t) has spectral components (equal to those of g(t)) at positive frequencies only, i.e.,
g+(t) has a right-sided spectrum. Similarly, g−(t) has spectral components (equal to those
of g(t)) at negative frequencies only and hence has a left-sided spectrum. These spectra are
illustrated in Fig. 2.

W−W

G(f)

f

W

f

G+(f)

−W

f

G−(f)

(a) (b) (c)

Figure 2: Signal spectra: (a) G(f), (b) the right-sided spectrum G+(f), (c) the left-sided
spectrum G−(f).

It is now straightforward to express upper- and lower-sideband signals in terms of g+(t) and
g−(t). Let g(t) be the modulating signal, assumed bandlimited to W Hz, and let fc > W be
the carrier frequency. In the frequency domain, the upper sideband signal is given by

SUSB(f) = G+(f − fc) + G−(f + fc),

and the lower sideband signal is given by

SLSB(f) = G−(f − fc) + G+(f + fc),

as sketched in Fig. 3 below.
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f

fc−fc

SUSB(f)

f

fc−fc

SLSB(f)

(a) (b)

Figure 3: Single-sideband spectra: (a) upper-sideband, (b) lower-sideband.

It follows from the frequency-shifting property of the Fourier transform that

sUSB(f) = g+(t) exp( j 2πfct) + g−(t) exp(− j 2πfct)

=
1

2
(g(t) + j ĝ(t)) exp( j 2πfct) +

1

2
(g(t)− j ĝ(t)) exp(− j 2πfct)

= g(t)
1

2
[exp( j 2πfct) + exp(− j 2πfct)] + ĝ(t)

1

2
[ j exp( j 2πfct)− j exp(− j 2πfct)]

= g(t) cos(2πfct)− ĝ(t) sin(2πfct).

A similar derivation shows that

sLSB(f) = g(t) cos(2πfct) + ĝ(t) sin(2πfct).

Thus we see that single-sideband modulation can be regarded and implemented as a form
of quadrature amplitude modulation (QAM), with the modulating signal g(t) placed in the
in-phase channel and the Hilbert transform of g(t) (or its negative) placed in the quadrature
channel. A block diagram illustrating this approach is given in Fig. 4.

product
modulator

product
modulator

phase
shifter

cos(2πfct)

H

sin(2πfct)

+

+ LSB
− USBmessage

signal
g(t)

ĝ(t)

Figure 4: Generation of an SSB-modulated signal.

9



5 Exercises

1. Given an expression for the Cauchy principal value of the second integral in (1).

2. Show that ĉ = 0 for any constant c.

3. Find the Hilbert transform of g(t) = 1/t.

4. Verify that H[ rect(t)] = 1
π

ln|(2t + 1)/(2t− 1)|.

5. Verify that H[1/(1 + t2)] = t/(1 + t2).

6. Verify that H[ sinc(t)] = sin(πt/2) sinc(t/2).

7. If

hL(t) =
sin(2πWt)

πt

is the impulse response of an ideal lowpass filter with cutoff frequency W , what oper-
ation does the LTI system with impulse response

hH(t) =
cos(2πWt)

πt

perform? Show that hH(t) implements the Hilbert transform of the output of an ideal
highpass filter with cutoff frequency W .

6 Solutions to Exercises

1.

1

π

∫ ∞

−∞

g(t− τ)

τ
dτ = lim

ε→0+

(
1

π

∫ −ε

−1/ε

g(t− τ)

τ
dτ +

1

π

∫ 1/ε

ε

g(t− τ)

τ
dτ

)
.

2. We have

ĉ = lim
ε→0+

(
1

π

∫ −ε

−1/ε

c

τ
dτ +

1

π

∫ 1/ε

ε

c

τ
dτ

)

= lim
ε→0+

(
−1

π

∫ 1/ε

ε

c

τ
dτ +

1

π

∫ 1/ε

ε

c

τ
dτ

)

= lim
ε→0+

(
1

π

∫ 1/ε

ε

( c

τ
− c

τ

)
dτ

)
= 0
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3. We have H[δ(t)] = 1
πt

, and H[ 1
πt

] = −δ(t). Thus H[1/t] = −πδ(t).

4. Let g(t) = π rect(t). Then

ĝ(t) =

∫ t+1/2

t−1/2

1

τ
dτ.

There are four cases.

• In case t > 1/2, this integral evaluates to ln((t + 1/2)/(t− 1/2)).

• By symmetry, in case t < −1/2, this integral evaluates to − ln((t−1/2)/(t+1/2)),
which can be written as ln((t + 1/2)/(t− 1/2)).

• In case 0 < t < 1/2, the region of integration spans the singularity at τ = 0. The
Cauchy principal value of the integral over the interval [t− 1/2,−t + 1/2] is zero;
therefore what remains is the integral over the interval (−t + 1/2, t + 1/2), which
evaluates to ln((t + 1/2)/(−t + 1/2)).

• By symmetry, in case −1/2 < t < 0, we find that the integral over the interval
[−t− 1/2, t + 1/2] is zero; therefore what remains is the integral over the interval
[t−1/2,−t−1/2], which evaluates to − ln((−t+1/2)/(t+1/2) = ln((t+1/2)/(−t+
1/2)).

These four cases can be combined by writing

ĝ(t) = ln|(t + 1/2)/(t− 1/2)| = ln|(2t + 1)/(2t− 1)|.

5. Let g(t) = 2/(1+t2), so that g(t) = 1
1− j t

+ 1
1+ j t

. We have F [1/(1− j t)] = 2πe−2πf u (f).

By the time-reversal property of the Fourier transform, we get F [1/(1+ j t)] = 2πe2πf u (−f),
and hence

G(f) = 2πe−2πf u (f) + 2πe2πf u (−f).

Multiplying by − j sgn(f), we get

Ĝ(f) = − j 2πe−2πf u (f) + j 2πe2πf u (−f),

so

ĝ(t) =
− j

1− j t
+

j

1 + j t
=

2t

1 + t2
.

6. From the identity sinc(t) = sinc(t/2) cos(πt/2), apply the low-pass high-pass product
result to get H[ sinc(t)] = sinc(t/2) sin(πt/2).

7. An ideal highpass filter with cutoff frequency W has frequency response H(f) = 1 −
rect(f/2W ), and hence has impulse response δ(t) − 2W sinc(2Wt). Convolving this
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with 1/(πt) (to get the Hilbert transform) we get

hH(t) =
1

πt
− 2W sinc(2Wt) ∗ 1

πt

=
1

πt
− 2W sinc(Wt) sin(πWt)

=
1

πt
(1− 2 sin2(πWt))

=
cos(2πWt)

πt
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