OM. J. Roberts - 8/17/04

L aplace Transform Analysis of
Signals and Systems

Selected Solutions

1. For each circuit write the transfer function between the indicated excitation and indicated
response. Express each transfer function in the standard form,
SN+pb, N+ +b S +hs+
H(g= A das T TS TS
84S "t +&S +as+a,

Chapter 10 -

(8  Excitation: v (t) Response: v, (1)

R, L
+
w0 () i)
o -
— ZRLC(S) RZ
= 7@ +R LR
where
1 R
Z (S):(R2+SL)SC: sL+R :i S+|—
RC R2+s|_+i SLC+sRC+1 C, R, 1
sC L LC
Combine and simplify, to get
H(S):REC 01 lRZD R +R
*"SBrc T LH RLC
(b)  Excitation: i(t) Response: v, (1)
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(D)

Use the fact that the voltage at both op-amp inputs must be zero and the fact that no
current can flow into the op-amp input terminals. Find the current t flowing toward
the op-amp through resistor, R, by current division. All that current must flow
through the feedback network.

()  Excitation: v(t) Response: i,(t)

T

2. For each block diagram write the transfer function between the excitation , x(t), and the
response, y(t).

@

vi(t) R,

XO—| [ (D) — [ J i y(t)

X(g)

£Y(9) =2 -[8sY(s) +2Y(9)]

_Y(9_ 1 _ 1
H(s) = x(z) s +8s+2) S*+85 +2s
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X(t) 4-g}a [ [ y(t)
Intsal

-10

(b)

3. Evauate the stability of each of these system transfer functions.

_ 100
@ (9= s+200
80
(b) H(g=— Poleat s=4. Unstable.
s—4
(©) H(s):ﬁ Polesat s=0 and s= -1. Marginally stable
(therefore unstable)
(d H(g= —% Double poleat s=—2. Stable.
_ s-10
@ HE= 37145429
_., S+4
M HE=32" %
1
@ HEY=z,5
10
(h) (s

Sz —— ———
s’ + 45 +29s

4. Find the overdl transfer functions of these systems in the form of a single ratio of
polynomialsins.

@

X(s) — Y (9

& +35+2 S +35+2
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Multiply transfer functions.

(b)
s+1
$?+2s+13 4
X (89— H— Y0
1 +
s+ 10
Add transfer functions.
(©
X(9) +(?~ — 5 Y9
N S +s+5
Use feedback formula.
(d)
20s
X(s +(:)—» Y(s
© \ & + 200s + 290000 ©
1
s+ 400
Use feedback formula.

5. Inthefeedback system below, find the overal system transfer function for these vaues
of forward-path gain, K.

H(S) - 1+ glK
@ K=10° H(s) = 112;5 010
(b) K=10°
(© K =10
d K=1
(e =-1
(f) =-10
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K Y(9)

0.1

6. Inthefeedback system below, plot the response of the system to a unit step, for the time
period, 0 <t <10, then write the expression for the overal system transfer function and
draw apole-zero diagram, for these values of K.

X(9 —*(+) K Y(9)

\\E 0.1 e®

One-second
time delay

K
1+0.1e7K

H(s) =

1
1+2¢e°

@ K=20 H(s) =20

This is not the usual ratio of polynomias in s so we cannot find the inverse
transform in the usual way. Synthetically divide the denominator into the numerator
to yied the infinite series,

H(s) =20(1-2e™° +4e™> —8e™ +.-.)
Then inverse transform term-by-term.

t)=205(t) - 28(t-2) + 44t —2) -84t -3) +--
The step response is the integral of the impul se response.

t) = 20[u(t) - 2u(t -1) + 4u(t -2) - 8u(t - 3) +- |
Polesat 1+2e°=0. Solvingfors,

L1
e’ =——
2
Theterm, €°°, is, in general, complex because sis complex. There are multiple

solutions for sin the complex plane. The logarithm of a complex number, z=re'?,

° log(z) =In(r)+ j (6 +2nm).
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where “log” means the generalized complex log (base €) and “In” means the
natural log (base €) of areal number, inthiscase, .

s=log(-2) =In(2) + jm(2n +1) - Unstable

h ,®

A
soooT |( 81'1 X
— [ t X

.11 '—'I—lP 3 l 30

-8000

() K=10 © K=1 d K=-1
© K=-10 f)  K=-20

7. For what range of values of K is the system below stable? Plot the step responses for
K=0,K=4and K=8.

X(s)—+ s2-4i+4 Ye

Ks

Use the feedback formulato get the overal transfer function. Then solve for the
pole locations as a function of K and then see what values of K will put the polesin
the open left half-plane.

8. Plot the impulse response and the pole-zero diagram for the forward-path and the
overal system below.

100
X(s) —*% — Y(s
© N S +25+26 ©
10
s+ 20
1 1 L
H,(s) =100 =100 0 hy(t) = 20e™ sin(5t) u(t)

s +25+26 (s+1)*+25

Polesat s=-1+ |5.

H(9) =100 S+ 20

s® +225° +66s +1520

Polesat s=-22.12,0.0612 + |8.29.
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When the denominator gets to third degree in s, finding the poles becomes tedious
unless there is an obvious factorization. The MATLAB function, r esi due, can be
used to find the poles and to help do the partial-fraction expansion.

0.3785 0 s-0.0612 242,02 8.29 O
(9 =-———--+0.3785 > + > 0
S+22.12 E(s— 0.0612)° +68.71 829 (s-0.0612)° +68.71[

h(t) = {~0.3785"2* +0.3785¢"**[cog(8.29t) + 29.19sin(8.29t)] u(t)

9. Using the Routh-Hurwitz method, evauate the stability of the system whose transfer
functionis
s’ +3s+10

H(s) =
(s s° +2s' +10s’ +45* +8s +20

5 1 10 8

4 2 4 20

3 8 -2 0
9

2 —- 20 0
2

1 - 338 0 O

9

0O 20 0 O

Thisresult indicates that there are two poles in the RHP. That is confirmed by finding the
poleswhich lie at
s=-0.9432 +j2.9107

s=-0.9432 - j2.9107
s=0.5502 + j1.207
s=0.5502 - j1.207
s=-1214

10. Using the Routh-Hurwitz stability test, evaduate the stability of the system whose
transfer function is of the general form,

H(s)

_ N(s)
a sS+as +as+a,

Wheat are therelationsamong a,, a and a, that ensure stability?

3 1 a

2 27 2

1 -&%7axk
2

0 a, 0
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_&-ay,
&

Forstability,a2>0,—a°;12i>OD as & O am, a, a>0.

11. Plot the root locus for each of the systems which have these loop transfer functions and
identify the transfer functions that are stable for all positive real values of K.

K

@ T(9= (5+3(s+8) Stable for positive K
_ Ks
® T (53
Ke
@ TO= g
K
@ Tl9= (s+1)(s* + 4s+8)

12. Usethe block diagram, of an inverting amplifier using an operational amplifier,

Z(9) o~V | A
Vi (S) ZI(S) + Zf(S) _’+ 1 _ % VO(S)
Z(s)
Zi(s) +Z(9)

with A, =10*, p=-2000m, Z, =10kQ and Z =1kQ, to find the gain and phase margins
of the amplifier.
.
T(9) = 0.5712x10
S+6283

Finding the zero-dB frequency,
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: _10.5712x10’
T woas)\—‘m

0.5712x 10
@ +(6289)°

=10 w,z 5712 1001 fz, 909.1kHz

At that frequency the phase of the loop transfer function is

0 o "0
0.5712x10 T oo

979 = OG5 712 x10° + 62830 2

So the phase margin is 90°. The phase approaches 90° as the frequency approaches
infinity. The loop transfer function magnitude approaches zero as the frequency

approaches infinity. The loop transfer function magnitude in dB therefore approaches
minusinfinity. That meansthe gain marginisinfinite.

13. Plot the unit step and ramp responses of unity-gain feedback systems with these
forward-path transfer functions.

100 100
H = H =
@ (o s+10 (s s+110
Unit step response:;
— 100 :E _ 1 :E _ p-la0t
H‘1(5)_s(s+110) 1165 s+1100- (1) 11(1 e )ult)

Unit ramp response:

o 1 10
H (S):&:ED]- _m_,_&ﬂm h (t):ED _1_e—110tD
27 (s +110) 11? s s+110§ W= "0
= ot _ 100
(k)  Hy(9 = {s+10) ©  H(9= 2o+ 10)

@ H(9= %

14. Reduce these block diagrams to a single block by block-diagram reduction. Check the
answer using Mason’ s theorem.

@
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X(© s-+23 R 31020 ve

1]

5]
-2 10s

X® s+3 sr20s+10|
-20s
X(9) (s+3) (5 + 205+ 10) Y(9)
Mason's Theorem:
_ -20 10
A9 = (s+3)(s+20) and Ty(s)= s+ 20)
and A9 =1+ —s(siozo) and Afg=1
< 20
Hg- B P(s)A(s) (s+3)(s+20) _ o0s .
N9 g, 10 (s+3)(+20s+10) '
s(s+20)
(b)
s +@_ Y(9)
S 7\ 5
X g [ G S5+20
1]

15. Find the responses of the systems with these transfer functions to a unit-step and a
suddenly-applied, unit-amplitude, 1 Hz cosine. Also find the responses to a true unit-
amplitude, 1 Hz cosine (not suddenly applied) using the CTFT and compare to the

steady-state part of the total solution found using the Laplace transform.

Use the results of the chapter in which if a cosine is suddenly applied to a system

whose transfer function is H(s) = % the responseis
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y(t)=r ﬁa H(je, )‘cos(oq)t+ OH(] 06)) (t)

lz)ll((;)) isthe partid fraction involving the transfer function poles.
1
H(s)=-
@  H(9=

Unit-step response:

HA(9)= 3 0 hy(9) = tu(t) = ramp()

Unit-amplitude 1 Hz cosine response:

(GRS (8277)2 o +2(Zn)2 5= %
Using the CTFT:
(o) =4
Lfdwzge §oz ff- PO20, 0020
(- 221, e 211
Y(ja))zz [S(w+27)- § w2 RO %.Check.
®  HE= 7 ©  HO= gt

H(9 = sz+2§+40

16. For each pole-zero diagram sketch the approximate frequency response magnitude.

(d)
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(d)
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[s]
* o
-5
w
[s]
x D>~ 0
2
[s]
x
t o
-3
x
w
[s]
2
* a
-4
©-2
w
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o 0
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17. Using only a caculator, find the transfer function of a third-order (n=3) lowpass
Butterworth filter with cutoff frequency, w, =1, and unity gain at zero frequency.

The poles must be on a semicircle of radius, one, in the LHP. One pole is on the red

axis and the spacing between polesis 7—; radians.

L 1
H(iw) = P +282 +2s+1

18. Using MATLAB, find the transfer function of an eighth-order lowpass Butterworth filter
with cutoff frequency, w, =1, and unity gain at zero frequency.

»[z,p, k] = buttap(8) ;
»Z

p =
-0.1951 + 0.9808i
-0. 5556 + 0.8315i
-0. 8315 + 0. 5556i
-0.9808 + 0. 1951i
-0.9808 - 0. 1951i
-0. 8315 - 0. 5556i
-0.5556 - 0.8315i
-0.1951 - 0.9808i

»K

k =

1. 00000000000000

H(9)= .
§s+ 0.1951 + j0.9808)(s+0.1951 - j0.9308)

0
0
s+0.5556 + j0.8315)(s + 0.5556 + j 0.8315) ]
0
s+0.8315 + 0.5556)(s+0.8315 - j0.5556)
s+0.9808 + j0.1951)(s+ 0.9808 + 0.1951) [

1
s +0.30025 +1)(§* +1.11125 +1)(s? +1.663s + 1(s? +1.96165 +1)

H(s):(

Multiplying the first factor by the last and then the two middle factors,
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1
H =
(s (s +2.35185" +2.76545 +2.3518s +1)(s* + 2.7741S" + 3.8478s +2.7741s +1)

1
H(S)= 8 7 6 5 4 3
§® +5.1268" +13.1371s° +21.8462s° +25.6884s" +21.8462s’ +13.13715° +5.126s +1

19. Find the transfer functions of these Butterworth filters.

@ Second-order highpass with a cutoff frequency of 20 kHz and a passband
gain of 5.

The transfer function of the normalized filter is

_ 1
Hoen(8) = 2 +1.414s+1

f =20kHz O «x 1.25% 10°

: , w,
Making the transformation, s — ?C

2

H(s) = >
s +1.777 x10°s +1.579 x10%

The passband is high frequencies (approaching infinity). Therefore
H (joo) =J1and we need to multiply the transfer function by five to get the required
gain.
_ 5
(9= g 1777 x10°s +1579 x10°

(b) Third-order bandpass with a center frequency of 5 kHz, a-3 dB bandwidth of
500 Hz and a passband gain of 1.

This exerciseis straightforward but the algebraislong and tedious.

H(9) = 3.1x10°Ks’
S° +62838° +2.97 x10°s" +1.24 x10°s® +2.93 x10"°s* +6.09 x10”'s +9.542 x10*

(c)  Fourth-order bandstop with a center frequency of 10 MHz, a -3 dB
bandwidth of 50 kHz and a passband gain of 1.

More tedious algebra.

(S) _ f +1.579 x10°s® +9.351 x10%s* +2.461 x107s? +2.429 x10%
E‘*ss +8.2093x10°s’ +1.579 x10%°s® +9.7223 x10%s® +9.35 4031545
£3.8377 x10%s® +2.4607 x10*s* +5.0499 x10%s +2.4285 x10% g
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20. Draw canonical system diagrams of the systems with these transfer functions.

@ H(s)=5%1
%:s_}_lm X(9=sY(9+Y(9 D sY(9=X(g-Y(3)
XO—®D—s|TY®
L —
B HEY=a2

21. Draw cascade system diagrams of the systems with these transfer functions.

@ HE=—:

T s+1

®  HO= 5o,

s+2)(s+12)
X(s)_’:%%]_t@ %J 4 +®—~Y(s)
2 ]— 12
20

@ H(9= < +55+10)

22. Draw parallel system diagrams of the systems with these transfer functions.

12

@ I_l(s)_s,2+3s+10
S

(b) H(S)_sz+125+32

23. Write state equations and output equations for the circuit of Figure E23 with the inductor
current, i, (t), and capacitor voltage, v (t), as the state variables and the voltage at the
input, v, (t), asthe excitation and the voltage at the output, v, (t), as the response.
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R=10Q C=1pF

to—/AAA

[

L=

+ I\
ve (D)

i (®

1mH

Figure E23 An RLC circuit

vi(t) = Ri (1) +
(=i, (1

C
v, (1)

!

Ve

State equations,

v 0

()
o

O]
Ol

'
L

OpooO
|-
I—I:Um“

v () =[1 —R]H ol

%o
LJ

v (t) + Lit (1)

vi(t) = Ri (1) = ve (1)

0
08, 55,
0O 3 H

amn)
D

24. Write state equations and output equations for the circuit of Figure E24 with the inductor
current, i, (t), and capacitor voltage, v (t), as the state variables and the current at the
input, i.(t), asthe excitation and the voltage at the output, v,(t), as the response.

o

© 1
L
L=1mH

+

Ve (1) =

o +

rR=1000 R

< C=1pF

Figure E24 An RLC circuit

25. From the system transfer function,

H s+

(9=

3

S+2s+9’

write a set of state equations and output equations using a minimum number of states.
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Let Y(s) beastate, Q,(s) and let sY(s) beastate, Q,(s). Then the state equations are

[SleD []0 1D]:Q18EJ+ 0
2 D D' . O
3,90 o 2%2 (97 B+

-1 4

26. Write state equations and output equations for the system whose block diagram is in
Figure E26 using the responses of the integrators as the state variables.

xO—| [ _t@— | J | y(t)

O
3SEP( (S)

Figure E26 A system

27.A system is excited by the sgna, x(t)=3u(t), and the response is

y(t) = 0.961e ™" sin(3.122t)u(t) . Write a set of state equations and output equations
using aminimum number of states.

3.122 3

961 =
(s+15)°+3.1222 & +3s+12

3
_Y(Y) _ P+3s+12 _ S
H(s)= X(s)~ 3  £+3s+12

S

Let Y(s) beastate, Q,(s) and let sY(s) beastate, Q,(s). Then the state equations are

[5Q, s)D DO 1 0Q,(s)

0 @EP(
%Q D’12 -3%3 Hr%m

(90

Y
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28. A system is described by the differentia equation,

y" (t) + 4y'(t) + 7y(t) = 10cos(20072) u(t) .

Write a set of state equations and output equations for this system with two states.

29. A system is described by the state equations and output equations,

()0 32 mml )0 01 200%,(t )

30T B ok 0T B2 o)

and
Eyl(t)D D3 500, (1) O
D’zt 42 4% t%
Ok, (t)0d ot 0"|U
With excitation, Dl()[;: 5 ()Dandinitial conditions, %]1( +)D= EDD. Find the system
x.()g ou(t) O 9.(0')g 80
0, (t) O
response vector, .
=0 .08
] S 1 Ul
2 _ 2 Al
q)(s):E% +25s—-3 s +2s 3D
0 3 sS+2 0
Bs? +2s-3 s +2s-30
O 5 3 0O
Y 5 [0
Q=0 5 9 0
0= hd UJ
02 , 2 _2(0
5+3 s-1 sH
S+2
S +2s-3
0 5 = 3.0

0,()0_ 03 5007 5€ +29 D Be ™ +27¢' 100
5,08 H2 4% Hs t+15¢' —go" ()
DI2 D e—3t+2e 2D e e D

30. A system is described by the vector state equation and output equation,
q'(t) = Aa(t) + Bx(t)
y(t) = Ca(t) + Dx(t),

and
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F1 -30 1 0O 2 -30 :
WhereA—Ell2 _75, B= %) 1% C:%) Dand D= %) . Definetwo new dtates,

in terms of the old states, for which the A matrlx is d| agona and rewrlte the state equations.

The eigenvalues can be found from the A matrix. They are the roots of s° +8s+13
whichare s=-2.2679 and s= -5.7321. Sothe matrix of eigenvaluesis

22679 0 O
“H o -s7mf

The equation to solve for the transformation matrix that diagonaizes the system is
AT =TA. Therefore T isthe matrix of eigenvectorsfor the matrix, A. A normalized T is

(08446 053540
~Ho3s93 09211 H°

To verify that this solution is correct,

[+2.2679 0 [0.8446 -0.5354[0 [10.8446 -0.53541+1 -30

H o  -57321HH03803 09211 H Ho38e3 o011 He —7H
G115 121430 19185 121430
Ho2315  —5.2708H Ho.2315  -5.2708H "
Using
a,(t) = Tay(t)
we get
(= 0846 05340
92\Y= 03803 0.9211 [\
Using
d5(t) = TAT7,(t) + TBx(t) = A ,0,(t) + B,x(t)
we get
10.8446 -0.5354(T+1 -3(T10.8446 —0.5354[T" M0.8446 -0.5354(T1 O[]

%(0) = 403893 09211 P -7H$0.3893 0.9211H %0+ 03893 09211 1%((0

or
[+2.2679 0 O [10.8446 —0.53540

LO=0 o _57221%)* Hozs03 09011 X

31. For the original state equations and output equations of Exercise 30 write a differentia-
equation description of the system.

The origina state equations are
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(1)

and

From the output equation,

Solving the output equations for the states,

Then

32. Find the ssdomain transfer functions for the circuits below and then draw block diagrams

or
or

for them as systems with V, (s) asthe excitation and V_(s) as the response.
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v, (t) L=5mH C=1pF=< v (1)

(@

S
00
§* +100s + 2 x10°

H(s) =1

100 |- V()

v, (t) C=1pF==< Vd!

(©)
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R=10kQ R=10kQ

+o—\/\/\/T/\/\/\— +
vil)  c=1 MFT C=1pF =< VdD
—o -

(d)

33. Determine whether the systems with these transfer functions are stable, marginally
stable or unstable.

@ H= % () H(9= %

g g
©  H(9= 214548 (d) H(9= 24548
©  HO= g are

34. Find the expression for the overall system transfer function of the system below.

xc»i()HwéﬁiJ»Y@g

B

H(s)= ——

T s+10+ 8K

Poleat s=-10-K

@ Let B =1. For what values of K isthe system stable?
Poleat s=-10-K

Systemisstablefor K > -10

(b) Let B =-1. For what values of K isthe system stable?
(© Let S=10. For what values of K isthe system stable?

35. Find the expression for the overall system transfer function of the system below.
For what positive values of K isthe system stable?

K
X(S)—'t?— m “—‘Y(S)
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36. Find the expression for the overall system transfer function of the system below.
Using MATLAB plot the paths of the poles of the overal system transfer function as a
function of K. For what positive values of K isthe system stable?

K
X(S)ig’)’ ERICRICE) TY(S)

()_Y(S) K K K

“X(9  (s+)(s+2)(s+I+K (¢ +3s+2)(s+3) +K TS +6F +115+6 +K

Although this denominator can be factored it is probably easier just to numericaly
explore the pole locations versus the value of K. A MATLAB program was written to graph
the pole locations for arange of K’'s and it was found that when K = 60 the poles just touch
the w axis, indicating marginal stability. When K =60, the polesare at

s=-6, +3.3166 .
Thereforefor 0 < K <60 the system is stable.

37. Thermocouples are used to measure temperature in many industrial processes. A
thermocouple is usually mechanically mounted inside a “thermowell”, a metd sheath
which protects it from damage by vibration, bending stress, or other forces. One effect
of the thermowell is that its therma mass slows the effective time response of the
thermocoupl e/thermowell combination compared witht the inherent time response of the
thermocouple alone. Let the actual temperature on the outer surface of the thermowell in

Kelvins be Ts(t) and let the voltage developed by the thermocouple in response to

temperature be v, (t). The response of the thermocouple to a one-Kelvin step change in
the thermowell outer-surface temperaturefrom T, to T, +1is

v, (1) = KT, + 4 - 02(0) 0
(U=KO+me P o

where K is the thermocoupl e temperature-to-voltage conversion constant.

. \Y . L ,
@ L et the conversion constant be K = 40"‘7. Design an active filter which processes

the thermocoupl e voltage and compensates for its time lag making the overdl system have a
response to aone-Kelvin step thermowel |-surface temperature change that is itself a step of
voltage of 1mV.

The unit step response of the thermocouple-thermowell combinationis

V() =K(1-e*)u(t) .
The impulse response is the derivative of the step response,

h,(t) = 5Ke™ u(t) .
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The transfer function is the transform of the impul se response,
5K
HI(S) = E .
The desired overall frequency responseis
ImV
H(s)=——.
(9="2

(Here K isthe kelvin not the thermocouple gain, K.) Therefore the transfer function of the
compensating activefilter is

_H(s) _10° _ L, S+5
Hf(S)—m—T—leo T
S+5

This is a system with a real zero creating a corner frequency, w,=5. This can be
synthesized by the circuit of Figure S37 .

Ry
R
_\/\/\/\_
+o—e C <
v, (t) I G
-9 -

Figure S37 Thermocouple-thermowell compensator
Choose resistor and capacitor valuesto locate the poles and zeros in the proper places.
(b) Suppose that the thermocouple also is subject to electromagnetic interference (EMI)
from nearby high-power dectrical equipment. Let the EMI be modeled as a sinusoid with
an amplitude of 20 uV a the thermocouple terminads. Calculate the response of the

thermocouple-filter combination to EMI frequencies of 1 Hz, 10 Hz and 60 Hz. How big is
the apparent temperature fluctuation caused by the EMI in each case?

At 1Hz: H,(j2m) =5(j2m+5) = 40.14051

So the response to the 20 uV excitation is about 800 pV which is equivaent to
about 0.8 K.

At10Hz:
At 60 Hz:
38. A laser operates on the fundamental principle that a pumped medium amplifies a

travelling light beam as it propagates through the medium. Without mirrors a laser
becomes a single-pass travelling wave amplifier (Figure E38-1).
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Pumped Laser Medium

| | |
v ¥ Y

Light In Light Out

Figure E38 -1 A one-passtravelling-wave light amplifier

This is a system without feedback. If we now place mirrors a each end of the pumped
medium, we introduce feedback into the system.

Mi . Mi
rror Pumped Laser Medium |Eror

| | |
Y Y Y

Figure E38-2 A regenerative travelling-wave amplifier

When the gain of the medium becomes large enough the system oscillates creating a
coherent output light beam. That is laser operation. |If the gain of the medium is less that
that required to sustain oscillation, the system is known as a regenerdive travelling-wave
amplifier (RTWA).

Let the eectric field of a light beam incident on the RTWA from the left be the
excitation of the system, E, (), and let the electric fidlds of the reflected lighnt, E. (s), and

nc

the transmitted light, Et,ans(S) , be the responses of the system (Figure E38-3) .

E circ (S)

Einc(s) jti _tﬁk)_ gfp jto — Etranis)
+

r r r

i i o

+
Een (5) —é+ it 9,

Figure E38-3 Block diagram of an RTWA

L et the system parameters be as follows:

Electric field reflectivity of theinput mirror, r, =0.99

Electric field transmissivity of theinput mirror, t, = /1-r?
Electric field reflectivity of the output mirror, r, = 0.98

Electric field transmissivity of the output mirror, t, = /1-r?
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Forward and reverse path électric field gains, gfp(s) = grp(s) =1.01e0"s

E, . .f
Find an expression for the frequency response, E“a"s(( : )) and plot its magnitude over the

inc

frequency range, 3x10" +5x10° Hz.

Ecirc(s) = jt; Einc(s) + gfp(s)rogrp(s)ri Ecirc(s)

jt
= Einc S
1- gfp (S)rogrp(s)ri ( )

Etrans(s) = jtogfp (S) Ecirc(s)

ti togfp(s)
ETACHA

Eqre(9)

Etrans(s) ==

Thetransfer functionis

tt
H(S) — Etrans(s) i ogfpgs)
Einc (S) 1- r.origfp (S)
and the frequency responseis
H titogfp (J C())
Hjw)=-—"—>57"5_.
(J ) 1_ rorigfp(Jw)

IH(2rd )|
| L
T i f
2.999995e+14 3.000005e+14

39. A classical example of the use of feedback is the phase-locked loop used to demodulate
frequency-modulated signals (Figure E39) .

() —~  phase | % Loop ;
-| Detector Filter, H,.(9) vy
yVCO(t) VOl tage-
Controlled
Oscillator

Figure E39 A phase-locked loop
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The excitation, x(t), is a frequency-modulated sinusoid. The phase detector detects the
phase difference between the excitation and the signa produced by the voltage-controlled
oscillator. The response of the phase detector is a voltage proportional to phase difference.
The loop filter filters that voltage. Then the loop filter response controls the frequency of
the voltage-controlled oscillator. When the excitation is a a constant frequency and the
loop is “locked” the phase difference between the two phase-detector excitation signals is
zero. (In an actud phase detector the phase difference is 90° a lock. But that is not
significant in this analysis since that only causes is a 90° phase shift and has no impact on
system performance or stability.) As the frequency of the excitation, x(t), varies, the loop
detects the accompanying phase variation and tracksit. The overal response signd, y(t), is
asigna proportiona to the frequency of the excitation.

The actual excitation, in a system sense, of this system is not x(t), but rather the
phase of x(t), ¢ (t), because the phase detector detects differences in phase, not voltage.
Let the frequency of x(t) be f (t). The relation between phase and frequency can be seen
by examining asinusoid. Let x(t) = Acog(2rf,t). The phase of this cosine is 27t and,
for asimple sinusoid ( f, constant), it increases linearly with time. The frequency is f,, the
derivative of the phase. Therefore the relation between phase and frequency for a

frequency-modulated signal is
1d
f(t)=——(q@.lt)).
(=52 ()
Let the frequency of the excitation be 100 MHz. Let the transfer function of the

voltage-controlled oscillator be 108¥. L et the transfer function of the loop filter be

_ 1
s+1.2x10° °

Hie(9)

L et the transfer function of the phase detector be 1 . If the frequency of the excitation

radian
signal suddenly changes to 100.001MHz, plot the change in the output signal, Ay(t).

Let @, (t) be phase difference between x(t) and y, ., (t). Thenthefollowing are
the relations among the signals,

X (9) = Pyq (9)

Y(9) = X (9)

T s+1.2x10°
Rico(9) =10" Y(s)

27T Frco (S)
S

D g (S) =, (S) ~ Pyeo (S)

CDVCO (S) =
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Combining equations,
X (9)
YORCE s+1.2x10° _ P (9
Veo S s(s +1.2 % 105)

q)diff (S)

—_ 4
Reo(9) =10" - e

8 (Ddif‘f (S) CD ( )
5 i S
Pyeo(s) =2 S+];2><10 = anlo4q—53+ld.;><105

chiff (S)

g(s+1.2><105i

D (S) = CDX(S) - 2% 10°

0 2rx108 U

D (s)§+ mé’z ®,(s)

Py (9) _ 1 _ sr12x0°)
®(s) ;.  2mx10° T s+12x10°)+2mx10°
s+1.2x10°)
Y(s) _ s
®,(s)  os+1.2x10°)+27x10°
(9= 20
2
Y(9) 21

F(9 os+12x10°)+2mx10°
In steady state with no frequency modulation and afrequency of 100 MHz, y(t) =1

The response to a step frequency change of 1 kHz, Af (t) =1000u(t), is

9 2 1000 _ 200077
Js+1.2x10°) +2rx10° s = &(s+1.2x10°)+2mx10°s

AY(

10 N 5.033x107' _1.05x 10°
s s+1145x10° s+5487

AY(s) =

Ay(t) = (10 +5.033x107e 490" ~1.05 x10%e " u(t)
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Ly(9)
1e-05

t

0.001

40. Plot the root locus for each of the systems which have these loop transfer functions and
identify the transfer functions that are stable for all positive real values of K.

@ (9= o 5((:2112 " 8) Unstable for some positive real K.
_ K(s+10)

® 7= (s+1)(s* + 45 +8)
_ K

@ 1= s* + 375 +3325+800

@ T9=KE"4

O T9={E
_ K(s+6)

O Tlo= (s+5)(s+9)(s* + 4s+12)

41. The circuit below is a simple approximate model of an operational amplifier with the
inverting input grounded.

) Define the excitation of the circuit as the current of a current source applied to the
non-inverting input and define the response as the voltage developed between the non-

inverting input and ground. Find the transfer function and graph its frequency response.
Thistransfer function is the input impedance.

2(9=R =1MQ

(b) Define the excitation of the circuit as the current of a current source applied to the
output and define the response as the voltage devel oped between the output and ground with
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the non-inverting input grounded. Find the transfer function and graph its frequency
response. Thistransfer function is the output impedance.

Z(s)=R =10Q

(© Define the excitation of the circuit as the voltage of a voltage source applied to the
non-inverting input and define the response as the voltage devel oped between the output and
ground. Find the transfer function and graph its frequency response. This transfer
function isthe voltage gain.

R=1IMQ, R =1kQ, C, =8uF, R =10Q , A, =10°

42. Changethe circuit of Exercise 41 to the circuit below. This is a feedback circuit which
establishes a positive closed-loop voltage gain of the overall amplifier. Repeat steps (a),
(b) and (c) of Problem #6 for the feedback circuit and compare the results. What are
the important effects of feedback for this circuit?
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R
0 Output
+
4 O
Rt

R=1MQ, R =1kQ, C =8uF, R =10Q , A, =10° , R, =10kQ , R =5kQ

V.(8)G, +[ V(9 - V,(9]G, =1i(9)

Re M9 A g 00

V,(9)(G, + G ) - V(9G, -V, (96, =0

V(s = Ay

Combining the last two equations,

Vo(9(G, + ) -V, A 196,20

Then
G, +G, -G, Eu:vsDD 1

W

Gi(s
E—Gf G+G%/S %AOSR(C 1 OEI()

G,

A=(G,+G,)(G,+G,) -G =GG, +GG, +G,G,

I%ch;o

1 -G, | G, +G, +A - >

VAC Y R RC, +1
Ii(s) A AO SR(C +16 G + G GsGo + Gst + GfGo
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R 11

1,1, RR RR
V() R R TPRe 1l RRERRAA S0
Ii(S) _ii_}_ii.Fii Rf +R)+&

RR RR RR

RR
RR; +RR, + A
Z(9=R + s A

Subgtituting in numbers,

9
50 10° +50,000 +10° >~ =0

2(9)=10°+ 8x1075+1

15,010
At low frequencies,

10%
Z(s)O——
Thisinput impedance is much higher than in the open-loop case.

(b)

Ground the input terminal for this calculation.

7.(9=Yeld) _ W9 V(9

(9 1,(9)
[Vo(9) = Ve(9)] G +[Vo(9) - Vi (9] G, =1, (9)

[Vs(s) - Vo(s)]Gf +V(9(G,+G) =0

Since the non-inverting input is grounded we can write

V(9= ViAo oy

Combining equations and solving

Vo(s)(Gf + Go) + . ADGO .

m -G EVS(S) =1,(9)

~V,(9G, +(G, +G, +G)V (9 =0
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0 AG, 0
A=(G, +G,)(G, +G,+G) Giime o1 OF
=G,(G,+G) +G,(G, +GS+Gi)+ﬁ
SRC, +1
AG, _
V(9= Re 417 ®|-ErGIG,
Ao G +G.+G A
G, +G,+G
Z,(s)= f AGG
G,(G,+G)+G,(G, +G,+G )+~
RC, +1
 + +
2 9=R i ELLLLL S

R(R+R)+*RR+RR+RR+RR o >

Z.(9)=10

10°(R+R ) +RR
10(10° +R) +10°R +R,) +R R, +106R5L
f 8x107°s+1
Substituting in numbers,

15.05x10° - 1
5x10% 5x10°
8x107°s+1 8x107°s+1

Z (s 010
15.06x10° +

At low frequencies
Z,(s)00.2x 10

This output impedance is much lower than in the open-loop case.
(C) Vo(s)(Go + Gf ) - Vx(S)Go - VS(S)Gf = 0
Vs(s)(Gs + Gf + GI) - Vo(S)Gf - Vex(S)Gi = O

where V_ (s) isthe overall excitation voltage with respect to ground
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1
V(9= (V. (9-V
(9= (Va9 - Vi(I)A RC +1
0 0 0 0
%30+Gf _Go _Gf @O(S)D D O D
06 0 GG rGHOFD V36
1 (98 @ =
0 s o\S
: o O Re+H
G,G
b=-A g (@ re )66 +0) e
. 0 -G, -G
Vo(s) :Z Vex(S)Gi O Gs+Gf +Gi
1 1
Vv 1
W(S)%SRACX 1 ARC 11
O -G, 0 1
V (S)_ VEX(S)GIQ%S&CX +1+Gf5 Vex(S)AO SR<CX +1(Gs+Gf +Gi)G0
oA A
O -G, 0 1
H(S)_ Vo(s) i Gi%%sRCX+1+GfE+AbsRCX+1(GS+Gf +Gi)G0
B Vex(s) - GfGo 2
AOSR(C +1+(Go+Gf)(Gs+Gf+Gi)_Gf
SRQO +1(Gs +G,)G, +GG,
H(s) = .G, x
A e 10676 +6) 6 (6. +0)
o SR§+1R(Rf +R)+RR
S) = X
AbstSfﬂ+(RfR +RR +RR ) +R(R +R)
Substituting in numbers, '
3 3
Rl e R
=58 T
20 420%x107 415 x10° > +20x10
8x107s+1 8x107s+1
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+ 3 +3. !
H(9 O 4005615><101 025 107 S 375><1017
1.6x10°s+5 x10" s+3.125 %10

The low-frequency gainis

3.75x10" 3= R +R

H(0)O25< 10" ———— =
3.125x10 R,

as it should be. The closed-loop gain has apole & s=-3.125x10’ which sets a corner
frequency of approximately 5 MHz. The open-loop corner frequency was approximately
20 Hz. So the bandwidth has been increased by afactor of approximately 250,000.

43. Plot the unit step and ramp responses of unity-gain feedback systems with these
forward-path transfer functions.

.

@ Hy9= L5+2)(s+6)
2

I A S

© MO rim

_ 100
@ M= o’ +10s+34)

100
& +10s+ 34)

(e) Hl(s) = 52(

44. Draw pole-zero diagrams of these transfer functions.

@ Hg=rAey

~ os+2)(s+6)
O  HO=g; 03

(Pole-zero cancellation.)
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1
(s+1)(s* +1.618s+1)(s* +0.6185 +1)

(@  H(9=

45. A second-order system is excited by a unit step and the response is as illustrated in
Figure E45 . Write an expression for the transfer function of the system.

Step Response
0.2 T T T
0.18
0.16
0.14
% 0.12
2
= 01
o
E oos
<
0.06
0.04 H
0.02 H
g 10 20 0 0 50 60
Time (sec.)

Figure E45 Step response of a second-order system
From the graph it is apparent that system is highly underdamped and that the fina

vaue of the step response is 0.1. So this second-order system has no zeros at zero.
Therefore the general form of the transfer function of this second-order systemis

___ Ay
s +2€w,s+ o}
and A=0.1. From the graph there are 10 ringing cycles of response between 0 and 10

seconds. Therefore the resonant frequency is approximately 1Hz or 27t radians per second.
The impulse response is of the form,

h(t) = Ke " cos(woﬁt + 9) .

So the characteristic exponential decay has atime constant of 7 = Z% From the graph, the

H(s)

0
time constant is approximately the time a which the ringing is a 36.8% of its maximum
value. That isat about 10 seconds. Therefore

1 1

(=—=—=0.0159.
w,T 20m
So the transfer function is
3.948
Hls) = .
(9 s +0.2s+39.48
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46. For each of the pole-zero plots below determine whether the frequency response is that
of apractical lowpass, bandpass, highpass or bandstop filter.

w w

E [s]

@ o (b) o
w w

[s] P [s]

(©) o (d ©®—0

€) Highpass
47. A system has atransfer function,

_ A
S+ 2AwS+

@ Let w, =1. Thenlet { vary continuoudy from 0.1 to 10 and plot in the s-plane the
paths that the two polestake while { isvarying between those limits.

H(s)

(b) Find the real-valued functional form of the impulse response for the case, w, =1 and
(=05,
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/3
h(t) = \/gAe‘O'5t sin %\/gt .

(© Sketch the phase frequency response for the case, w, =1and { =0.1.

Phase of H(jw)

]

-4 4

(d)  Findthe -3 dB bandwidth for for the case, w,=1and { =0.1.

A _ A
(jw)* +02jw+1 1-w’ +02jw

H(j) =
The maximum value of the transfer function occurs at resonance, w= «, =1. There

=5A

Hie)|= ‘o.z—ng

At the -3 dB points the magnitude of the square of the transfer function is one-half of
the square of thisvalue.
W_,s = +1.086,+0.883
So the bandwidth is 0.0323 Hz.

(e TheQ of asystemisameasure of how “sharp” its frequency responseis near a
resonance. Itisdefined as

For very high-Q systems what is the relationship between Q, w, and -3 dB
bandwidth?

If the Q isvery high that means that the damping factor is very low. The peak of the
frequency response occurs at resonance and at that frequency,

Y= A A
‘H(JwO)‘_ 207 _ng

The -3 dB bandwidth is found by solving
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Solving,

iR 1.4 poiptt,
o =gl Q : 400 2QQ

For very large Q,

which means that the bandwidth is

W,
AW 345 U 60

That is, for very-high-Q systemsthe -3 dB bandwidth is approximately the center frequency
divided by the Q.

48. Draw canonical system diagrams of the systems with these transfer functions.

$+8
S+3% +7s+22

@ H(9=
S*Y,(s) = X(9) - 37 Y,(s) - 7sY,(s) - 22Y,(9)

Y(s) =105’ Y,(s) + 80Y,(s)

10 |
80}=(H—Y©
XO—®—{ 5 £ [ H 1o

3 <

7

22|+

_ s+20

0 RS =10 v e+ 1a)
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49. Draw cascade system diagrams of the systems with these transfer functions.

&
s’ +8s® +13s+40

(a H(s) = -50

Factoring the numerator and denominator,

s s
H(s)=-50
( ) s+ 6.958 §* +1.042s +5.749
1 ’ 1 1 p
X© ) s Lo O ®— s H1 s H1Lol=5d-Y©
LG.QSS + )1 |rose]~
i
5.749
53
b H(s)=
(b) ( ) s® +18s? +92s +120

50. Draw parallel system diagrams of the systems with these transfer functions.

s’ 39.9s+ 73.84 0.09869

a H(s) =10 =10- -
@ (9 S’+4s° +9s+3 & +3.604s+7.572 s+0.3962

_ 5 _ 0.01667 B 0.15 N 0.1333
6s’ + 775> +228s+189 s+9 s+2333 s+15

)  H(9

51. Write state equations and output equations for the circuit of Figure E51 with the two
capacitor voltages, v, (t) and v, (t), as the state variables and the voltage at the input,

v,(t), as the excitation and the voltage, v(t), as the response. Then, assuming the
capacitors are initialy uncharged, find the unit step response of the circuit.

C,=1pF R,= 10kQ
+o |( ANN —
+ I\ -

Vea(®) +

+
Vil R=10kQ < VR v () 3= C=1pF

Figure E51 A second-order RC circuit
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01 1 0 10 01,10
Hmwm% HmWZ%ﬁ%ﬁv

(9 =Yeld)_veld), u()

2= "RC, RC,  RG,

and an output equation,

VRl(t) = _V01(t) *V, (t) .

Writing them in standard matrix form, (with numbers substituted)

a/gl(t)EF [3-200 —100[u3/C1( )D [2000]
np
D’cz() D-lOO _1OODDIC2 H-OOD

and
(O
-1 og ot vilY) -
0= 7
Thetransfer functionis
=C[sl -A]'B+D
which, inthiscasg, is
H(s) = (s +100)
s? + 300s +10,000

The step response is
h_,(t) = (0.7326e®** +0.2764e %) u(t)

52. Write state equations and output equations for the circuit of Figure E52 with the two
capacitor voltages, v, (t) and v,(t), as the state variables and the voltage a the input,
v,(t), as the excitation and the voltage at the output, v_(t), as the response. Then, find
and plot the response voltage for a unit step excitation assuming that the initial conditions
are

., (00 RO

0 (F .0
D/CZ(O)D 10
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vi(t)
=z c, L

:I:— Veo(t) =

R = 68kQ , R =12kQ
C, =68nF, C, = 68nF
K=3
Figure E52 A constant-K lowpass filter

RC, RlCz+R2C2DD"c1(t)D O Vi(t)_vcz(t) O
RC  RC,  MVe(0F (1) -Kve,()-va(H
0 RC,+RC, RC,-K(RC,+RC,)0
()8 RRCG, RRCC, ()0, B2 %
Y.0d 0 1 K-1 t%* G
3 RC, RC, g 0°0
OV, (t) O
0 K
9=lo KI5 03
Substituting numbers,

[5-24510 -89389 [
H 12254  s+338811
s +9371s+ 2.65 x10°

P(s) =

0 26 +619955-5.3x10° [
Oge 3y O
O8s? +9371s+2.65 x10°) 1
0 & +9373s-2.65x10° [

& + 93715+ 2.65 x10°) 5

Q(9)=
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_3_ 6D S+ 4686 ,_ 4686 1.559 x 10* O
s Ets+ 4686)° +2.43x10°  1.559x10* (s+ 4686)° +2.43 x 10°H

Y(s)

y(t) =[3-6e* (cos{1.550 x10") + 0.3sin(1.559 x10°1))] )
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