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Chapter 12 - z Transform Analysis of Signals

and Systems
Solutions
1. Find the transfer functions for these systems by block diagram reduction.
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2. Evauate the stability of the systemswith each of these transfer functions.

z
H(z) = ——=
@ HE=%,
() HE=—
zZ-—
8
(©) H(z):; Poles at Z=§ij§. Both outside the
2_3_.9 4774
z z+8
unit circle. Unstable.
-1
d H(z) =
@ ) 7°-27* +3.752-0.5625
3. A feedback DT system has atransfer function,
K
HZ) = —
1+K
z-0.9

For what range of K’sisthis system stable?

4. Find the overdl transfer functions of these systems in the form of a single ratio of
polynomialsin z

@
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5. Find the DT-domain responses, y[n|, of the systems with these transfer functions to the
unit sequence excitation, x[n] =u[n] .

@ H@=-=

z z V4
Y = =
@)= ‘(-1

ramp|[n] B

(z-1°

ramp|n+1| —f1- z —rampOD
148 25 L —ranel]
y[n] = ramp[n+1] - Z(z—21)2
® HR=Z7
Z—i
2

6. Find the DT-domain responses, y[ n] , of the systems with these transfer functions to the
excitation, x[n] = cos%gngj[ n]. Then show that the steady-state response is the same
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as would have been obtained by using DTFT anaysis with an excitation,

x[n] = coséz?g

@ HE@=—53

(1)= 2 zfz-cos(Q,)B _[0.3232 , 0.67682+0.3591 O
z-0.9 7 - 2zcos(Q,) +1 Sz— 09 Z*-2zcos(Q,)+ 1%

Using the result derived in the text,

oIl =2 e e () os{an+ ()l

jf
where p=e 4

ih ‘ 0 iz O
y[n] = 7 0'32()3§§+ .ne cosEbon +0 .ne Bu[n]
e ej4—o.9‘ 0 ¢+ -090

y[n] =0.3232(0.9)" U n] +1.3644 co% n- 1.0517@1[ n|

Using the DTFT,

Although it is agebraicaly tedious, this expression can be smplified and inverse
transformed into

_ m . [P
y[n] = O.6768005§%§+ 1.1847si n%@

yn] = 1.3644(:0%1? ~105187. Check

or

2

_ Z
0 HE)= e o6

7. Sketch the magnitude frequency response of these systems from their pole-zero
diagrams.
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Im(2) 12 |H(ejQ)|

@ XoRD T | "

One pole and no zeros. Non-zero at Q =0. Vector from pole to point on the unit
circle getslonger as Q moves from 0 to 77 making the magnitude of the frequency
response smaller.

Im(2) 17
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Re(2)
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8. Usethe Jury stahility test to determine which of these transfer functions are for unstable
systems.

-z
H(z) =
@ ( ) Zz® - 0.257°> - 0.6528z +0.2083

The Jury array is

1 02083 -0.6528 -0.25 1
2 1 -0.25 -0.6528 0.2083 .
3 -09566 0.114  0.6007

D(1) =1-0.25 -0.6528 +0.2083 =0.3055 >0
(-1)°D(-12) = (-1)*(-1-0.25 +0.6528 +0.2083) = 0.3889 > 0
-0.9566 >/0.6007|
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Stable
z-1
(b) H(2)= 7' -0.92° - 0.657% +0.873z
z
(© H(2)=

Z* -1.52° +0.57° +0.25z -0.25

9. Draw aroot locus for each system with the given forward and feedback path transfer
functions.

., z-1 4z
@@=k @ e
z-1 z z(z-1)
T(z) = 4K = 4K
1z-08 10
z+ %+2§z 0.8)
Im(2)
Re(2)
z-1 4
H,(2) =K =
z Z+§
(C) Hl(z) = K Z_l ! HZ(Z) = Z_E
4 4
z z+2
(d) Hl(z):KZ_—l ,H,(2) = 3
4 4
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10. Using the impulse-invariant design method, design a DT system to approximate the CT
systems with these transfer functions at the sampling rates specified. Compare the
impulse and unit step (or sequence) responses of the CT and DT systems.

—_— 6 =
23, 6z 6z
h(t) = 6e7® = 2 = =
(t)=6e* u(t) O hn[=6e > u[n] O H(2) 27 7-02231
Z—¢€
16 1 1

0 h,(f)=(1-e*)ult)

Unit step response:; H‘l(s):§s+6_s -

Unit sequence response:

_z 6z __[Or.723 1.723
Ho @)=t 2t = LT
z-1z-0.2231 z-1 z-0.2231

h_[n] =[7.723-1.723(0.2231)"| [

Impulse Response Unit Step Response
h(t) h, 1(%0
6 1
05 ' 1t -05 ' it
Impulse Response Unit Sequence Response
h[n]
8
2 T 4 n

[ 6 f—
(b) H(s)—m, f.=20Hz

11. Using the impulse-invariant and step-invariant design methods, design digita filters to
approximate anal og filters with these transfer functions. In each case choose a sampling
frequency which is 10 times the magnitude of the distance of the farthest pole or zero
from the origin of the“s’ plane. Graphically compare the step responses of the digita

and analog filters.

@ MO

12-7



OM. J. Roberts - 8/28/04

Sampling Reate: f = % =3.1830 & 0.31416
Impulse Invariant:
DT Impulse Response: hn| = 2[(0.7304)n - (0.5335)”] un|

z-Domain Transfer Function:

H(2) = 03038 2

?-1.264z +0.3897

z Transform of Step Response:

7.955  10.05 N 3.092 @

H_,(2) =0.3938
z-1 z-07306 z-0.5334

DT Step Response:

h_[n] =[3.1312 - 3.9575(0.7304)" " +1.22(0.53348)" | u[n - {

h_[n] =[3.1312 - 5.4183(0.7304)" + 2.287(0.53348)"| y ]

(Last formis correct because h_[0] =0.)
Step Invariant:
Laplace Transform of Step Response:

CT Step Response:~ h_,(t) = (1-2e™ +e)u(t)
DT Step Response:~ h_,[n] = (1 2(0.7304)" +(0.5335) )u[ |

z Transform of Step Response:

H()=-2-2—2 4+ 2
z-1 “7-07304  z-05335

Transfer Function:

z+0.7314
z* -1.2639z +0.3897

H(z) = 0.0726
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h l(t) Unit Step Response

1+

t

. . 3
Impulse-Invariant Unit Sequence Response "

h [n]

—e o000 n
30

5
Step-Invariant Unit Sequence Response

O e
O = 50" (575578 = or5 " 5e8
© @):%

DT Step Response:

[24.348[n - 1] - 36.245(0.8198)" sin(0.5959n)
h—l[n] = D n-1 . IjJ[ n]

£35.55(0.8198)" sin(0.5959(n-1))un-1] H
Alternate solution:

h_,[n] = {24.348 — 24.348(0.81982)"[cos(0.59594n) + 0.01413sin(0.59594 n)]} u[n|

12. Using the difference-equation method and all backward differences, design digital filters
to approximate anal og filters with these transfer functions. . In each case, if a sampling
frequency is not specified choose a sampling frequency which is 10 times the
magnitude of the distance of the farthest pole or zero from the origin of the “s” plane.
Graphically compare the step responses of the digital and analog filters.

(@ H(g=s, f,=1MHz

v(s)_.
X(s)
— _1 —
MR L o =m0
s 1-7* R S V4
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H_i(s) =10 h.,(t) = ()

H_,(2) =10° O h_[n] =10°3[n]

h.,(t)
15
t
h,[n]
106,.
n
1
(b) H(g= o f.=1kHz
~ 2
© I_l(s)_sz+:~’ss+2

13. Using the matched-z-transform method, design digital filters to approximate analog
filters with these transfer functions. In each case, if a sampling frequency is not
specified choose a sampling frequency which is 10 times the magnitude of the distance
of the farthest pole or zero from the origin of the “s” plane (unless al poles or zeros
are a the origin, in which case the sampling rate will not matter, in this method).
Graphically compare the step responses of the digital and analog filters.

@ H(9=s

Zeroat s=0. Transformationis s—a — 1-e* 'z Therefore
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h.,(t)

2s 2s

(©  H(9= 110575 Grof Doublepoleat s= 5.

14. Using the hilinear-z-transform method, design digita filters to approximate anaog
filters with these transfer functions In each case choose a sampling frequency which is
10 times the magnitude of the distance of the farthest pole or zero from the origin of the
“s’ plane. Graphically compare the step responses of the digital and analog filters.

@ HY==1

h(t) = [5(t) - 20e™] u(t)

_1s-10_ 1, 2 .
L(9= o0 < toigh h_,(t) = (2e™ -1)u(t)

Y - .
H@ =Y osmeZTroteL
X(s)], 22 Z- 05219
Ts z+1
H.(2) = 052192 2719161 5ong, 2719161
z—-1z-0.5219 z°-1.522z7 +0.5219

H_(2) = 0.5219@2 2914z 1.9142@
-05218 z-1

h.,[n] = (1521(0.5218)" ~1)u[n]
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h l(t) Unit Step Response

\ t
) Jﬁ& 1.885

Bilinear-z Unit Sequence Response

h [n]

j‘llllllllllllllllllllllllllllslo

10
s +11s+10

(o)  H(9)=

3s

©  HE= g0

15. Design adigita-filter approximation to each of these ideal andog filters by sampling a
truncated version of the impulse response and using the specified window. In each case
choose a sampling frequency which is 10 times the highest frequency passed by the
analog filter. Choose the delays and truncation times such that no more than 1% of the
signal energy of the impulse responseistruncated. Graphically compare the magnitude
frequency responses of the digital and ideal anaog filters using a dB magnitude scale

versus linear frequency.

fc =1; type ="'LP ; fs = 10*fc ;

%

% Lowpass, Rectangul ar W ndow

%

h = FIRDF(type,fc,fs,' RE,0.01) ;

N=1length(h) ; Ts = 1/fs ; n =[0:N1]" ;

F:[0:0.001:1/2]' ;i [HF] = DIFT(n,h, F) ;

subplot(2,2,1) ;

p = xypl ot(F*fs 20*IoglO(abs(H)) [0,fs/2,-120,0],"\itf ' ,.
|I—(\lte’\{{\ltj}2{\p|}{\|tf}{\|tT} _s} )|
'Tines', 18,' Ti mes', 14, .
Lowpass - Rectangul ar Wndow "Times', 24,'

subplot(2,2,2) ;

p = xypl ot(F*fs 20*Ioglo(abs(H)) [0,fs/10,-5,0],"\itf ',.
|I—(\lte’\{{\ltj}2{\p|}{\|tf}{\|tT} s} )|
"Times', 18, ' Tines', 14,.

‘ Lowpass - Rect angul ar W ndow , Times',24,'n

|I—(\lte’\{{\ltj}2{\p|}{\|tf}{\|tT}_s} )|
"Times', 18,' Tines', 14, ...

12-12

%

% Lowpass, von Hann W ndow

%

h = FIRDF(type, fc,fs,"VH,0.01) ;

N =length(h) ; Ts = 1/fs ; n=[0:N1]" ;

F = [0:0.001:1/2]' ; [H F] = DIFT(n,h, F) ;

subpl ot (2,2, 3

p = xypl ot(F*fs 20*Ioglo(abs(l—|)) [0,fs/2,-120,20],"\itf ', ...

'c')

,"¢")
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' Lowpass - Von Hann Wndow ,' Tines',24,'n','c') ;
subplot(2,2,4) ;
p = xypl ot(F*fs 20*Iog10(abs(|—D) [0,fs/10,-5,0],"\itf ', .
|I—(\lte"{{\ltJ}Z{\pl}{\ltf}{\ltT} _s} )|
"Times', 18, ' Tines', 14,.
‘Lowpass ~"Von Hann WndoW,‘Ti mes',24,'n','c') ;

% Function to design a digital filter using truncation of the

% i npul se response to approxi nate the ideal inpulse response. The
% user specifies the type of ideal filter,

%

% LP - | owpass

% BP - bandpass

%

% the cutoff frequency(s) fcs (a scalar for LP and HP a 2-vector
% for BP and BS), the sanpling rate, fs, the type of w ndow,

%

% Re - rect angul ar

% WH - von Hann

% BA - Bartlett

% HA - Hamm ng

% BL - Bl acknan

%

% and the allowabl e truncation error,

% err, as a fraction of the total inpulse response signal energy.
%

% The function returns the filter coefficients as a vector.

%

% function h = FIRDF(type, fcs, fs, w ndow, err)
%

function h = FIRDF(type, fcs, fs,w ndow, err)

if fs=0]| fs =1inf | fs == -inf,
disp(' Sanpling rate is unusable')
el se
fs
= 1/fs ;
type = upper (type) ; wi ndow = upper (w ndow)
switch type
case 'LP,

fc = fecs(1) ; zclzl/(2*fc)
N = 200*zc1/Ts ; n=[0N"
Etotal = surr(S| nc(2*fc*n*Ts) n2)

E=0; N=1;

whil e abs(E-EtotaI) > Etotal *err,
N=2*N;
n=7[0: I\ﬂ ;
E = sun{si nc(2*fc*n*Ts) n2)

end
del N = fl oor (N 10) ;
while abs(E-Etotal )<Etotal *err & abs(del N >1,

N = Ndel N ;

n=[0N";

E = sun(5| nc(2*fc*n*Ts) n2)
del N = fl oor(delN 2) ;

end
N=ceil(N2)*2; % Make nunber of pts even
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nmd = (N2-1) ;
w = makeWndovx(w ndow, n, N) ;
h = w *si nc(2*f c*(n- nm d) *Ts)
h = h/sun(h) ;
case 'BP
fl =fcs(l) ; fh =fcs(2) ; fmd = (fh +fl)/2;
df = abs(fh-fl) ; zcl = 1/df ;
N = 200*zc1/Ts ; n=[0N" ;
Etotal = sun((2*df *si nc(df*n*Ts)
cos(2*pi *fmd*n*Ts)) n2)
E=0; N=1;
while al S(E-Etotal) > Etotal *err,
N=2*N;
n=7_0: l\ﬂ'
E = sun((z*df*5| nc(df *n*Ts) . *
cos(2*pi *fmd*n*Ts)) n2)
end

del N = floor (N 10) ;
whi | e abs(E—EtotaI )<Et otal *err & abs(del N)>1,

= NdelN;
n =[0:N"
E = sun((Z*df*S| nc(df *n*Ts) . *

cos(2* |*fmd*n*Ts)) n2)
del N = floor(delN2) ;
end
N=ceil(N2)*2; % Make nunber of pts even
nmd = (N2-1) ; n= [O:N-l]' ;
w = nmakeW ndow( wi ndow, n, N ;

h = w *2. *df . *si nc(df * (n nm d)*Ts).*
cos(2*pi *fm d*(n- nmi d)*Ts)
h = h/sun(h. *cos(2*p |*fmd*(n nmd)*Ts)) ;

end
end

function w = makeW ndow( wi ndow, n, N)
swi tch w ndow

case 'RE
w = ones(N 1) ;

case 'VH
w = (1-cos(2*pi*n/(N1)))/2 ;

case 'BA
w=2*n/(N1).*(0<=n & n<=(N-1)/2) + ...

(2-2*n/ (N-1)).*((N-1)/ 2<=n & n<N)
case 'HA
w = 0.54 - 0.46*cos(2*pi *n/ (N-1)) ;
case 'BL'

w=0.42 - 0.5*cos(2*pi*n/(N-1)) + ...
0. 08*cos(4*pi *n/ (N-1)) ;
ot herwi se
w = ones(N 1) ;
end

€) Lowpass, f, =1Hz, Rectangular window
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HE®™s)l gg HE?™5)] g

/N

-120 -5

(b) Lowpass, f, =1Hz, vonHannwindow

HE?™)] g HE?™s)] 4s
t
zo][ ‘ T f
5
-120 -5

16. Draw a canonical-form block diagram for each of these system transfer functions.

_ 7z-)
@ H(z) = Z2+15z+0.8

— é Y (2

0.8

>-2z+4

(b) H(2)=

%—1§222 +z+1)
2

17. Draw acascade-form block diagram for each of these system transfer functions.

H(2) = 2
Sas i

@
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@@ L} Ot ve
- +
‘mlTy

z-1

®) K@= o ares

N

18. Draw a parallel-form block diagram for each of these system transfer functions.

(@) H(Z)= =2
N

== Y(2

+
Aol N | |wl=]] NjE=
©

82°-472* +5z2+9
b) H(z) =
(b) H(2) 7122 +47% +72+2

19. For the system in Figure E19 write state equations and output equations.
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—~| 4
-2 /JS y[n]

_> +\
D D D I
_2 )
3
1 |-
5
1 |
2

Figure E19 A 3-state DT system
Assigning states to the responses of delay elementsin the order 1,2,3 right-to-left,
Ch[n +]] = Q2[n]
Q2[n +]] = Q3[n]
2 1 1
ds[n+1 =xn| - 5%[”] - g%[”] - qu[”]
y[n] = —2,[n] + 4q,[n]
Writing these equations in standard state-space form,

m[n+]0 [0 1 0 g0 oo
%Z[nﬂlfgol O1 12 2[n]ﬁ%)g([n]
H[n+1H F5 "5 T3 nH BH
Cep[n] O
vl =[o -2 47
H[n]B

20. Write a set of state equations and output equations corresponding to these transfer
functions.

_ 0.9z
@ H(9)= z>-1.65z2+0.9

We can write aresursion relation directly from the transfer function.
y[n+2] =0.9x[n +1] +1.65y[n +1] - 0.9y[n]

o yin+1 = 0.9x]n] +1.65y[n] - 09y[n -1
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Let g[n] =y[n-1] andlet q,[n] = y[n]. Then

Ch[n +]] = qz[n]
,[n +1) =0.9x[n] +1.65q,[n] -0.9¢,[n] .
y[n] = a,[n]

Writing the state equationsin standard form,

[[n+]0 00 1 gf[n]0 0O O
Gin+1T Hoo 165" ol

- 44

4(z-1)
z-0.9)(z-0.7)

(0) HZ)=¢

21. Convert the difference equation,

10y[r] + y[n -1 +y[n -2 +2y{n -3 = cog BT 4]

into a set of state equations and output equations.
22. Convert the state equations and output equation,

[n+]0 G2 -50g[n]

0 0 ofE o
ln+dT H offanH [ O%ﬁo é

-t 4

into a single difference equation. Using the relationships between the g's and y, we can

write
Mn+10 32 -5My[n] O @ 0 gu[n]g
il T offyn-15 [ %) C

Mulitplying matrices and using only the top equation that results,

y[n] +2y[n-1 +5y[n-2] = %g_lu[n—]] .
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23. Find the responses of the system described by this set of state equations and output
equations. (Assumethe systemisinitialy at rest.)

@[n+]0 3 mml[n]D
el T e ot
B’l[n]D D‘ _:I-D]]h[n]D

yng 2 ofns

Thetransfer functionis
C[zl A] B+D a —1D]:z 3 -10'@0 oo
"B oo z+2H BH FH

0z+20 O

? O
H(Z) -Z- 6D
E82+22 0

[¥°-z-60

The z transform of the excitation vector (in this case, ascalar) is

X(Z):;- .
Therefore the z-domain response vector is
0z+20 O
2 _,_el
V() =H(@)x(2)=F 27812
N8z+22 -1
B2 -z-6H
D23 12 350
0
Y(Z) 3 Z+2 z-1

046 . 04 5%
[232+2 z-10

[2.3(3)" +1.2(-2)" —3.5D[n]
546 "+04(-2)"-50

y[n =0

24. Find the overdl transfer functions of these systems in the form of a single ratio of
polynomialsin z

@
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X(2) *@ Y@
1
Z
() 06
’ 1
Z
08—
(b) .
® |
. 1
Z +
X(2) — 06 — H—YO
) +
® |
1
V4
|

0.8

25. Find the DT-domain responses, y[ n] , of the systems with these transfer functions to the
unit sequence excitation, x[n] = u[n| .

Z
H =
@ @= 2750w

_7-1.932z+1
(0 HE)= 2(z- 0.95)

26. Sketch the magnitude frequency response of these systems from their pole-zero
diagrams.
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(b)

T-05

\\ |
% :7 Re(2)
[

+0.45

2

+-0.45

Re(2)

0.866
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27. Using the impulse-invariant design method, design aDT system to approximate the CT
systems with these transfer functions at the sampling rates specified. Compare the
impulse and unit step (or sequence) responses of the CT and DT systems.

@  H(9

(o)  H(9

12-21

LZS , fS =20Hz
§° + 46s+ 240
712s
—— X, f.=200Hz
§+46s+240 ' °
(3 _ (@
Unit Step Response Unit Sequence Response
h,® h_,[n]
12 750,
1t 5 30 "
(b) (b)
Unit Step Response Unit Sequence Response
h 1(t) h l[n]
12 3000

200
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28. Using the impulse-invariant and step-invariant design methods, design digital filters to
approximate anal og filters with these transfer functions. In each case choose a sampling
frequency which is 10 times the magnitude of the distance of the farthest pole or zero
from the origin of the“s’ plane. Graphically compare the step responses of the digita

and analog filters.

16s
a H(s)z ———
@ (9 s +10s+ 250
s+4
b H(s)= —————
(b) (9 & +12s+32
S +4 _0.125+2.125 1.25

© H(S):s(sz+123+32)_ s  s+8 s+4

29. Using the difference-equation method and all backward differences, design digita filters
to approximate analog filters with these transfer functions. In each case choose a
sampling frequency which is 10 times the magnitude of the distance of the farthest pole
or zero from the origin of the “s” plane. Graphically compare the step responses of

the digital and analog filters.

s
@ HO=g 502

_ s+ 60
()  H(g= & +120s + 2000

_ 16s
©  H= g 10s s 250

30. Using the direct substitution method, design digita filters to approximate anaog filters
with these transfer functions. In each case choose a sampling frequency which is 10
times the magnitude of the distance of the farthest pole or zero from the origin of the
“s” plane (unless dl poles or zeros are at the origin, in which case the sampling rate
will not matter, in this method). Graphicaly compare the step responses of the digital
and analog filters. (First printing of the text had “matched z-transform” instead of
“direct substitution”. These solutions are for direct substitution.)

_ s
@  HE= g i00se10°

h(t) = [(t) - 1122e™™ +11.111™] u(t)

Ho(9=lD 10 10
1\ = 9Hs+1000  s+1008
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-1000t __ —100t
): 10e e u( t)

h,(t 5

f,=1591.55Hz and T,=628.32 us

(z-2)°
(z-0.9391)(z-0.5335)

H(z) =

H_(2) = 11474z 0.1474z
* z—-0.5335 z-0.9391

h_[n] = [1.1474(0.5335)" - 0.1474(0.9391)"] ]

h Unit Step Response

0.01885 t

Direct Substitution Unit Sequence Response

_"’HJ_LL*WTIWT'WV‘ n
-5 30

(9= §® +100s +5000

(5) ¥ = & +120s + 2000
S +4
H =
© (S) 5(52 +12s+ 32)
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31. Using the hilinear-z-transform method, design digital filters to approximate analog
filters with these transfer functions In each case choose a sampling frequency which is
10 times the magnitude of the distance of the farthest pole or zero from the origin of the
“s’ plane. Graphically compare the step responses of the digital and analog filters.

_ s

@ H(9= 27005+ 250000
_ §”+100s + 5000

() (9= s? +120s + 2000
g +4

©  H(9= & +12s+32
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32. Design adigital-filter approximation to each of these ideal analog filters by sampling a
truncated version of the impulse response and using the specified window. In each case
choose a sampling frequency which is 10 times the highest frequency passed by the
analog filter. Choose the delays and truncation times such that no more than 1% of the
signal energy of the impulse responseistruncated. Graphically compare the magnitude
frequency responses of the digital and ideal analog filters using a dB magnitude scale

versus linear frequency.
Refer to MATLAB code in Exercise 15.

€) Bandpass, f,, =10Hz , f,, =20 Hz, Rectangular window
(b) Bandpass, f,, =10Hz , f,, =20 Hz, Blackmanwindow

Bandpass - Rectan ular Window
HE™)| IH(e ””s)|

=1

_ Bandpass - Blackman Window
HE?™s)| |H(é2"”s)|

100f /r -\20 f
-5

33. Draw a canonical-form block diagram for each of these system transfer functions.

-140

Z2

@ H(z) = 27" +1.27° -1.06° +0.08z -0.02

2*(22 +0.82+0.2)
(22 + 2z +1)(22 +1.22+0.5)

0  HE)=

34. Draw a cascade-form block diagram for each of these system transfer functions.
2

Z Z
H =
@ @=zomont
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35. Draw aparallel-form block diagram for each of these system transfer functions.

18
(z-0.2)(z+0.7)

@ H(2) = (1+27)

z

z-1
Z V4
Z—lzz_l
2

(b) H(2) =
1+

2

36. Write a set of state equations and output equations corresponding to these transfer
functions (which arefor DT Butterworth filters).

_ 0.067467" +0.1349z +0.06746
7*-1.143z2+0.4128

@ H(z)

_ 0.0201z* - 0.04027* +0.0201
7' —2.54947° +3.20247° —2.0359z +0.6414

(b) H(2)
37. For the system in Figure E37 write state equations and response equations.

38. Find the response of the system in Exercise E37 to the excitation, x[n] = u[n|. (Assume
that the system isinitially at rest.)

39. A DT system is excited by a unit sequence and the responseis
0 * 30

o] = B8+2%§ - -1
Write state equations and output equations for this system.

40. Define new states which transform this set of state equations and output equations into a
set of diagonalized state equations and output equations and write the new state equations
and output equations.
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gn+]0 04 01 02040 2 -0500.1c0 USRI
Bu[n+15F Bos 028N EFH 0 ?SE%QJ é
@i 1 o csmlE s Bl

y[n+do 0 0 -1 ml[[n]]m
vin+15 [ 03 07%2 -
Sulis
The eigenvalue matrix is
30,8365 + 0.0717 0 0 O
A=5 0 -0.8365-j0.0717 0 .
5 o 0 ~0.0278

The solution of the equation, AT = TA, for the transformation matrix, T, is

[0.8908+ j0.1086 0.1046+j0.0219 -0.4280 +j0.00980
T= %).8908— j0.1086 0.1046-j0.0219 -0.4280 - jo.oogsg.
H -0.2556 -0.9481 01891 H

The new state-variable vector is
a,[n] =Ta,[n]
and the new diagonalized state equations are

m[n+]0 08365+ ]0.0717 0 0 n[r]0 (1.8862+j0.2391 17294 - j0.0248L0 oo "] 0
[+ 0 ~0.8365-j0.0717 0 [1,[n| + 18862~ j0.2391 17294 +]0.0248 :
Hn+18 B 0 0 -0.027H[nH B -14592 0.6951 %Q yn| g

y[n+10 [L3188+j0.0988 1.3188-j0.0988 -0. 4447%;1[ ]

H,[n+15 F02682+j0.0135 -0.2682-j0.0135 -0.1521 ZHE
3|

41. Find the response of the system described by this set of state equations and output
equations. (Assumethe systemisinitialy at rest.)

min+d0 T3 salo 2 =g W g

L[N+ 2 1n

%[nHJD DO 7%[”]9%- % u[n]D
0 uln] D

=l AR A8y
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