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Chapter 3- Mathematical Description and
Analysis of Systems

Selected Solutions
1. Show that asystem with excitation, x(t), and response, y(t), described by

y(t) = u(x(t))
is non-linear, timeinvariant, stable and non-invertible.

Homogeneity:

Let x,(t) = g(t). Then y,(t) = u(g(t)).

Let x,(t) = Kg(t). Then y,(t) = u(K g(t) # K y,(t) = K u(g(t)).
Not homogeneous

Additivity:

Let x,(t) = g(t). Then y, (1) = u(g(1).

Let x,(t) =h(t). Then y,(t) = u(h(t)).

Let x () o(t) « hit )

Then y,(t) = u(g(t) + h(t)) # v (t) + y,(t) = u(g(t)) + u(h(t))
Not addltlve

Since it is not homogeneous and not additive, itisnot linear.

It is also not incrementally linear because incremental changes in the excitation do not
produce proportional incremental changes in the response.

It is statically non-linear because it is non-linear without memory (lack of memory proven
below).

Time Invariance:

Let x,(t) = (t). Then y,(t) = u(g(t).

Let x,(t) =g(t—t,).

Then y,(t) = u(g(t - to)) =y, (t-t).

Time Invariant

Stahility:

The unit step function can only have the vaues, zero or one, therefore any bounded (or

unbounded) excitation produces a bounded response.
Stable

Causdlity:
Theresponse at any time, t = t,, depends only on the excitation at time, t = t, and not on any
future values.
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Causal

Memory:

Theresponse at any time, t = t,, depends only on the excitation at time, t = t, and not on any
past values.

System has no memory.

Invertibility:

There are many vaue of the excitation that al cause a response of zero and there are many
vaues of the excitation that al cause a response of one. Therefore the system is not
invertible.

2. Show that a system with excitation, x(t), and response, y(t), described by

y(t) = x(t -5) - x(3-1)
islinear but not causal and not invertible.

Causality:

At time, t=0, y(0) = x(-5) - x(3). Therefore the response at time, t=0, depends on the
excitetion at alater time, t= 3.

Not Causal

Memory:

At time, t=0, y(0) = x(-5) - x(3). Therefore the response at time, t=0, depends on the
excitation at aprevioustime, t=-5.

System has memory.

Invertibility:

A countate{(amplewill demonstrate that the system is not invertible. Let the excitation be a
congtant, K. Then theresponseis y(t) =K —K =0. This s the response, no matter what K
is. Therefore when the response is a constant zero, the excitation cannot be determined.

Not Invertible.

3. Show that a system with excitation, x(t), and response, y(t), described by

y(t)= X%@

islinear, time variant and non-causal.
Time Invariance:

Let (1) = g(t). Then y,(1) = o]

Let x,(t) =g(t—t,). Then y,(t)= g% - togi y.(t-t) = gé‘%@.

Time Variant

&=

Causdlity:
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At time, t=-2, y(-2)=x(-1). Therefore the response at time, t=-2, depends on the
excitation at alater time, t= -1
Not Causal

Memory:

Attime, t=2, y(2) = x(1). Thereforethe response at time, t = 2, depends on the excitation &
aprevioustime, t=1

System has memory.

Invertibility:
The system excitation a any arbitrary time, t=t,, is uniquely determined by the system

response a time, t = 2t,.
Invertible.

4. Show that a system with excitation, x(t), and response, y(t), described by

y(t) = cos(27t) x(t)
istimevariant, BIBO stable, static and non-invertible.

Time Invariance:
Let x,(t) = g(t). Then y,(t) = cos(27t)g(t).

_Il__gt xét) =g(t-1,). Then y,(t) = cos(2t)g(t - t,) # v (t - t,) = cos(2{t - t,) ot - ).
Ime Variant

Invertibility:

This system is not invertible because when the cosine function is zero the unique relationship
between x and y islost; any x produces the samey, zero.

Not Invertible.

5. Show that a system whose response is the magnitude of its excitation is non-linear,
BIBO stable, causal and non-invertible.

y(t) = (1)
Invertibility:
Any response, y, can be caused by either x or —x.
Not Invertible.

6. Show that the system in Figure E6 is linear, time invariant, BIBO unstable and dynamic.

J i i y(®

2.5 |~

X(t) —
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Figure E6 A CT system
The differential equation of the systemis 10y™ (t) -14y" (t) + 7y'(t) - 25y(t) = x(t).

Homogeneity:

Let x,(t) =o(t). Then 10yy' (t) - 14y; (t) + 7y;(t) - 25y,(t) = oft).
Let x,(t) =Kg(t). Then 10y3 (t) -14y; (t) + 7y5(t) - 25y,(t) = K oft).
If we multiply the first equation by K, we get

10K yy' (t) 14K yy (1) + 7K y;(t) - 25K y, (t) = K o(t)
Therefore

10K y;' (t) = 14K y; (t) + 7K y;(t) - 25Ky, (t) =10y5 (t) =14y; (t) + 7y, (t) - 25y,(1)

This can only be true for all time for an arbitrary excitation if y,(t) = K y,(t).
Homogeneous

Additivity:
Let x,(t) =g(t). Then 10y7' (t) -14yy (t) + 7y;(t) - 25y,(t) = oft).
Let x,(t) = Et Then 10yY (t) -14y4 (1) + 7y,(t) - 25y,(t) = h(t).

).
Let x,(t) = g(t) +h(t). Then 10y3 (t)—14y3; (t) + 7y5(t) - 25y,(t) = g(t) + h(t)
Adding thefirst two equations,

10yy (1) + vy (0] -24]yz (6) + v (0] + 7ya(t) + v5 ()] — 29]ya () 1+ v (1)] = o(t) + h(t)

Therefore
1y (8) + vy (O] -24]ys (0) +y5 (O] + ys(0) + v, (0] = 25y (1) [+, (1)
=10yy (t)-14y5 (t) + 7y5(t) - 25y,(t)

100y, (8) 1+, (0] =14y, (0) 1+y, (0] + 7[ya(®) 1+, (8] —25y,(8) | +y.()]
=10y3(t) - 14y3(t) + 7y5(t) - 25y,4(t)

This can only betrue for all time for an arbitrary excitation if y,(t) = y,(t) + y,(t).
Additive

Since it is homogeneous and additive, itisalso linear.

Time Invariance:

Let x,(t) = g(t). Then 10y;(t) -14y;(t) + 7y;(t) - 25y,(t) = o(t).
Let x,(t) =g(t—t,).

Then 10y3(t) - 14y3(t) + 7y,(t) - 25y,(t) = gt - t,).

The first equation can be written as

10y1’(t - to) - 14y1’('[ - to) + 7y1('[ - to) - 253/1(t - to) = g(t - to)
Therefore
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10y2(t—t,) - 24yt - t,) + 7yt - t,) - 25y, (t - 1)
=10y3(t) = 14y3(t) + 7y,(t) - 25y,(1)

This can only be truefor al timefor an arbitrary excitation if y,(t) = y,(t - t,).
Time Invariant

Stability:
The characteristic equation is 10A° —14A% + 74 —25 =0. The eigenvauesare

A, =1.7895
A,=-0.1948 + j1.1658
A, =-0.1948 - j1.1658

So the homogeneous solution is of the form,
y(t) — K1e1.7895t + Kze(-o.1948 +jL1es8)t Kse(-o.1948 - j1.1658)t .

If thereis no excitation, but the zero-excitation response is not zero, the response will grow
without bound as time increases.

Unstable
Causdlity:
The system equation can be rewritten as
t Az A, t Az A, D
1[4[” d/\d/\d)\+25_[oJ;Ly(/\d\oha\3%
Weg :
. —7:|;:[°y d/\d/\ +14J'y =

So theresponse at any time, t = t,, depends on the excitation at times, t<t, and not on any
future values.
Causa

Memory:

Theresponse at any time, t = t,, depends on the excitation at times, t<t,.
System has memory.

Invertibility:

The system equation,
10y" (t) -14y" (t) + 7y'(t) - 25y (t) = x(t)

expresses the excitation in terms of the response and its derivatives. Therefore the excitation
isuniquely determined by the response.
Invertible.
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7. Show that the system of Figure E7 is non-linear, BIBO stable, static and non-invertible.
(The response of an analog multiplier isthe product of its two excitations.)

Anaog
Multiplier

x[n] —ﬁ)— 2 |—yin

FigureE7 A DT system

8. Show that asystem with excitation, X[n|, and response, y[n|, described by

y[n] =nx[n],

islinear, time variant and static.

9. Show that the system of Figure E9 islinear, time-invariant, BIBO unstable and dynamic.

e
+
D

FigureEQ A DT system

y{n] =x{n] +y[n-1
yn-g=xn-1+y[n-2

_ _ y[n] =x[n] +x[n -1 +y[n-2]
Then, by induction,

y[n] =[] +x{n =1 +--- +x[n - +-~:kix[n—k]
Le m=n-Kk. Then -

—00

M= {m= 3 ]

i m=n m=-oo
Homogeneity:

n

Let x,[n] =g[n]. Then y;[n[= % o[m|

m=-—oco

Let x,[n] =Kg[n]. Then y,[n] = 2 Kgm] =Kmimg[m] =Ky,[n].

m=—oco =

Homogeneous.

n

Let x,[n] =g[n]. Then y;[n[= % o[m|

m=-—oco
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Let x[r] = H[r]. Then y,[r] = mimh[m]
Let x[n] =g[n] +n[n].

n n n

Then vl = 3 (il +himd)= 5 ol + 5 =] +y.f.
Additive.

Since the system is homogeneous and additive it isalso linear.
The system is also incrementaly linear becauseit islinear.
The systemis not statically non-linear becauseit islinear.

Time Invariance:

n

Let x,[n] =g[n]. Theny[n[= 5 d[m].

m=—oo
n

Let x,[n] =g[n-ng]. Theny,[n]= 5 gm-n].

m=—c

Thefirst equation can be rewritten as

Y1[n_no] = _Z g[m]
Let m=q-n, Then

yl[n - no] = Z g[q - no] = yz[n]
Timeinvariant "

Stability:
If the excitation is a constant, the response increases without bound.

Also the solution of the homogeneous difference equationis yh[n] = K(l)n =K. Therefore
the eigenvalue is 1 whose magnitude is not less than 1 and the system must be BIBO

unstable.
Unstable

Causdlity:
At any discretetime, n = n,, the response depends only on the excitation at that discrete time

and previous discrete times.
Causal.

Memory:

At any discretetime, n = n,, the response depends on the excitation at that discrete time and
previous discrete times.

System has memory.

Invertibility:
Inverting the functional relationship,
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n

yin = 3 x[m.

Invertible. m:_w
Taking thefirst backward difference of both sides of the original system equation,

n-1

il -yn-1= 3 {nl- 3 «n]

X{n] =y[n] ~y[n~1]

The excitation is uniquely determined by the response.
Invertible.

10. Show that a system with excitation, x[n], and response, y[n|, described by

yli] = rect(x{ri)
is non-linear, time invariant and non-invertible.

11. Show that the system of Figure E11 is non-linear, time-invariant, static and invertible.

5

Al ——| 10 |—5E)—vinl

FigureE11 A DT system

y[n] =10x[n] -5,
The system isincrementally linear because the only deviation from linearity is caused by the
presence of the non-zero, zero-excitation response.

Invertibility:
Solving the system equation for the excitation as a function of the response,

X[n] = —y[n] *5
10
Invertible.

12. Show that the system of Figure E12 istime-invariant, BIBO stable, and causal.
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an—{ L L@ o J D |-vin2

+
&)T I
4

FigureE12 A DT system

e
2

Homogeneity:
Let x,[n] =g[n|. Then 4y,[n] - y,[n 1] +2y,[n-2] =g[n]
Let x,[n] =Kg[n]. Then 4y,[n] -y,[n-1] +2y,[n-2] =K g[n]

Multiply the first equation by K. 4Ky,[n] -Ky,[n -1 + 2K y,[n-2] =K ¢[n]
Then, equating results,

4y2[n] - YZ[n _]] + 23/2[n _2] =4K Y1[n] - Kyl[n _]] +2K yl[n _2]
If this equation isto be satisfied for al n,
yo[n] =Kyy[n].
Homogeneous.
Additivity:
Let x,[n] =g[n]. Then 4y,[n] -y,[n-1 +2y,[n-2] =¢[n]
Let x;[n| =h[n|. Then 4y,[n] -y,[n-1] +2y,[n-2] =hn]
Let x;[n] =g[n] + h[n]. Then 4y,[n] -y,[n-1 +2y,[n-2] =g[n] + H[n]
Add the two first two equations.
A(y,[n] +y,[n]) - (vi[n =4 +y,[n-1) + 2(y,[n-2] +y,[n-2]) = g[n] + "]

Then, equating results,

4y3[n] - ys[n _]] + 2y3[n _2]

= 4(y,[n] +y,[n]) = (vi[n =F +y,[n=1) +2(y;[n - 2] +y,[n-2])

If this equation isto be satisfied for any arbitrary excitation for al n,

- ys[n] = yi[n] +y,[n].
Additive.

Since the system is both homogeneous and additive, it islinear.
Since the system islinear it is also incrementally linear.

Since the system islinear, it is not statically non-linear.
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Time Invariance;

Let x,[n] =g[n]. Then 4y,[n]-y,[n-1] +2y,[n-2] =g[n|
Let Xz[n] - g[n _no]- Then 4Y2[n] _yz[n _]] +2y2[n _2] - g[n _no]
We can re-write the first equation as

4y[n-ng-y[n-n, -1 +2y[n-n, -2 =gn-n|]

Then, equating results,

4y1[n - no] - Y1[n —Ny _]] + 23/1[n —Ny _2] = 4y2[n] - yz[n _]] + 23/2[n _2]
If this equation isto be satisfied for any arbitrary excitation for all n, then

_ _ yz[n] = Y1[n - no] :
Time Invariant.

Stability:
The eigenvalues of the system homogeneous solution are found from the characteristic
equation,
4a°-a +2=0.,
They are |
a,, =0.125+j0.696 or a,, =0.7071e" j1.3031

Therefore the homogeneous solution is of the form,

yh[n] = Kh1(0.7071)n ghits®sin K., (0'7071)n oiL39an

and, as n approaches infinity the homogeneous solution approaches zero and the tota
solution approaches the particular solution. The particular solution is bounded because it
consists of functions of the same form as the excitation and all its unique differences and the
excitation is bounded in the BIBO stability test. Thereforeif x isbounded, soisy.

Stable.

Causdlity:
We can rearrange the system equation into

vl =5 (] +y[n -1 + 2y{n-2)

showing that the response at time, n, depends on the excitation at time, n, and the response a
previous times. It does not depend on any future values of the excitation.
Causal.

Memory:
The response depends on past values of the response.
The system has memory.

Invertibility:
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The original system equation, 4y[n] - y[n—1] + 2y[n - 2] = x| n], expresses the excitation in
terms of the response.
Invertible.

13. Find the impulse responses of these systems.

@  y[n=xn]-x[n-1
The impulse response is very easly found by direct iteration to be

h[n] =&[n| - gn-1.

Also, using linearity and superposition, the impulse response of this system
is the same as the impulse response of the system, y[n] =x[n] minus the
impulse response of the system, y[n] =x[n-1]. The impulse response of
the first system is h,[n] =5[n] and the impulse response of the second

system is exactly the same except delayed by 1 in discrete time or
h,[n] =5[n-1]. The overdl impulse resopnse is therefore

h[n] =h,[n] =h,[n] =3[n] - 8[n-1] , asbefore.

(b)  25y[n] +6y[n-1 +y[n-2] =xn]

The homogeneous solution is

3+j4 FB—'4
yh[n]:KlE ZSJ g"'Kz 251 g

and, after discrete-time, n =0, this is the tota solution because the excitation
iszero. Thefirst two values of the impulse response are (by direct iteration),

= and = o

Solving for the constants,

4+j3
200

3+]4§ —J4§ _4-j3
625 @ 25 E 25 %2 =200
Then the impulse responseis

h[n]_4+j3 3+j4g+4—j3 3—j4g
200 O 25 200 O 25

] = (4+3)(-3+j4)" +(4-j3)(-3-j4)"
200(25)"

1
==K K, K, =
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(4 + j3)5nej2,214n + (4 _ j3)5“e“'2'214” B 4(ej2.214n + e—j2.214n) + j3(ej2.214n _e—j2.214n)

rl= 200(25)" - 200(5)"

_ 4cos(2.214n) - 3sin(2.214n)
lnl = 100(5)"

Then, using

Acos(x) + Bsin(x) = VA? + B? C“@‘ _tan_l%%%

_ cog(2.214n +0.644)
h[n] = 200

©  4y[n-5y[n-1+y[n-2=xn|

(d  2y[n| +6y[n-2] =xn] -x[n-2]

The impulse response is the difference of the response, h[n| to a unit impulse a
time, n =0, and the response, h,[n], to aunitimpulseat time, n =2,

14. Sketch g[n]. To the extent possible find anaytica solutions. Where possible, compare

analytica solutions with the results of using the MATLAB command, conv, to do the
convolution.

00 00

@ go[n] =u[n] Qu[n] = > u[mju[n-m| = > u[n-m| = i u[m-n] =ramp[n +1]

m=-oo m=0 m=-—oo

(b)  o[n] =un+2] Crect,[n] = i um+2|rect,[n-m] = mizre(:tg[n -m|

(©  d[n]=rect,[n] Orect,[n] = irectz[m] rect,[n—-m| = Zzzrectz[n -m|
(d)  d[n] =rect,[n] Orect,[n]
©  oln=3[n-4 2E ulr]

Using A3[n—-n,| Og[n] = Ag[n -n,]
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g[n] = 3%%5_ u[n-4]
(f) o[n| = 2rect,[n] D%gu[n]

(@  g[n] =rect.[n] Ocomb,[n] = rect,[n] Dmiod[n— 14m] = i rect,[n —14m|

m=-—oo0

15. Given the excitations, x[n|, and the impulse responses, h[n|, find closed-form
expressions for and plot the system responses, y[n].

.2m

@ Xn=e® , [ n] = (0.95)" u(n)

y[r] = Hr] O] = mieji;“(o_%)n—m {n—n]

y[n] = Z e = (0.95) " = (0.95)" y O

Making the change of variable, = -m

o EEj g =0
—_ 32
y[n] = (0.95) _qz_wto.gsm =(0.95)" qzn%)%e .
00
k
Using Zr |r|<1fromAppend|xA
.956_15 jz—nn e
y[r] = (0.95)" £ %T e 50632 2"
1-095¢ '® 1-095¢ 2
. m n
®  An] =sn%@ . Hn=(099)"un]

om 2
From part (), the responseto x[n] =e' * is y[n| = 5.0632ej§5 lm@. Since

.2m .2m

.Ezm e % -¢g @
snPMp-e e =
32 j2

Solutions 3-13



OM. J. Roberts - 8/16/04

by applying linearity and superposition, the responseto x[n] = Qn%@ is

@gn—lzwg _ 5.06326_ i égn —1.218§
j2

5.0632¢’
y[n] =

16. Given the excitations, X[n], and the impulse responses, h[n], use MATLAB to plot the
system responses, y[n].

@  x[n]=un-uyn-§g , h[n| :sing%gu[n]—u[n—d)

y[n] =H[n] Ox[n] = i Qn%%u[m] -um-g)(un-m -un-m-g)

m=-—o0

_ ¢ e myn-m - ymjyn-m-§ -
y[n| = m;sné%%u[m_g] un-m +um-gun-m-gH

y[n] = mZOS' n@@‘ gsné’?ﬁ- mif”%@* HZZS'”%!%Q

For n<O0, adl the summations ae zero because the factors,
u[n-m] and u[n-m=-8| arezerointhe summation range, 0<m<n,and y[n| =0.

Forn>15,
= . [Prm = . [Pmm
y[n] = m:zn_7S| n%g— m;?s n%gz 0.

So the responseis only non-zero for 0< m<16 (and can be zero at some points within that
range).

() x[n| :sinéz?gu[n] -un-g) h[n] :—sinézggu[n]—u[n—S])

17. Which of these systems are BIBO stable?

@
x[n] —t% y[n]
* i
09D

y[n] =x[n] -0.9y[n-1]

The system equation is
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Theeigenvalueisa = —0.9. Its magnitude is less than one, therefore the system is stable.

(b)
x[n] —t% y[n]
* i
111 D
(©
y[n]
1
5 [ D
}
1
5 [ D
(d)
y[n]
151 D
}
04 | D

18. Find and plot the unit-sequence responses of these systems.

@
x[n] —*»% *? y[n]
07+ D J -05 J

H{r] = hr] ch[r]

h[n]=(0.7)"un] and  h,[n] =(-0.5)"un]

W= (0.7)"um|(-05)""yn-n
Simplify this expression nég?nuch as possible by letting the unit sequency functions

modify the summation limits and then apply the formular for the summation of a geometric
series,

Solutions 3-15



OM. J. Roberts - 8/16/04

R B TE!
r"=rp_,N
nZo Eﬂl_rr , otherwise
to get
n1-(-1.4)""
nfn] = (-05) Z=CEA

Then convolve the impulse response with the unit sequence to get the overal response and
use some of the same techniques to find a simple closed-form expression for the response.

y{n] = 0.4167{0.6667(1- (0.5)"") + 4.6667(1- (0.7)""} u[]

=
081 D (+j~ y[nl

_tgii D J
06 D

] =hn] /[

(b)

X[n] —

] = {-0.8)" +0.6455(10.6)" - 0.6455(~0.6) " H{r]

Then convolve the unit sequence with the impulse response to get the overall system

response,
N+ _ n+l | n+l |:|
y[ n] = M + 0_64551(L6) - 0_@55M %J[ n]
H 18 0.2254 T74 .

19. Find the impulse responses of these systems.

@  y(t)+5y(t) =x(t)

Follow the examplein the text.

() y"(t)+6y (1) +4y(t) = x(t)
h" (t)+6h'(t)+4h(t) = 5(t)
For t<0, h(t)=0.

For t>0, h, () = Ke™*" +K,e %™
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Since the highest derivative of “x” is two less than the highest derivative of
“y”, the general solution is of the form,

h(t) — (Kle—s.zat + Kze—0.76t) u(t)

(Seethe discussion in the text of what the solution form must be for different
derivativesof x andy.) Integrating the differential equation once from t=0"
tot=0",

(07) - (07) +6[h(07) - h(07)] + 41 h(t)dt = id(t)dt =1

We know that the impulse response cannot contain an impulse because its
second derivative would be atriplet and there isno triplet excitation. We aso
know that the impulse response cannot be discontinuous a time, t=0,
because if it were the second derivetive would be a doublet and there is no
doublet excitation. Therefore,

h(0*)-n(07)=10 h(0*) =1

This requirement, along with the requirement that the solution be continuous
attime, t=0, leadsto the two equations,

h(0%) =1=[ 523k -0.76K £°™| _ . =-5.23K, -0.76K,

t=
and

h(0")=0=K, +K, .
(This second equation can aso be found by integrating the differentid
equation twice fromfrom t=0"to t=0".)
Solving,

K, =-0.2237 and K, = 0.2237

Then the total impulse responseis
h(t) = 0.2237(e*™ - &% )u(t) .

©  2y'(t)+3y(t)=x(1)

(d)  4y'(t)+9y(t)=2x(t) +x ()
9
The homogeneous solution is y,, (t) =K,e 4. The impulse response is of the form,

3

h(t) = K,e 2 u(t) + K.5(t) .
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_9
The solution is h(t) = —%e  u(t) + %5@)

20. Sketch g(t).

(@ g(t) = rect(t) Orect(t) :}rect(r)rect(t -1)dr = [rect(t —7)dr

N S

Probably the easiest way to find this solution is graphically through the “flipping and
shifting” process. When the second rectangle is flipped, it looks exactly the same because it
is an even function. This isthe “zero shift” postion, the t =0 position. At this position
the two rectangles coincide and the area under the product is one. If tis increased from this
position the two rectangles no longer coincide and the area under the product is reduced
linearly until at t =1 the areagoesto zero. Exactly the same thing happens for decreasesin t
until it getsto -1. The convolution is obviously a unit triangle function. This fact is the
reason the unit triangle function was defined as it was, so it could simply be the convolution
of aunit rectangle with itself.

This convolution can also be done analytically.

. . : 1 1 .
For t<-1, in the range of integration, - <T <§, the rect function is zero and the

convolution integral is zero.

. : . 1 1 o
For t>1, in the range of integration, 5 <T <§, the rect function is zero and the

convolution integral is zero.
For -1<t <0. Since the rect function is even we can say that rect(t - 1) = rect(r —t).

. o 1 1 .
This is arectangle extending in 7 from t_E to t+§. For t's in the range, —1<t <O,

t—% isaways lessthan or equa to the lower limit, T = —%,so the integral is from —% to

t+2,

t+1
2

g(t)= Irect(r—t)dr

2

Thisis simply the accumulation of the area under arectangle and therefore increases linearly
from aminimum of zero for t = =1 to amaximum of onefor t = 0.
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. N 1 1 :
For O0<t <1. Thisis also rectangle extending in 7 from t_E to t+§. For t's in the
1. . 1
range, 0<t <1, t+§ is dways greater than or equal to the upper limit, TZE, so the

integral isfrom t —l to l
< 2 2

N

o(t)= J'rect(r—t)dr

t——

2
Thisis also the accumulation of the area under arectangle and decreases linearly from a
maximum of onefor t = 0 to aminimum of zero for t = 1.

(b) o(t) = rect(t) Drect%@
This convolution is easily done graphically.

(©) o(t) =rect(t -1) Drect%g

(@ o(t)=[rect(t-5) +rect(t +5)] rect(t- 4) +rect(t +4)]

Break this convolution down into the sum of four smpler convolutions.
21. Sketch these functions.

(@ gt) = rect(4t) (b) oft) = rect(4t) 045(t)

(©) oft) = rect(4t) 046(t- 2)

d  g(t) =rect(4t) 045(2t)

Don't forget the scaling property of the CT impulse.
(©  g(t) = rect(4t) Ocomb(t)

Convolution with a comb is relaively easy because it is simply convolution
with a periodic sequence of impulses.

ILET
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M g(t) = rect(4t) Ocomb(t- 1)
Thisresult isidentical to the result of part (e).

(@  g(t) = rect(4t) Ocomb(2t)
Don't forget the scaling property of the CT impulses in the comb function.
Theaveragevaueof g(t) is 1/4.

(hy  g(t) = rect(t) Ccomb(2t)
Thisisthe sum of multiple rectangle functions periodically repeated.

22. Plot these convolutions.

o(t) = rect%@t[c‘i(ﬁ 2)-ot+1)| = rectg%zg— rect é[%lg

9(t)
4

@

(b)  oft)=rect(t) Ctri(t)

Thisisachallenging convolution because it is not so simple to do graphically
(although you can get arough idea of what it looks like that way) and it is tedious

anaytically.

g(t):}rect(r)tri(t—r)drz ti(t -1 )t

ol o
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t<-3/2 -32< t<-12 -1U2< t<1/2
rect(t) and tri(t-t)  rect(t) andtri(t- 1)  rect(t) and tri(t- 1)

i L 4T 2 L 4T 2 T 4T

1V2<t<3/2 32<t
rect(t) and tri(t-T)  rect(t) and tri(t- 1)

4 K at 4 gl
|ft<—l;’ ,o(t)=0.
3 1 _t+1D N _t+1 _D _[_2 +1
If S<t<—5 ,g(t)—J’lH. L;cTtEdT_J;(l (r t))dr—% 7+1‘LE1
1 - 5

2

B2
9= 1= 50
H

00=3+2 "
If -=<t<= g(t):j'%— T_:_ggdr +}§_—EE¢

By symmetry, g(t) = g(-t) and
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3
D 1>
5 2
o* 3 9 1 3
t) = -4 4+— =<t <=
D3_t2 ’ |t|<l
Ha 2
g(t)
1
2 ' 2 t

©  g(t)=e"u(t) Ce"u(t)

@ ot)= @fi EQQ + %%— tri EQQ —% ;comb%Q
©® dt)= @ri%ﬂ% + %%— tri%ﬂ% - %%]comb(t)

Thisisavery complicated way of saying g(t) =0. Can you determine this without
going throught the whole process of convolving them?

23. A system has an impulse response, h(t) = 4™ u(t). Find and plot the response of the
system to the excitation, x(t) = rect%% - %% :

Express the rectangle as a difference between two unit steps to smplify the problem.

24. Change the system impulse response in Exercise 23 to h(t) = 6(t) — 4™ u(t) and find
and plot the response to the same excitation, x(t rect%% - —%

25. Find the impul se responses of the two systemsin Figure E25. Are these systems BIBO

Stable?
xt) @ [ |-y

X(® —{ [y
@ (b)
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Figure E25 Two single-integrator systems

@  y(t)=x(t) 0 h(t) = u(t)
A CT system is BIBO stableif itsimpulse response is absol utely integrable.
Impulse response is not absolutely integrable. BIBO unstable.

26. Find the impul se response of the system in Figure E26. Isthis system BIBO stable?

X(t) —®H— | [ Fry(@

Figure E26 A double-integrator system
27. Inthe circuit of Figure E27 the excitation is v, (t) and the responseis v,(t).
@ Find the impulse response in terms of Rand L.

(b) If R=10kQ and L =100 pH graph the unit step response.

R
+ +

V. (t) LE v (1)

Figure E27 AnRL circuit

w()=Ri()+v.(0)
(9= 40w

R

Solutions 3-23



OM. J. Roberts - 8/16/04

Sh () +h(t)= =5 ()

h(t)=0 , t<0
For times, t > 0, the solution is the homogeneous solution,

h(t):Khe_IRt , t>0

Since the highest derivatives on both sides of this differential equation are the same
the impul se response contains an impulse and is of the form,
_R,
h(t) = K;0(t) + K,e tu(t)
Integrating both sides of the differential equation from 0™ to 0",
0 o L O il
+ + L —
go) h(o )§+6|'h ( )- 5(0)§DEK+ Ky O

=0 =0

L
R

:K5

I ntegrating both sides of the differential equation a second time from 0™ to 0",

|_0+ 0 LD 0

—[h(t)dt+ K, fu(t)dt ==Lu(0")-u(0”|JUO Kz 1

R(')[ () 50‘[ () RE(::L) (=O )E )
=K, =0

R
Then, from thefirst integration, K, = —F and h(t) = 6(t)—§e Cu(t)

The unit-step response, h_, (t) istheintegral of the impulse response,

j% -Retua )i - j%

For t <0 theintegral isobvioudy zero. Therefore h_l( )=0 , t<O
R - RO LOO-f0 Ry Ry
h,(t)=1-—(fet d/\ 1——5——5@ O =1+etb -1=e!t , t>0
La &

h,(t)=e* u(t)=e™"u(t) , Step response
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V(0

-0.01 ' ooa s

28. Find the impul se response of the system in Figure E28 and evaluate its BIBO stability.

X(t) 4@— [ [ y(t)

L
+<+— 10

1
20

Figure E28 A two-integrator system
1

v (1) = () + =y (1) = y(1)

10 20

29. Find the impulse response of the system in Figure EError! Reference source not
found. and evaluate its BIBO stability.

X(t) —=+ | | y(t)
2 |
+ + 3
1
8

Figure EError! Reference sour ce not found. A two-integrator system

30. Plot the amplitudes of the responses of the systems of Exercise 19 to the excitation, e'*,
asafunction of radian frequency, w.

@  y(t)+5y(t) =x(t)

First realize that the excitation, e'“*, is periodic, that is, it has aways existed and will
always exist repeating periodically. Therefore there is no homogeneous solution to worry
about. If the systemisstableit died out along time ago and if the system is not stable, this
exercise has no useful physica interpretation. So the solution is simply the particular
solution of the differential equation of the form,
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y,(t) =Ke .
Putting that into the differential equation and solving,

1
jw+5

K|
A
10T ' on ©

31. Plot the responses of the systems of Exercise 19 to a unit-step excitation.

@  h(t)=e™u(t)

Kwe' +5Ke“ =& [0 K

h_l(t):j'h(/\)d/\ :je‘“ u(A ) :je-*“da :—%[e'&];:%(l—eﬂ) , t>0
h,(t)o , t<0

h(t) = %(1- &) u(t)

h (0

f 1 t

32. A CT system is described by the block diagram in Figure E32.

J | y(®

3
4

X() — -+ [
1
+ 4

+

Figure E32 A CT system
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Classify the system as to homogeneity, additivity, linearity, time-invariance, tability,
causality, memory, and invertibility.

33. A system has a response that is the cube of its excitation. Classify the system as to
homogeneity, additivity, linearity, time-invariance, ability, causdity, memory, and

invertibility.
N y(t) =x°(t)
Invertibility:
1
Solvey(t) = x3(t) for x(t). x(t)=y3(t). The cube root operation is multiple valued.
Therefore the system is not invertible, unless we assume that the excitation must be real-

valued. Inthat case, the response does determine the excitation because for any red y there
isonly onereal cube root.

34. A CT system is described by the differential equation,
ty'(t) - 8y(t) = x(t) .
Classify the system asto linearity, time-invariance and stability.
Stability:
The homogeneous solution to the differential equation is of the form,
ty'(t) = 8y(t)

To satisfy this equation the derivative of “y” times “t” must be of the same
functional form as“y” itself. Thisissatisfied by a homogeneous solution of the form,

y(t) = Kt®

If there is no excitation, but the zero-excitation response is not zero, the response will
increase without bound as time increases.
Unstable

35. A CT system is described by the equation,

Classify the system as to time-invariance, stability and invertibility.

Time Invariance:

Let x,(t) =g(t). Then y,(t) = }g(x\)d}\.

Let x,(t) =g(t—t,).
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t t-to
7_t 2
3 b

3 3
Then yz(t)=J’g(A —t,)dA = i g(u)duz y,(t-t,) = i o(A)dA.
Time Variant - - -
Stability:

3
KdA =K [ dA and, as t - o, y(t) increases without

1
8'% W~

If x(t) is a congtant, K, then y(t)

bound.
Unstable

Invertibility:

t

Differentiate both sides of y(t)= [ x(A)dA w.rt. t yieldingy'(t) = x%@ Then it follows

éﬁ W~

that x(t) = y'(3t).
Invertible.

36. A CT system is described by the equation,

t+3
y(t) = i x(A)dA .
Classify the system asto linearity, causality and inverti bility.

37. Show that the system described by y(t) = Re(x(t)) is additive but not homogeneous.

(Remember, if the excitation is multiplied by any complex constant and the system is
homogeneous, the response must be multiplied by that same complex constant.)

38. Graph the magnitude and phase of the complex-sinusoidal response of the system
described by
y (1) +2y(t) = 7"

asafunction of cyclic frequency, f.
Similar to Exercise 30.

39. A DT system is described by

n+1l

y[n[= % x[m] .

Classify this system as to time invariance, BIBO stability and invertibility.

Time Invariance:

n+l

Let x[n] =g[n]. Then y,[n]= % ¢[n.

m=—oco

Let x,[n] =¢[n—n,]. Then y,[n] = mn:iog[m— N -
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Thefirst equation can be rewritten as
n-nq +

yl[n - no] = z lg[ m] = in:g[q - no] = yz[n]

m=-—co

Timeinvariant

Invertibility:
Inverting the functional relationship,
n+l

yin = > x[m.

Taking the first backward difference of both gd_;s of the original system equation,

n+1-1

Vil -yn-1=3 m -3

m=-o0 m=—oo

{n+1=y[n]-y[n-1

The excitation is uniquely determined by the response.
Invertible.

40. A DT system is described by

ny[n] -8y[n-1 =x[n] .
Classify this system asto time invariance, BIBO stability and invertibility.
Stability:
The homogeneous equation is

ny[n] =8y[n-1]

yinl = 2yin-1

or

Thus, as n increases without bound, y[n] must be decreasing because it is a times its

previous value and % approaches zero. Rearranging the original equation,
x[n] 8
=+1d 4+ -1 .
yin] ==+ —y[n-1

For any bounded excitation, x[n|, as n gets larger, Lnn] must be bounded and %y[n -1

must be getting smaller because it is a decreasing fraction of its previous vaue. Therefore
for abounded excitation, the response is bounded.
Stable.
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41. A DT system is described by
y[n] =yx[n] .
Classify this system asto linearity, BIBO stability, memory and invertibility.

Invertibility:
Inverting the functional relationship,

| X{n] =y[n] .
Invertible.

42. Graph the magnitude and phase of the complex-sinusoidal response of the system
described by

- jQn

y[n] +%y[n -I=e

as afunction of Q.

This is the steady-state solution so al we need is the particular solution of the
difference equation. The equation can be written as

1 R
Ml +2yIn-1=(e)"=a
where
a=e°

The particular solution has the form,
y[n] =Ka" .

43. Find the impulse response, h[n], of the system in Figure E43.

oo
09 H D

Figure E43 DT system block diagram
y[n] = 2x[n] +0.9y[n -1
y[n] —0.9y[n -1 = 2xn]

The homogeneous solution (for n = 0) is of the form,

or

yln] =K,a"
therefore the characteristic equation is

K.a"-09K.a""=0.
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and the eigenvaueisa = 0.9and, therefore, y[n] = K,(0.9)"

We can find an initial condition to evauate the constant, K,, by directly solving the
difference equation for n=0.

y[0] =2x[0] +0.9y[-1] =2.

Therefore
2=K,(09)°0 Kz 2.

Therefore the total solutionis
y[n] =2(0.9)°
which is the impulse response.

44. Find the impul se responses of these systems.

@  3y[n]+4y[n-q+y[n-2] =x{n] +x[n-1]

(b) gy[n] +6y[n -1 +10y[n-2| = x|

45. Plot g[n]. Usethe MATLAB conv function if needed.

@  dn]=rect,[n] Dsin%gng

Write out the convolution sum. Then use
sin(x+y) = sin(x)cos(y) + cos(x)sin(y)
write out the entire summation and simplify what you get. Y ou should ultimately get

[2rm]

g[n] = 2.5321sin975
0 o] =rect,fn] Csin
© g[n]=0
(d)  dn| =rect,[n] Orect,[n] Ocomb,,[n]

First convolve the two rectangles. Then convolve the result with the comb, thereby
periodically repeating it.

(e Similar to (d) but with a different result.
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@ go[n]= 2COS@—ED§z§ u[n]

Write the convolution sum. Express the cos in exponential form and combine with
other terms. Then use
d 1
>r=isy <t
= 1-

to put the result in closed form, and simplify using
cos(x +y) = cos(x)cos(y) - sin(x)sin(y)
Finally use
; _ (a2 2 L 0B
Acos(x) + Bsin(x) =VA’ + B cosax tan™ 5 -
and you should get

2
o[n] = 2434cos 5 ~0.98457

nfl

@ dnl= 242 22

In the absence of the transform methods which have not been covered yet, this convolution
must be done numerically. This will be relatively simple to do analyticaly using transform
methods.

46. Find the impulse responses of the subsystemsin Figure E 46 and then convolve them to
find the impulse response of the cascade connection of the two subsystems. You may
find this formulafor the summation of afinite series useful,

X[n]—tﬁ—yl[n]—t? J y,[n]
D D |2

Figure E 46 Two cascaded subsystems
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47. For the system of Exercise 43, let the excitation, x[n], be a unit-amplitude complex
sinusoid of DT cyclic frequency, F. Plot the amplitude of the response complex
snusoid versus F over therange, —1< F <1.

48. In the second-order DT system below what is the relationship between a, b and ¢ that
ensures that the system is stable?

A =+®~{ 1 y[ri

@H b [HD

+

y{n] = x{n] - (by[n _a]] +cy[n-2))

Stability is determined by the elgenvalues of the homogeneous solution.

ay[n] +by[n-1 +cy[n-2] =0

The eigenvalues are

_ —bx+/b*-4ac

alz - 2a

For stability the magnitudes of all the eigenvalues must be less than one. Therefore

2o - 2 -

‘b <1 and ‘—E—i\/b2—4ac

1
-—+_—+b*-4ac
2a 2a 2a 2a

<1 and <1

<1

b ++b? - 4ac| <|od and | -b-b? - dac| <al
If b*-4ac <0,

‘—b + j/4ac -b?

<s  and |-b-jV4ac-b’

<[2a|
In either case

b? + 4ac —b? < 4a®
or

ac< a’
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From the requirement, b® — 4ac <0 we know that ac must be positive. Then we can divide
both sides by the positive number, ac, yielding

9>1
. .
If b?>-4ac =0,

2 2
(—b ++/b% - 4ac) <4a® and (—b —b% - 4ac) <4a®
b?-2bvb? —4ac +b? —4ac <4a® and b?+2bvb®-4ac +b? —4ac <4a®

-2bVb? -4ac <4a® -2b®> +4ac  and  2b\b?-4ac <4a® -2b® +4ac

-bvb? —4ac <2a® -b? +2ac and byb?-4ac <2a®-b? +2ac

Taken together, these two requirements lead to
2a* —b* +2ac >‘bx/b2 —4ac‘ >0

2a(a+c) = b’
and

(2a2 -b*+ 2ac)2 > bz(b2 - 4ac)
4a* +b* +4a’c” —4a’h’ —4ab’c +8a’c >b* —4ab’c
4a2(a2 +c% -b? +2ac) >0
a’ +c? -b* +2ac >0
a’ —2ac +c” >b* -4ac
(a-c)*>b*-4ac

49. Given the excitations, x[n], and the impulse responses, h[n|, find closed-form
expressions for and plot the system responses, y[n] .

@  xn]=un = e

. . . z .
(Hint: Differentiate Zr“:D1—r . 1W|th respect tor.)

= KN, r=1
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y[n] =h[n] Ox[n] = miw m%g ymun-m| = miom%g

N-1 -r"
Differentiating Z r=gi-r ' ¢1With respecttor,
BN, r=1
Nz_lnr“‘l _ (@=n)(=Nr ) = (- )Y a1
n=0 (1_ r)2 ’
Nt -Nr™* +NrV +1-r"
"= TN
rnzzonr r -] r
ot NrNV(r—1) +1-r"

O
ol =63~ B +

1
5 60 n
h[n] Impulse Response
3t
- ﬂﬂ “"mT"M e
y[nl Response
50+
mﬂﬂﬂ ]
5 60
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(&) *{r] =[] B UESE CREEND

50. A CT function is non-zero over arange of its argument from0to 4. It is convolved with
a function which is non-zero over a range of its argument from -3 to -1. What is the
non-zero range of the convolution of the two?

Imagine any two functions with finite non-zero width and convolve.
51. What function convolved with —2cos(t) would produce 6sin(t)?
Think of asine asashifted cosine. There are multiple correct answersto this exercise.

52. Sketch these functions.

@
o(t) = 3cos(107t) 04 %+ %Q: 12003@0 r% + %%: 12c05(10 i+ fr= -12cos(10 tr

a(t)

NANNAN S
AVAVAVAVAVA

(b) gft) = tri(2t) Ccomb(t)

(© g [trl 2t —rect t— 1] Dcomb%@

@ oft)= Eri%@comb(t) E]comb%@

(e g(t)=sinc(4t) D%comb%a

The result should look like a Dirichlet function. Itisa Dirichlet function written in a
different form.

) oft)=e?u(t) D% %omb%@— combé[%z%

(9) Thisresult looks like afull-wave rectified sinusoid.

(hy oft) = %inc(Zt) D%comb%%ect%@
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53. Find the signal power of these signals.

@  x(t)=rect(t) Dcomb%@

rect(t) Dcomb%@z 4 i rect(t — 4n)

Thisisaperiodic signal whose period, T, is4. Between-T/2 and +T/2,
there is one rectangle whose height is4 and whose width is 1. Therefore,
between -T/2 and +T/2, the square of the signal is

T

2 _ 2 _ 1 2 2 _ @ ’ 2 —
[4rect(t)]” =16rect?(t) and P = = JT 16rect?(t)dt = n _[2 rect?(t)dt = 4

2
(b)  x(t)=tri(t) Dcomb%@
Remember, the square of atriangle function is not triangular.

54. A rectangular voltage pulse which beginsat t=0, is 2 seconds wide and has a height of
0.5V drivesan RC lowpassfilter inwhich R=10 kQ and C=100 uF.

@ Sketch the voltage across the capacitor versustime.

(b) Change the pulse duration to 0.2 s and the pulse height to 5V and repeat.
(© Change the pulse duration to 2 ms and the pulse height to 500 V and repeat.

(d) Change the pulse duration to 2 ps and the pulse height to 500 kV and repest.
The solutions in this problem approach the impul se response of the system.

55. Write the differential equation for the voltage, v, (t), in the circuit below for time, t> 0,
then find an expression for the current, i(t), for time, t> 0.

SO RO
-1CF

it) vt

V,=10V= t=0 R,=60Q
O=i0+c0) . W0=g . @=Cg()
e +c®R=0 . ve()+RC(w(0)=0
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56. The water tank in Figure E56 is filled by an inflow, x(t), and is emptied by an outflow,
y(t). Theoutflow is controlled by avalve which offers resistance, R, to the flow of water

out of the tank. The water depth in the tank is d(t) and the surface area of the water is A
independent of depth (cylindrical tank). The outflow is related to the water depth (head)

by
y(t) = i;) -

Thetank is 1.5 m high with a 1m diameter and the valve resistance is 10%.

@ Write the differential equation for the water depth in terms of the tank dimensions
and valve resstance.
3

(b) If the inflow is 0.05%, a what water depth will the inflow and outflow rates be
equa, making the water depth constant?

(© Find an expression for the depth of water versus time after 1 m?® of water is dumped
into an empty tank.

3
(d) If the tank is initialy empty a time, t=0, and the inflow is a constant 0.2% after

timeg, t=0, at what timewill thetank start to overflow?
Surface area, A

Db |

d(®)

1

RHD Valve

Ouitflow, y(t)

Inflow, X(t)

Figure E56 Water tank with inflow and outflow
(@

Therate of change of water volume is the difference between the inflow rate and the outflow
rate. (Be surenot to confuse d and d in this equation.)

d O O
9 a9 -y0)
O—0

volume
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d(t)

Ad'(t) + —~
d(t) + =

= x(t)
(b)  For thewater height to be constant, d'(t) = 0.

(© Dumping 1 m® of water into an empty tank is exciting this system with a unit impulse
of water inflow. Find theimpulseresponse. It should come out to be
t

h(t) =1.273e AR u(t) .

(d) The response to a step of flow is the convolution of the impulse response with the
step excitation.

57. The suspension of acar can be modeled by the mass-spring-dashpot system of Figure

ES7 Let the mass, m, of the car be 1500 kg, let the spring constant, K, be 75000 % and

let the shock absorber (dashpot) viscosity coefficient, K, be 20000 %‘k )

Atacertainlength, d,, of the spring, it is unstretched and uncompressed and exerts no force.
Let that length be 0.6 m.

(@  Whatisthedistance, y(t) - x(t), when the car is at rest?

(b)  Define anew variable z(t) = y(t) — x(t) — constant such that, when the system is a

rest, z(t) =0 and write a describing equation in z and x which describes an LTI system.
Then find the impul se response.

(© The effect of the car striking a curb can be modeled by letting the road surface height
change discontinuoudly by the height of the curb, h.. Let h, =0.15m. Graph z(t) versus
time after the car strikes a curb.

Automobile Chassis

o L322

Absorber
y(®)

B =l ud

x(H)

Figure E57 Car suspension model

Using the basic principle, F = ma, we can write
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KJy(0) = x(0) - ] + Ky Sy(0) = x(0] + mo = -my" (1)
i my (0 + K, y(0) +Koy(0) = Ky (0 + Kox() + Kdy - mg

@ At rest all the derivatives are zero and
K(y(t) - x(t) - dy) + mg =0 .

Solving,
Kd.—mg 75000 x 0.6-1500 x 9.8
y(t)=x(t) == = 75000

=0.404 m

S

(b) The describing equation is

my” (8) + K, y'(t) + Ky(t) = Ky X' (1) + K x(t) + K dy —mg .

which can be rewritten as

my” (t) + K [y (t) - x' ()] + KJy(t) - x(t)] - K0, +mg =0
o

my” (1) + K, [y () - x (0] + ngy(t) ~x(t)-d, +

mg

Let z(t) = y(t) - x(t) - d, + < Then y" (t) = z" (t) + x" (t) and

S

mz" (1) + x" (1)) + K,z (1) + K,2(t) = 0

mz" (t) + K,z (t) + K_z(t) = -mx" (t)

or

This equation is in a form which describes an LTI system. We can find its impulse
response. After time, t=0, the impulse response is the homogenous solution. The
eigenvauesare

—K, £KZ - 4mK [ K2
Ap=——2° oKy 4'?;2 —% = 6.667 +j2.357 .

2m 2m

The homogeneous solution is
h(t) - Khlex\lt + Khzeg\ At — Khle(—6.667+j2.357)t +Kh2e(—6.667—j2.357)t _
Since the system is underdamped another (equivalent) form of homogeneous solution will be

more convenient,
h(t) = e°*"[K,, cos(2.357t) + K., sin(2.3571)] .
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The impulse response can have a discontinuity at t=0 and an impulse but no higher-order
singularity there. Therefore the general form of the impulse responseis

h(t) = K3(t) + e**"[K,, cos(2.357t) + K, sin(2.357t)| ut)

Integrating both sides of the describing equation between 0™ and 0",
o
m(i(0°) = (07)) +Ky(h(07) - h(07)) + K. [ h(d)dt = 0.
J

(Theintegra of the doublet, which isthe derivative of the impulse excitation, is zero.) Since
the impul se response and all its derivatives are zero before time, t = 0, it follows then that

mh'(07) + K, h(07) + KS} h(t)dt=0
]

and
m(-6.667K,, +2.357K,,) + KK +KK =0 .

| ntegrating the describing equation a second time between 0™ and 0",
0+
mh(0*) +K, [h(t)dt=0
3
or
mK,, +K,K =0.

Integrating the describing equation athird time,

or

, K
Solving for the other two constants, K, = Fd and

S

m§~6.667& +2.357K, H+ K, Ne —k_=0
m m

or
2
Ks _Ka 6670
K _=m_m m
h2
2.357
Ky
m
Therefore

h(t) = -5(t) + e ®*"[13.333c0s(2.357t) - 16.497sin(2.357t)| u(t)
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(©0  Theresponseto astep of size 0.15 isthen the convolution,

z(t) = 0.15u(t) On(t)

2(t)=0.15] {-3(1) + €°*"[13.333c05(2.3577) - 16.497sin(2.357)| u(r } u(t-7)

2(t)=0.15 {-3(1) + e®%" [13.333c05(2.3571) - 16.497sin(2.3577)]} u(t-7)dr
]

For t<0, z(t) =0.

For t>0,
using
X e :
[e sin(ox)dx = m[aa n(bx) - beos(bx)|
[e” cog(bx)dx = ﬁ[acos(bx) +bsin(bx)]
we get
0 ~6.6671 ﬂ
13.333 [-6.667c0s(2.3577) + 2.357sin(2.3577)]
2(t) = -0.15u(t) +0.150 o O
0 e . 0
716.497 [-6.667sin(2.3577) - 2.357cos(2.3577)| =
or
D e—6.667t D
43333~ [-6.667c05(2.357t) + 2.357sin(2.357t)]
S e—6.667t S
z(t) = -0.15u(t) + 0.15716.497 = [-6.667sin(2.357t) - 2.357cos(2.357t)|
O O
(11333370067, 16 49772357 =
. 50 50 .

z(t) = -0.15u(t) + 0.15{e ***[2.812sin(2.3571) - cos(2.357t)] +3 u(t)
or
2(t) = 0.15¢**[2.812sin(2.357t) - cos(2.357t)| u(t)
Z(t)

‘V | |
-0.2
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58. Asderived in the text, a smple pendulum is approximately described for small angles, 6,
by the differential equation,

mL6" (t) + mgé(t) Ox(t)

where m is the mass of the pendulum, L is the length of the massless rigid rod supporting
themass and 6 isthe angular deviation of the pendulum from vertical.

@ Find the general form of the impulse response of this system.

After time, t = Oheimpulse is an undamped sine function whose (radian) frequency

is \/§ :
L

59. Pharmacokinetics is the study of how drugs are absorbed into, distributed through,
metabolized by and excreted from the human body. Some drug processes can be
approximately modeled by a “one compartment” model of the body in which V is the
volume of the compartment, C(t) is the drug concentration in that compartment, k. is a
rate constant for excretion of the drug from the compartment and k; is the infusion rate
at which the drug enters the compartment.

) Write adifferential equation in which the infusion rate is the excitation and the drug
concentration is the response.

(b) Let the parameter values be k, =0.4hr™, V=20 | andk, = 200% (where “1” is

the symbol for “liter”). If the initid drug concentration is C(0) :1o$, plot the drug

concentration as a function of time (in hours) for the first 10 hours of infusion. Find the
solution as the sum of the zero-excitation response and the zero-state response.

@ The differential equation equates the rate of increase of drug in the compartment to
the difference between the rate of infusion and the rate of excretion.

d

v (C(0) =k -V ()

60. At the beginning of the year 2000, the country, Freedonia, had a population, p, of 100
million people.  The birth rate is 4% per annum and the desth rate is 2% per annum,
compounded daily. That is, the births and deaths occur every day a a uniform fraction
of the current population and the next day the number of births and deaths changes
because the population changed the previous day. For example, every day the number of

people who die isthe fraction, % of thetotal population at the end of the previous day
(neglect leap-year effects). Every day 275 immigrants enter Freedonia.

@ Write a difference equation for the population a the beginning of the nth day after
January 1, 2000 with the immigration rate as the excitation of the system.

(b) By finding the zero-exctiation and zero-state responses of the system determine the
population of Freedoniabe at the beginning of the year 2050.
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(b) The beginning of the year 2050 is the 18250" day.

61. A car rolling on a hill can be modeled as shown in Figure E61. The excitation is the
force, f(t), for which a positive vaue represents accelerating the car forward with the
motor and a negative value represents sowing the car by braking action. As it rolls, the
car experiences drag due to various frictiona phenomena which can be approximately
modeled by acoefficient, k,, which multiplies the car’ s velocity to produce a force which

tends to dow the car when it moves in ether direction. The mass of the car is m and
gravity actsonit at al timestending to make it roll down the hill in the absence of other
forces. Let themass, m, of the car be 1000 kg, let the friction coefficient, k,, be 5%*
and let the angle, 6, be %

(a) Writeadifferential equation for this system with the force, f(t), as the excitation and
the position of the car, y(t), as the response.

(b) If the nose of the car is initidly at position, y(0)=0, with an initid velocity,
[y (t)]t: ,=10 % and no applied acceleration or braking force, graph the velocity of the car,
y'(t), for positive time,

(c) If aconstant force, f(t), of 200 N is applied to the car what isitstermina velocity ?

/\ Q)

Figure E61 Car on aninclined plane

@ Summing forces,
£(t) - mgsin(6) - k; y'(t) = my” (t)

(b)  The zero-excitation response can be found by setting the force, f(t), to zero.

kf
The homogeneous solution is y, (t) = K, +K,,e ™ . The particular solution must be in the
form of alinear function of t, to satisfy the differential equation.
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t

0 -0
y(t) =1.0346 x10 Et—e 200 iy 507.28t

SOt -t -t
(t)= %% 200 E— 507.28 =517.28e 20 —507.28 = 517.285.3 200 —1%+ 10

!

y'(®)
4 t

1000

-550

(© The differentia equationis

my" (t) + k, y'(t) + mgsin(6) = (1)
We can re-write the equation as

my" (t) + k, y'(t) = £(t) - mgsin(6)

treating the force due to gravity as part of the excitation. Then the impulse response is the
solution of

mh" (t) + k, h'(t) = 5(t)

whichisof theform,

Theimpulse responseis

Now, if we say that the force, f(t), isastep of size, 200 N, the excitation of the system is
x(t) = 200u(t) - mgsin(6) .

But thisis going to cause a problem. The problem isthat the term, —mgsin(6), is a condtarnt,
therefore presumed to have acted on the system for dl time before time, t=0. The
implication from that is that the position at time, t=0, is at infinity. Since we are only
interested in the final velocity, not position, we can assume that the car was held in place a

y(t) =0 until the force was applied and gravity was alowed to act on the car. That makes
the excitation,

| x(t) = [200 - mgsin(6)] u(t)
and the responseis
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y(t) = x(t) Ch(t) = [200 - mgsin(8)] u(t) = ()

or

y(0) = 200- mgsm El e”f‘%dT
or

200- mgsin(6) U
t) = T+
y(t) " g

k) 6) U ke D
me n' Q= 200- mgsm EHE t m
Kq B Kq

The termina velocity is the derivative of position as time approaches infinity which, in this
caseis
(o) = 200 - rl?gsn(e) 200- 2536 AB_ e 3_
f

Obviously aforce of 200 N is insufficient to move the car forward and itsterminal velocity is
negative indicating it isrolling backward down the hill.

62. A block of duminum is heated to a temperature of 100 °C. It is then dropped into a
flowing stream of water which is held at a constant temperature of 10°C. After 10
seconds the temperature of the ball is 60°C. (Aluminum is such a good heat conductor
that its temperature is essentialy uniform throughout its volume during the cooling
process.) The rate of cooling is proportiona to the temperature difference between the
ball and the water.

(@  Writeadifferentia equation for this system with the temperature of the water as the
excitation and the temperature of the block as the response.

(b)  Compute the time constant of the system.
(c  Find theimpulse response of the system and, from it, the step response.

(d)  If thesameblock iscooled to O °C and dropped into a flowing stream of water a 80
°C, atime, t =0, at what time will the temperature of the block reach 75°C?

@ The controlling differential equationis

+ (0 =K(T,~ T (1)

d

dt
or

1d
E&T() T()=T,

where T, isthe temperature of the aluminum ball and T,, isthe temperature of the water.

(b) We can find the constant, K, by using the temperature after 10 seconds,

h(t) = Ke™ u(t) = 0.0588e %% ().
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(© The unit step responseisthe integral of the impul se response,
() = (1- &%) u(t)

63. A well-stirred vat has been fed for along time by two streams of liquid, fresh water at 0.2
cubic meters per second and concentrated blue dye at 0.1 cubic meters per second. The
vat contains 10 cubic meters of this mixture and the mixture is being drawn from the vat
at arate of 0.3 cubic meters per second to maintain a constant volume. The blue dye is
suddenly changed to red dye at the same flow rate. At what time after the switch does the
mixture drawn from the vat contain aratio of red to blue dye of 99:1?

Let the concentration of red dye be denoted by C,(t) and the concentration of blue
dye be denoted by C,(t). The concentration of water is constant throughout at % The rates

of change of the dye concentrations are governed by

d
a (VCb (t)) =-C, (t) foraw

d
S 0)= 1, -C.)

where V isthe constant volume, 10 cubic meters, f,,, is the flow rate of the draw from the
vat and f, istheflow rate of red dyeinto the tank. Solving the two differential equations,

1_fdrawt
C,()=Ze V
()="1e
and

draw _draw ¢ |:|

c=gd- "'}

Then theratio of red to blue dye concentration is

fdraw _draw |:|
e \4 faraw _draw ¢
t El E 1-e Vv f“\’/ﬂt
C (t) 1 fdraw fdraw =e _l '
b e v ——t e v —t

3
Setting that ratio to 99 and solving for ty,,

0.3

99=e®” -10 tz 153.5 seconds

64. Some large auditoriums have a noticeable echo or reverberation. While a little
reverberation is desirable, too much isundesirable. Let the response of an auditorium to
an acoustic impulse of sound be
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h(t) = goe'“a% - g@ .

We would like to design a signal processing system that will remove the effects of
reverberation. In later chapters on transform theory we will be able to show that the
compensating system that can remove the reverberations has an impulse response of the

form,
h. (1) = :Zog[n]ag-gg |

Find the function, g[n].

Remova of the reverberation is equivalent to making the overdl impulse response,
h,(t), animpulse. That means that

(0= () Th,()= £ e"6ff - S dmfei} - FH=Kaly

[T
T :
C o O
] e A o e

I
S
1

—
N

g0 =K

oy +e'g0]=0D gff = Ke™

g2 +e*d1] +e?g0] =00 g2 =Ke?-Ke? =0

o3 +e'g2 +e?gil+eg0 =00 g[3 =Ke®-Ke®* =0

So the compensating impulse response is
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h, (1) = Ka(t) - Ke ot - %@

gn] =Kd[n -Ke™*gn-1] .

65. Show that the area property and the scaling property of the convolution integral are in
agreement by finding the area of x(at) Oh(at) and comparing it with the area of

x(t) Oh(t).

and thefunction, g, is

66. The convolution of afunction, g(t), with adoublet can be written as

= } o(r)u(t-1)dr .

Integrate by parts to show that g(t) Cu,(t) = g'(t) .

67. Derive the “sampling” property for a unit triplet. That is, find an expression for the
integrd,
[ alt)u,(t)ct

which is analogous to the sampling property of the unit doublet, g I g u1

In -g'(t Ig t)dt,let u=g(t) andlet dv=u,(t)dt. Then du=g(t)dt and v =u,(t)

and

00

}g(t)uz(t)dt Iu (V= - [ u()g (Ot

—00

Then, applying —g'(t I o(t)u,(t)dt, we get
[oud=g(0) .

68. Sketch block diagrams of the systems described by these equations. For the differentia
equation use only integratorsin the block diagrams.

@ oy (1) +3y(t) +2y(t) = x(1)
(b)  6y[n| +4y[n-1-2y[n-2] +y[n-3 =xn]|
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