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Chapter 5- TheFourier Transform

Selected Solutions

(In this solution manual, the symbol, [, is used for periodic convolution because the
preferred symbol which appears in the text is not in the font selection of the word
processor used to create this manual.)

1. Thetransition from the CTFSto the CTFT isillustrated by the signal,

x(t) = rect%%@DTi comb%Tt—OE

0

x(t) = njzw rectél%-rog :

The complex CTFSfor thissignal is given by

or

Aw CkwO
X|k| =—sinc .
4= snegr

Plot the “modified” CTFS,
T,X[K] = Awsinc(w(kf,)) |,

for w=1and f,=0.50.1and 0.02 versus kf, for therange -8 < kf, <8 .

kg

2. Suppose a function, m(x), has units of o) and is a function of spatial position, X, in

meters. Write the mathematical expression for its CTFT, M(y). What are the units of
M and y?

M(y) = } m(x)e” ' dx

—00
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The unitsof M are % because of the multiplication by dx in the integral and the units of

y are m™ because they are always the reciprocal of the units of the independent variable of
the function transformed.

3. Using the integral definition of the Fourier transform, find the CTFT of these
functions,

@ x(t)=tri(t)

Substitute the definition of the triangle function into the integral and use even and
odd symmetry to reduce the work.

Also, use sin(x)sin(y) =%@:os(x—y)—cos(x+y)@to put the final expression into

the form of a sinc-squared function.

© 0=e 5 o5

Use the sampling property of the impulse.

4. In Figure E4 there is one example each of alowpass, highpass, bandpass and bandstop
signa. Identify them.

x(t) X(t)

WW%M

x(H) x(H)

Figure E4 Signals with different frequency content

@ bandstop Composed of very high and very low frequencies and nothing
between
(b) bandpass Looks most like a sinusoid.
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(c) lowpass Smoother than the others, therefore has mostly low frequencies.
(d) highpass Fast variation without any underlying low frequencies

5. Starting with the definition of the CTFT find the radian-frequency form of the
generalized CTFT of a constant. Then verify that a change of variable, w - 271,
yields the correct result in cyclic-frequency form. Check your answer against the
Fourier transform table in Appendix E.

Similar to the derivation in the text for cyclic frequencies. Use the scaling property of
the impulse to compare with the cyclic-frequency result.

6. Starting with the definition of the CTFT, find the generalized CTFT of a sine of the
form, As n(a)ot) and check your answer against the results given above. Check your

answer against the Fourier transform table in Appendix E.
Similar to Exercise 5.

7. Find the CTFS and CTFT of each of these periodic signals and compare the results.
After finding the transforms, formulate a general method of converting between the
two forms for periodic signals.

@  x(t) = Acog(2r )

The CTFSissimply two impulses, X[k = g(&[k—]] +dk+1).

The CTFT is X(f):g(é(f — o)+ O + 1)) = X[Af - f)+ X[~ Jf +1,).

00

X(f)="Y X[K5(f - Kf)

k=-00

The CTFT isaset of continuous-frequency impulses whose weights at frequencies,
kf,, are the same as the weights of the discrete-harmonic-number impulses at harmonic

number, k, in the CTFS harmonic function.

(b)  x(t) = comb(t)
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8. Letasigna be defined by
x(t) = 2cog(47t) + 5cog(157t) .

Find the CTFT’s of x% - 4%@ and x% + 2—10§ and identify the resultant phase shift of each

sinusoid in each case. Plot the phase of the CTFT and draw a straight line through the 4
phase points which result in each case. What is the general relationship between the slope
of that line and the time delay?

The slope of thelineis =27 timesthe delay.

9. Using the frequency-shifting property, find and plot versus time the inverse CTFT of

() e Pl 08

10. Find the CTFT of

x(t) = sinc(t) .

Then make the transformation, t — 2t, in x(t) and find the CTFT of the transformed
signal.

11. Using the multiplication-convolution duality of the CTFT, find an expression for y(t)
which does not use the convolution operator, [} and plot y(t).

(@  y(t)=rect(t) Ocos(rt)
y(t)=F™ [anc %Ef ——E+ éaf +1%
1,00 1 010
ET %Ef %SHCEEE+ 5af + = EanH_ZHH
Using the equivalence property of the impulse,
2 1D 2 107 1 O 1]
y(t)= %

—’F_l %5@ __E E5Ef +2%——’F Ef ——E+ 6Ef += a}
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y(t) = Zcos)

Similar to (a)

y(t) = sinc(t) Cs nc%@

This convolution would be very difficult to do directly in the time domain.
But, using transform methods, it is quite easy.

y(t) = T {rect(f) x 2rect(21 )} = 2F {rect(21} = sinc%%

Similar to (c).
y(t) = e u(t) Osin(2r1)

Use the equivalence property of the impulse, then find a common
denominator and simplify. Then, use

Acos(x) + Bsin(x) = A% + B? COS@’( _tan_l%%%

to get

y(t)= cos( 2t +2.984)
1+(2m)?

12. Using the CTFT of the rectangle function and the differentiation property of the CTFT
find the Fourier transform of

x(t) =o(t-1) - &t +1) .

Check your answer against the CTFT found using the table and the time-shifting property.

Let y(t):—rect%g Then x(t):%(y(t)). (This comes from the definition of a

generalized derivative in Chapter 2.)

Ot O .
—rectazaﬁﬁ: 2sinc(2f)

Using the differentiation property of the CTFT,
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d0 Ot » . o
aa—rectai%e@_»ﬁnfﬂ 2sinc(2f)g= —j4mfsinc(2f)

dO Ot o sn(2mf)
G ety B 14t = =" =~j2sin(2nt)

Usethe the CTFT of the impulse and the time-shifting property to check this answer.

13. Find the CTFS and CTFT of these periodic functions and compare answers.

@ (1) =rect(t) D%comb%@

Find the CTFS harmonic function using the integral definition or Appendix E.
_ 1. kO
X[k] = ES nCEEB
X(f) =sinc{f)comb(2f) = Zsine(f) 3 o7 —EQ
2 L= 2

) kiﬁ%gnc%%@ ) gg: kiooX[k] 5(f i krO)

The CTFT impulses at kf, have the same strengths as the CTFT harmonic
function impulses at k.

(b)  x(t) =tri(10t) 04 comb(4t)

Find the CTFS harmonic function using the integral definition or Appendix E.

ez PKO_ 5‘3"%”“9‘
CHsE 4T ()

—smc %—Ecomb%@ 2 sinc %—% 8(f - 4K)

X[ =
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X(f)= g sinc é&% f —4k) Checkswith CTFS.
K==

14. Using Parseva’ s theorem, find the signal energy of these signals.

@  x(t)=4s nc%@

(b)  x(t) =2sinc?(3t)
E,= :t|x(t)|2dt - ji\x(f)\zdf - i‘%tri%azdf - gitriz%gﬁ
e =g o= oS- o[d- 5 o

8 _f* f3ﬁ8 _9,270.8
of "3 "z 9B 3 wH o

15. What is the total area under the function, g 1005mc§—§

Use [ g(t)et = G(0)

16. Using the integration property, find the CTFT of these functions and compare with the
CTFT found using other properties.

n , <1
@ ot)=r2-l , 1<t <2
, elseawhere

Find the CTFT of the derivative of this function (which is two separated
rectangles). Then use the integration property to find the CTFT of the
origina function.

(b)  gt) =8rect %@



OM. J. Roberts - 8/16/04

17. Sketch the magnitudes and phases of the CTFT’s of these signalsin the f form.

(@

(b)

(©)

(€)

(9)

x(t) =o6(t-2)

Remember, there are many alternate correct ways of plotting phase. So
your phase plot may be correct even if it does not ook like the answer
provided in the text.

x(t)=u(t)-u(t -1

This can be done directly using the two unit steps or by converting them
into a shifted rectangle.

x(t) = 5rect§fTZQ @  x(t)=25snc(10(t - 2))

x(t) = 6sin(2007t) M x(t)=2eu(3t)

f | e
o _ 3
~B-X(f)=4 3e

]
ot

f
x(t) = 46 =4e 70

18. Sketch the magnitudes and phases of the CTFT’s of these signalsin the w form.

@

(b)

(©

(€)

(f)

x(t) = %comb%ae[ﬁa X(jw) = combé.gnm= nki & w-kmn

x(t) = sgn(2t) )
s ncz%g

x(t)=10tri§;—()4§ @  x)=—7

m 1 m

X(t) _ cos%OOnt - ZE: 005%0071% 800%
4 4

x(t) = 2e7 u(t) @ x(t)=7e™"

19. Sketch theinverse CTFT' s of these functions.
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@ X(f)z—lSrect%@ (b) X(f):w

© e Hﬁaﬁ ool () - 2md2n)
om0

d) X(f)zlo-lj:jf © X(f)zd(f—s)ga(us)

) X(f)=85(5f) @) X(f):_j%

20. Sketch the inverse CTFT’ s of these functions.

@ e™ A e_%i LW Wnw, f %ﬂg

t2 w? (4\/5(1)

x(t):ieﬁeﬁax(jw):e"‘wz—e am =g 4n

NG

(b) x(m):nm&@ﬁ@ © X(jw)=if w10 ¥~ 6 w10

X(t) = %ngn(t)+5 A= X(jw) :%uom( 0
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x(t)

18

" X(jw) (@  X(jw)=20tri(8c)

:3+jw

21.Find the CTFT’s of these signals in either the f or w form, whichever is more
convenient.

@  x(t) = 3cos(10t) + 4sin(10t)
w, =10 and f, :% Therefore the w form is dlightly more convenient.
X(jw)=3mEd w-10)+ & w10)F+ j4 1@ O ®10)- (6 «@10)F
X(jw)=(3-j4) md w-10)+(3+j4) n§ w 10)

X(jw) = (5771°%)  w-10) + (5 #°%) 6 @ 10)

()  x(t)= comb%@— combé[%lg
() x(t)=4sinc(4t) - 2s nc%@ - %%— 2s nc%@ + %%

_lt

@ x(t)= [Ze(‘“‘z”)t + 2e(‘1‘j2")‘] ut) (@  x(t)=4ew®

22. Sketch the magnitudes and phases of these functions. Sketch the inverse CTFT' s of
the functions also.

. 10 4 . f-1 . f+1
a X(Jw):3+jw_5+jw (b) X(f):4§mc§7§+snc§%%
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Oof +20 Of -2
( ) 1.6sinc (8t)SIn(47'lt)<_@—> (f)=110§ B—E trlaTa}
X(t) Ig<l(f)|
o.5V\A '
. 5 =
05 05 ¢ Phase of X(f)
e T
0. 15 —T 15

X(f)=0o(f +1050) + &( f +950) + & f —950) + { f —1050)

[5(f +1050) +29( f +1000) + & f +950)

0
X(f)= éa(f ~950) +2( f -~1000) + & f —1050)5

23. Sketch these signals versus time.  Sketch the magnitudes and phase of their CTFT’sin
either thef or w form, whichever is more convenient.

(@

x(t) = rect(2t) Ocomb(t) - rect(2t) Dcomb%— %Q

f)= %s‘nc%%"mb(f)(l‘ ")
= je 2smc@—@wmb S‘n?§
X(1)- ki_f”g“‘”s‘m%%“%“ R

Non-zero only for odd values of k. At those odd values, e 2 sin%@,

aways evaluatesto +1. Therefore

x(f)=Y sinc%@ﬂf -K)

k=-00

k#0
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Same as answer in part (a).

t

x(t) = e 4 u(t) Osin(27t)

Find transform, use impulse equivalence property, get a common
denominator and simplify.

_ 4sin(27t) - 32 cog(2 1)
0= 1+ 6477

x(t) = e rect(2t) Ocomb(t)]
This is a “Gaussian” smoothing operation. The square wave is heavily
smoothed. So heavily, in fact, that about all that remains is the average
value (1/2) plusasmall sinusoid.

x(t) = rect(t) O tri(2t) Ccomb(t)]
x(t) isaconstant, /2. Can you show that by convolving directly?
x(t) = sinc(2.01t) Ccomb(t)
Parts (f) and (g) look almost identical, yet the results are quite different.
Why? (Hint: The operation of convolving with a sinc function produces
an effect commonly known as an ideal lowpass filter. One which makes a
very fast transition in the frequency domain from passing to stopping a
signa.)
x(t) = sinc(1.99t) Ccomb(t)

x()=e" e

A Gaussian convolved with Gaussian produces a Gaussian.

24. Sketch the magnitudes and phases of these functions. Sketch the inverse CTFT'’ s of
the functions also.

5-12
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. f
@  X(f)= sncgﬁgqé( - 1000) + & +1000)
The time-domain function is a“burst” of a sinusoid.
(b)  X(f)=sinc(10f) Ocomb( )

25. Sketch these signals versus time.  Sketch the magnitudes and phases of the CTFT’s of
these signals in either the f or w form, whichever is more convenient. In some cases
the time sketch may be conveniently done first. In other cases it may be more

convenient to do the time sketch after the CTFT has been found, by finding the inverse
CTFT.

@  x(t)=e™ sin(207t)

n
(b)  x(t) = cog(4007t) comb(100t) = 100 Z cog(4 m) %

100

A graph of this function looks just like a comb function, even though the
comb is multiplied by a cosine. Why?

Given that the time-domain function looks like a comb function you should
expect its CTFT to look like the CTFT of acomb, which is another comb.

X(f)= %[5“ —200) + &( f +200)| Dicomb%g

U
U

| -
x(f):i@ombgf 200@ f+20
200 100

D
E :mmb%g —comb@l—g E

1 foo 1 & af oy
X(f)—loocombgloo@— 100;05@@ k%- k:Zmd(f 100K)

(©  x(t) = [1+cos(4007t)] cos(4000 1)

(@  x(t) = [1+rect(100t) C50comb(50t)| cos(5007t)
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e x(t)= rect%@comb(t)

X(f)=7sinc(7f) Ocomb(f) = 7sinc(7f) O Z 3(f- k)

X(f)=7Y sinc7(f -K))

k=—00

This periodically-repeated sinc function is equivalent to a Dirichlet
function.

26. Sketch the magnitudes and phases of these functions. Sketch the inverse CTFT' s of
the functions also.

@ x(f)= sinc@i—gtomb(f)

b  X(f)= %nc%fT_l§+ sincEfTﬂ%omb( f)

©  X(f)=sinc(f)sinc(2f)
x(t) = rect(t) D%rect%@z %rect(t) Drect%@

The result of the graphical convolution can be expressed in the form,

x(t) = % %tri%%— tri(2t)E. A generalization of this result his leads to the
pair,

atb .02t 0 a-b,_.02t O . .
> o trlaa_baﬁﬁa|ab|snc(af)snc(bf)

a>b>0

in Appendix E.

27. Sketch these signal's versus time and the magnitudes and phases of their CTFT’s.

@  x(t)= %[s nc(t)| (b)  x(t)= % Eﬁrect%%

5-14
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©  x({t)= % Ari (2t) Coomb(t) &

Using the convolution property that the derivative of a convolution is the
convolution of either of the two functions with the derivative of the other,

H B
O 3 -

X(f)= jorf %sincz%gcomb(f): j nkiwksincz%gcﬁ ~K)

X (
x(t) I2 )]

AAAtTAAAf
-8 8

Phase of X(f)

TU
e o 0o o
oo 9 o oo —o-f
'8. e o o 8
- T

28. Sketch these signals versus time and the magnitudes and phases of their CTFT's.

@ x(t)= j sin(2rrA)dA

X(1)= xSt +)- ol ~9peSap(an(en))g (1) - LAY
x(r)=- ) AL Yy o)

0 x(t)= I rect(1)dA

© x(t)= j 3sinc(24)dA

3% ru 3 *"sin(u)
Let u=2m. Then x(t)=—J’smc%_§iu:—I du
2mJ 2m U

For t<O:

5-15



OM. J. Roberts - 8/16/04

[y 0 ] il il
x(t):im sm(u)du_J,sm(u)dUD: 3 [
2m3, U 5, U 0 27n
i i
Tan) y, , )

3 b sin(A sin(u 307 0O 30t 0
t)=— dA d — Si2mt) = — = - S(-27t
(1) 271% A +£ u UE]FZITEJr( )H_ZHE ( )E

al e I -

“Si” iscaled the sine integral. It isaspecia function of calculus and can
be computed by the MATLAB function, si ni nt.

For t=0:

3@ sin(u) , sin(u) , 0 307sn(u) ,  * sin(u) O
X(t)_Er%[onqu.([TduD:_m- = =rdu+ [ == dug

DZNDJ;U 5 U O

x(t) = 23 gij+s.(zm)§

Therefore, for any t, x(t) = %T SE; + Si(Znt)E

1 3 fou1l 3 f 3
X(f)= Egrectg—a+ P gpsinc(2)g,0(1) = 5, rect%§+26(f)

X(t) I>l< f)l
jﬁw J/N

2
X Phase of X(f)
4 vl 4 - | T
1 2 —T

—

29. From the definition, find the DTFT of

x[n] =10rect,[n] .

5-16



OM. J. Roberts - 8/16/04

and compare with the Fourier transform table in Appendix E.

Apply the definition and put into closed form by using the formula for the
summation of a geometric series,

-
m
[ERN

N-1

n —
Z rr=m-r"
n=0

Eﬁ , otherwise .

Then convert to a sine function by factoring out the proper complex exponential
and recognize the ratio of two sine functions as a Dirichlet function. Check your
answer against Appendix E.

30. From the definition, derive a general expression for the F and Q forms of the DTFT of
functions of the form,

x[n] = Asin(27F;n) = Asin(Q,n) .

(It should remind you of the CTFT of x(t) = Asin(27ft) = Asin( wt).) Compare with the
Fourier transform table in Appendix E.

00

X(F)=> xnle"™ =

n=-c n=

i Asin(an n)e—jZTFn — A i gl2mFon _ g~ j27Fn
=0 0 2z 12

- j2rFn

Then, using

e'?™ = comb(x)

n=-o

we get
X(F) = J_—'Aé[comb(F0 - F) - comb(~F, ~F)] = A%[—comb(F0 ~F) +comb(~F, —F)|

X(F) = A%[comb(F +F,) - comb(F - Fo)]

The Q form can be found by the transformation, F — %
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X(jQ) = A% Eombgé% + 2—;@— comb Qn_ %7%
X(j©) = jmcomb(Q +Q,) - comb(Q - Q)

31. A DT signdl is defined by

x[n] = sinc%@ :
Sketch the magnitude and phase of the DTFT of x[n-2].
32. A DT signadl is defined by

x[n] = sin%@ :
Sketch the magnitude and phase of the DTFT of x[n -3 and x[n +12].

The DTFT of x[n+12] should be exactly the same asthe DTFT of x[n]. Why?

33. The DTFT of aDT signal is defined by
X(jQ) = 4%[&1%%2 —g%+ rect%%) +g%]comb%§%§ .
Sketch x[n].
Start with
sinc%\?—vae 1 wrect Swlz—iamcombgzgn%
and apply the frequency-shifting and linearity properties to produce (after smplification)
0Q O

. OnO Om O 0 02 an 02 Tl
ancazacosagnaeﬁﬁ 4%66[5%%% E%+ rectaEgl +E%D“O”‘bﬁ§%

Remember in applying the frequency-shifting property, if either (but not both) of two
functions being convolved shifts, the result of the convolution shifts by the same amount.
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34. Sketch the magnitude and phase of the DTFT of

x[n] =rect,[n] Dcosg?g.

Then sketch x[n] .

From the table,
recty, [n] ~B- (2Ng  1)drcl(F,2N,, +1)

and
cos(2mF,n) — - %@omb(li F,) + comb(F +F,)H

= 18 _10 100
X(F)=9drcl(F,9) x Zgombai EM Combai + 6%

Since both functions are periodic with period, one, at every impulse in the comb function
the value of the Dirichlet function will be the same.

_90, Ol O 1g, .01 .0 10
X(F)—Eajrclag,gacombaz 6E+drcla—6,95comb§:+6%

_9 Ol O] _1g 1M
X(F)—Edrclagﬁagomb@: 6E+comb§:+6%
. 8nQ0

SQ?H

g

QQHEEH

X(F)= —E:omb% —%§+ comb@Z +%%

Then, using
cos(2mF,n) £ %@omb(li F,) + comb(F +F,)H
2rmQJ O 10 1
-ZCOSE?EHE: B:ombal Ea+ comb@i +€%
and, therefore,

5-19



OM. J. Roberts - 8/16/04

x[n] = —Zcosg?g

35. Sketch theinverse DTFT of
X (F) = [rect(4F) Ocomb(F )| O comb(2F) .

Find the individual inverse DTFT’ s and multiply in the time domain.

36. Using the differencing property of the DTFT and the transform pair,

O[]

tnaiaeﬁmi cos(2nF) ,
find the DTFT of %(5[n +1 +qn] - dn-1- dn-2)). Compare it with Fourier
transform found using the table in Appendix E.

The first backward difference of tri%@ is %(5[n +1 +qn] - dn-1- dn-2)).

Apply the differencing property and simplify.

Other routeto the DTFT:
S(e[n+q+efn] - -1 - gn-2]) -0 (&% 2 e -er)

37. Using Parseval’ s theorem, find the signal energy of

x[n] = sinc%%gsi néz?g .

[

£= 3 i = [X(F)FoF

n=-c

Find the individual DTFT’s, periodically convolve them in F and integrate the square of
the magnitude of that result over one period (one). Remember, periodic convolution of
two periodic functions is the same as the aperiodic convolution of one period of either
function with the entire other function.
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2
E =, jSDect(10F) Dcomb@n 1@— rect(10F) Dcomb@z— 1 o
1 H 4 4
Since we are integrating only over a range of one, only one impulse in each comb is

significant.
2
0 1 1
t10 +—%— t@O - dF
e+ 2 3 - 2

The square of the sum equals the sum of the squares because there is no cross product; the
two rectangles do not overlap.

E, =25,

38. Sketch the magnitude and phase of the CTFT of

x,(t) = rect(t)
and of the CTFS of

X, (t) = rect(t) E% comb%@.

For comparison purposes, sketch X, () versusf and T, X,[k| versus kf, on the same set

of axes. (T, isthe period of x,(t) and T, = fi.)

X,(f)=sinc(f)

Using the relationship between an the CTFT of an aperiodic signal and the CTFS of a
periodic extension of that signal,

X,[K] = £.X,(1K) = %sﬁne%@
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/\AAXAKKAM JTosz[ k]h .
-4 ' 4 f -4 4 kfo
Phase of X,(1) Phase of ToX ] K]|

iy
0]

39. Sketch the magnitude and phase of the CTFT of

x,(t) = 4cog(4rt)
and of the DTFT of
x,[n] = Xl(nTs)
where T, = % For comparison purposes sketch Xl(f) and T, X 2(Tsf) versus f on the

same set of axes.

X,(f)=a(f -2) + & f +2)]
X,(F) = Zﬁombgz —%§+ comb@z +%%
X,(T.f) = 2200%%}6_% —k§+ 5% +% —k%

X,(T.f)=2 Z [o( -2-16k) + & f +2-16k)|
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X)) XTI

-16 ' 16 -16 ' 16

Phase of X l( f) Phase of TSX 2(Tsf )

TT n‘
-16 \ 16 f -16 \ 16 f
ST -TC

40. Sketch the magnitude and phase of the DTFT of

sinc%%%

ol =— 2

4
ot

sinc

_Het

4

and of the DTFS of

x,[n] = Ccomb,,[n]

For comparison purposes sketch X, (F) versus F and N, X,[K] versus kF, on the same set
of axes.

Similar to Exercise 38.
41. A systemisexcited by asignal,

x(t) = 4rect%§

y(t) = 4(1-e ) u(t+1) - 4(1-e2)u(t-1)
and itsresponseis

y(t) =10[(1-e¥)u(t +1) - (1-eH)u(t-1)] .

What isitsimpulse response?

5-23



OM. J. Roberts - 8/16/04

Find the CTFT of both x andy. Take their ratio which is the transfer function, H.
Find the inverse transform of H which is h, the impul se response.

h(t) = ge“ u(t)

42. Sketch the magnitudes and phases of the CTFT’ s of the following functions.

(@  g(t) =506(4t) ()  ot)= Combé[%lg— Combéleg@

©  d(t)=u(2t) +u(t-1)

Since u(2t) has the same value as u(t)for any t, u(2t) =u(t) and their
transforms must also be equal when using the time scaling property.

(@ o(t)=son(t) - son(-t)
(e  g(t)=rect g%l§+ rect g;@

|:|t+1|:| Dt_ll:] . j2mnf . —j2nf
rect G- -5+ rectETEeﬁa 2sinc(2f)e*™" +2sinc(2f)e

0 +10 o -10 :
rect -~ g+ rect g— - A- 4sinc(2f)cos(27f)

Using the definition of the sinc function,

+10,  -10 sin(27f ) cos(2rf)
rect }—2 E"‘ rect }—2 E(—ﬁ—>4 orrf

Using sin(x)cos(y) :%@in(x—y)+sn(x+y)@

;@n(o)+sin(47ﬁ)§= sin(4rnf)

t+10 x-10 o
et et -0 42— - Asne(4t)
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0 o) =rectf

Same answer asin (€) because the function, g(t) = rect %@ isthe same as

function, g(t) = recté[%l§+ recté[%lg.
@ gt)= 5tri%§— 2tri%@ (hy gt)= grect%gﬂrect%ﬁ

43. Sketch the magnitudes and phases of the CTFT’ s of the following functions.

the

(a) rect(4t) (b) rect(4t) 044(t)
(c) rect(4t) 04d(t- 2)

(d) rect(4t) 045(2t)

1. ofo . 1. OfQ
rect(4t)D46(2t)eﬁazanﬁEXZ—Esncaza

rect(4t) D45(2t) A= EsinCEg—a

rect(4t)43(2t) HT H H
A
2
- > f
- []|f
-1 1

8 8 i

(e) rect(4t) Ocomb(t)

1. 0fo 1. ofoe .
rect(4t)Dcomb(t)<—ﬁaancazacomb(f)—zsmcazaz 5(f -k)
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[

rect(4t) Ocomb(t) — - %k;sinc%%d(f - k)

reC'i(4'E)Dcomb(t)Hﬁ_,l c kO.Ow

4k:stincEZ§552— - kélz gk:iosinc%aé(w— 2 7K)

| i sinc(‘fl) comb(f)l
1 A

i it MT* T

B =

Alfsinc( )comb(f)
rect(4t)Ccomb(t) TR
1
2 -1 o1 1
8'8 —Tl—eee (113

(f) rect(4t) Ocomb(t- 1)
Same as part (€).
(9) rect(4t) Ocomb(2t)
(h) rect(t) Ccomb(2t)
CTFTis 6(f).
44, Plot these signal's over two periods centered att = 0.
(@  x(t) =2cos(207t) + 4sin(107t) + 3cos(—20 4) - 3sin(-10 1
(b)  x(t) =5cos(207t) + 7sin(107t)

Compare the results of parts (a) and (b).
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This Exerciseisintended to show the equivalence between positive and
negative frequencies.

45. A periodic signal has a period of four seconds.

@ What is the lowest positive frequency at which its CTFT could be non-
zero?

(b) What is the next-lowest positive frequency at which its CTFT could be
non-
zero?

46. Sketch the magnitude and phase of the CTFT of each of the following signals (w
form):

X(t)

0.1

20
b x1)= 3rect§1+—05§

| 30sinc(3%) eise |

30
2 21 @
10 10
|
30sinc(3%) ei5®
A
3 Tz _—

t

-10

©  x(t)= gcomb%ﬁ
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X
14n
5 T T
41T 21T | 21141 >
5 54 5 5
X(jw)
X(t) I
(XX, " =
? A 2m | 2m4m
105 15 10 t 55 | 55

7 o -20
@ x(t)= 5 oMb ==
Compare this CTFT with the CTFT of ZComet *30 Since the two time-
P 5 "Hsg &

domain
signas are the same, the two CTFT’s must be the same also. Arethey?

47. Sketch theinverse CTFT' s of the following functions:

X()) IX( )l
0 20
¢
f i Z
| Z
X( f
X (1) Lﬂ()
i
R ra— 4/ 8
€ (b) 2
| X(f) |
bt
—5‘ ‘5
/X(f)
—5._j5 f

(©)
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(d  X(f)=85(f)+5f -5)+54f +5)

| X(f) |

8“

5

T T 8+10cos(10tt)

5 | s f .

X(f)

L t
+—t— I

48.Find the inverse CTFT of this real, frequency-domain function (Figure E48) and
sketchit. (Let A=1, f =95kHz and f, =105kHz.)

X(f)

f

'f2 'fl fl f2
Figure E48 A real frequency-domain function

49. Find the CTFT (either form) of this signal (Figure E49) and sketch its magnitude and
phase versus frequency on separate graphs. (Let A=-B=1andlet t =1and t,=2.)
Hint: Expressthissignal asthe sum of two functions and use the linearity property.

x(t)

A

'tz'ti tltZ
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Figure E49 A CT function

X(H)I
3

Phase of X(f)

50. In many communication systems a device called a “mixer” is used. In its simplest
form a mixer is simply an analog multiplier. That is, its response signal, y(t), is the
product of itstwo excitation signals. If the two excitation signals are

x,(t)=10sinc(20t) and  x,(t) = 5cos(20007t)

plot the magnitude of the CTFT of y(t), Y(f), and compare it to the magnitude of the
CTFT of x,(t). Insimpletermswhat does amixer do?

X, ()l [Y(f)I
1 ts
2 4
-10 10 © -1010-990 9901010

51. Sketch a graph of the convolution of the two functions in each case:

rect(t) rect(t)

(a) rect(t) Crect(t)
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rect(t- )* rect(t+ 3)

(b) rect%—%@ﬂrect§+ %@
(©) tri(t) Ctri(t- 1)

This is a very challenging problem. It cannot be done using the transforms and tables in
Appendix E but must be done in the time domain.

A

tri(t) AL Adri(t-1)
/ ;t

1 I 1 g

-1 1 2

A

tri%-l— tri(t-1)
T

t-ll —if t+1 1 2

For t < -1, the non-zero portions of the two functions do not overlap and the convolution is zero.
For t > 3, the non-zero portions of the two functions do not overlap and the convolution is zero.
For-1<t<0O:
The non-zero portions overlap for 0 < 1 < t+1 and, in that range of T,

trift-7)=t+1-1 and tri(t-1) =1

Therefore, for -1 <t <0,
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t+1 t+l

tri(t) Ctri(t= 1) = i (t+1-7)rdr = J’[(t +1)r -1 2]c&‘

(t+2)° (t+2° (t+2)°
trl Dtnt— %Hl———a— > T3 " &
ForO<t<1:
tri(t-1) w-l)
Te1lt 112

i) Cri(t- ) = [ ti(t-1)ti(e)ce

The non-zero portions overlap for 0 < T < t+2 and, in that range of T, there are three cases to
consider,0<t<t t<t<landl<Tt<t+l Therefore

t+1

tri(t) Ctri(t= 1 Itl‘l t —7)tri(r)dr +J’tr|t —7)trir ) o +Itr| -7 )trif )d
CaseliO<t<t

tri(t-7)=1-t+7 and tri(r -1) =1

Case2it<1<1
tri(t-7)=1+t-71 and tri(r -1) =1

Case3l<t<t+l
tri(t-7)=1+t-1 and tri(r -)=2-1

Therefore

t+1

t
tri(t) Ctri(t= 1 Il t+rrdT+I (L+t-T)a +J’ Q+t-r)2-1)d
0 t

t+1

tri(t) Ctri(t= 1 I[l tT+T]dT+I[1+t)T -T ]d’ +J’[21+t —(1+tr + 2]0‘
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2 3 2 3 2 3 (Ll
tri(t) Ctri(t= 1) = 1—t)T—+T—E+ 1+t)T_—T—E+%(1+t)r—r2—(1+t)r_+r_5
N 2 30 O 2 30 0O 2 3j
2 3 2 3
tri(t) Citri(t= 1):@1-0%%5 @1 9i-1 ¢ t)%+%§
0 2 3 0
S YT\ O O | Gt U APV P R B S

ti(t) Dt 1) = (1—t)§+2—§—(1+t)§_+§§+ Lo@eg- (t+1)

3 2

tMQHMFDz—%+%+%+é

For the remaining regions of t, the convolution simply repeats with even symmetry about the
point, t = 1. The analytical solutions can be found by the following successive changes of
variable:

t—>t+1,t—>_t,t—>t_1

These three successive changes of variable can be condensed into one,

t—> _t+2
Then, for1<t<2,
3 2 |:| _ 3 _ 2 _ |:|
tri(t)Dtri(t— 1)=%—t— +t— +1 +1% :B-(Z t) +(2 t) +(2 t)+1D
02 2 2 6., 0 2 2 2 60
and, for2<t<3,
3|:| _ 3
vi( i = SO0 _[Et2)+
D 6 Q—v_t+2 6

5-33



OM. J. Roberts - 8/16/04

tri(t) « tri(t -1)

0.8

(d) 35(t) MOcos(t)
(e) 10comb(t) Crect(t)  (f) Scombl(t) Citri(t)

52. In electronics, one of the first circuits studied is the rectifier. There are two forms, the
half-wave rectifier and the full-wave rectifier. The half-wave rectifier cuts off half of
an excitation sinusoid and leaves the other half intact. The full-wave rectifier reverses
the polarity of half of the excitation sinusoid and leaves the other half intact. Let the
excitation sinusoid be a typical household voltage, 120 Vrms at 60 Hz, and let both
types of rectifiers ater the negative half of the sinusoid while leaving the positive half
unchanged. Find and plot the magnitudes of the CTFT’s of the responses of both

types of rectifiers (either form).

Half-Wave Case:
x(t) = 1202 cos(1207)| rect (120t) 060 comb(60t)]

Full-Wave Case:
x(t) = 120v/2 cos(1207t)| 2rect(120t) D60comb(60t) - 1]

IX( )l IX( )l
A A
ALk 305 T 605
! \ \ / \ \
,/ \\ ,/ \\
! " \ ! ae \
! AR \ ! AR \
/ /A \ / [ \
SENEEY N AT | T VAR o f SENEEY N AT : T AR o f
60 20
Half-Wave Full-Wave

53. Find the DTFT of each of these signals:
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@ o =Ff un-1
X(i)= 3 dile ™= 5 Bl n-ge= = 5 e

X(9)= 3 B o= SEEEET

=0 m=0

el =i g0 g1 e ¢
X(i0)= 32030 3. ef 3-¢R
- 3
Alternate Solution:
] = L] -1 = B ] - ol
Using
a”u[n]ﬁﬁaﬁ and  J[n| ~O-1
1 1
el =L ol - Lo = s -1
=73
0 ef0 e i0
x[n]'1 8 3§ en
B 1_e‘jQ _1_e‘jQ S 3-e®
3 3

Second Alternate Solution:

= 2 dn-1

-jQ
X(jo) = —er =t

() x| :Qn%n%Q un-2]
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Sﬂ?@ Sﬂ?% CO[QT(n 2)§

x[n| = %g COS%ZM%Q_Z un-2|

1-acos(Q,)e’®
1-2acos(Q,)e ' +a%e*®

a"cos(Qn)u[n] - la]<1

cos%%a‘jg | 1-—
X(jQ) = %ge 2 e 8"

RO SN WO P R
4 16

Alternate Solution:

ngﬂ 1
De—Du[n]eﬁa o
|:|4|:| Jz
0o 1-& oo
4
-2
Difd] _j20
0 u[n-2] ~f1- €
a4 4 iy
o 1-S gio
4
[l [f D2 l
1l - » 0 -;" » O
x(ig=Ltuf'o €7 _p'g €7 g
e NI
1-——e ¢ 1- e‘m%
4 4
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sinc%\?—vae@a wrect (wF) Ocomb(F)

Find the DTFT of sinc%?—v%. Then periodically convolve it with itself.

_ 8 .08 _0O
x(F)-ETtnEZTFEDcomb(F)

54. Sketch the magnitudes and phases of the DTFT’ s of the following functions:
(@ rect,[n] (b) rect,[n] OF 54[n])
(c) rect,[n] O39[n+ 3
(d) rect,[n] OF 58[4n]) = rect,[n] OF 59[n])
Remember, there is no scaling property for the discrete-time impulse.
(e) rect,[n] Ccomby[n]

Since this function is periodic, its DTFT must contain only impulses.

XCF)I

0.625

T+A+A4T,T+A+A4Tl -

Phase of X(F)

T

-1 Jﬁ 1 F
o e e o 7T o o o e

(f) rect,[n] Ccomb,[n- 3

-1

Similar to (e).
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(9) rect,[n] Ocombg[2n] = rect,[n| Dmiod[Zn— 8m| = rect,[n| Dmiod[z(n— 4m)]

rect,[n| Ocombg[2n] = rect,[n] Dmioé[n— 4m)| = rect,[n] Ocomb,[n]

(h) rect,[n] Ocomb,[n]

X(F)I
1

Phase of X(F)

T

-1 Jr 1 F
-Tt

55. Sketch the inverse DTFT’ s of these functions.

(@ X(F)=comb(F comb@i ——Q
Using 11— comb(F) and €>™"x[n] - X(F F,)

1-e™ A, comb comb@:

ED _42 +. 1
e 2 "2 E‘_ﬁ_’ comb comb@i J

— 2
12e sna—a@ﬁa comb(F comb@z

(n+1) i

22 sna—aeﬁ_, comb comb@z 10
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—ZH:OSE— (n+1) E+ jsna— (n+1) @na—aeﬁa comb(F comb@i

[]
H

[l

[l

O o O OmJ
-2rcosi—(n +1)Esin +sm n+1 n ﬁacomb comb@:

5355( )gﬂ ey g— SPyEn

[

]

. OrmQg =0

% _SHE?H

28n? E—Eeﬁq comb comb@:

X[n]

JILILIUALLL

(b) X(F) = j combiF +%§— j combiF —%E
(c) X(F)= %inc@o% —%%+ sincgogz +%%]comb(F)

Use

s nc%@ﬂ f, comby( ,t) = wif, %05% @J’ % —%drcl Qfot'% B 1%

from Appendix A (because ;-_\;)v isan integer).

E%cos@m@: ——%+ garelfF - 9§+ 005@07'@: %+ 9drc@: S %

i cos(107tF ) €2 "dF —f1- cos(107F)
1
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%L(ejlm +e1°% )ei2FdF 1, cos(107F)

%H‘lejzmr(ms)dlz +Ilej2m:(n—5)d|: E‘_ﬁ—’ COS(lOr[F)

1 Hl @OS(ZITF(n + 5)) +j sin(2 1 (n+ 5))53": B{_@_} -
2L} [ Foos(2nF (n-5)) + (27 (n - 5))F -

Theseintegrals are zero unless n = 5. Therefore
%(J[n +5] +o[n-5]) ~ - cos(107F) .
Thenusing €2™"x[n] &~ X(F F,),
rect, [n] — 8- 9drcl(F,9)
Combining inverse transforms,
%(J[n +5] +&[n-5]) +rect, [n] - cos(107F) + 9drcl (F,9) .

Then, using €2 x[n] -1 X(F F,)

i 0L 0 1 10
o2 %(5[n+5]+5[n—5])+rect4[n] Eeﬁa cos§107rai—z%+9dm|§:_Z,gB
and
- 1 L
o2 %(5[n+5]+6[n—5])+rect4[n] ﬁﬁﬁa cos%On@: +Z%+9dm@:+2’9§ .
Then, finally
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U7 m 48]+ 5in—gl) + rect. ] P O [ - anj N 00
%éﬁ .?(f[n 5] + o[ - 5]) + rect, [n] - o, sqomCF - 2 Fev odl - 1,91 ik
gé% %(5[n+5] +5[n—5])+rect4[n]% E cosélOn@i %+ 9drc|§: +=, %

The impulses on the left side cancel and we get

rect, Dnn - 1 H;osélOn@: %+ 9drcl @3 ,9 E
> E_E 10 Ly cos%lOn@: %+ 9drcl @3 +—, %

X[n]

(A X(F)= %@z -%§+ 5+ -%§+ oF —%%]comb(ZF)

10 100 ,
Express comb(2F) as Eg:omb(F) + comb@z E% Then do the convolution.

Then do the inverse transform and simplify.

Egombgz - —§+ come: - —§+ Combgz _ _% E
ﬁmb@t 2 __Q COmeZ T ‘—Q comb@: = _E%

O 0
COSQ_E+ cosa—§+ COS?%«— fflﬁ — Ecomb @z E Combaz E o @z %
2 D+comb§: E+ comb@i _E+ comb@i —2%
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56.Using the relationship between the CTFT of a signal and the CTFS of a periodic
extension of that signal, find the CTFS of

to_1 Ut O
x(t) = rect @D—comb
v T, 6
and compare it with the table entry.

57.Using the relationship between the DTFT of a signal and the DTFS of a periodic
extension of that signal, find the DTFS of

rect,, [n] Ocomb, [n]

and compare it with the table entry.
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