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Solutions 6-1

Chapter 6 -  Fourier Transform Analysis of
Signals and Systems

Selected Solutions
(In this solution manual, the symbol, ⊗ , is used for periodic convolution because the
preferred symbol which appears in the text is not in the font selection of the word processor
used to create this manual.)

1. A system has an impulse response,

h uLP
tt e t( ) = ( )−3 10  ,

and another system has an impulse response,

h uHP
tt t e t( ) = ( ) − ( )−δ 3 10  .

(a) Sketch the magnitude and phase of the transfer function of these two systems in a
parallel connection.
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(b) Sketch the magnitude and phase of the transfer function of these two systems in a
cascade connection.

2. Below are some pairs of signals, x t( )  and y t( ) .  In each case decide whether or not y t( )
is a distorted version of x t( ) .
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(c) Clipped at a negative value, distorted
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(e) Constant added, distorted

(f) Log-amplified, distorted

3. Classify each of these transfer functions as having a lowpass, highpass, bandpass or
bandstop frequency response.
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4. Classify each of these transfer functions as having a lowpass, highpass, bandpass or
bandstop frequency response.
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5. A system has an impulse response,

h rect
.

.
t

t( ) =
−



10

0 01
0 02

 .



 M. J. Roberts - 8/16/04

Solutions 6-4

What is its null bandwidth?

6. A system has an impulse response,

h un n
n

[ ] = 



 [ ]7

8
  .

What is its half-power DT-frequency bandwidth?
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the transfer function is
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.

This is a DT lowpass filter.  Its maximum transfer function magnitude occurs at Ω = 0 .  The
-3 dB point must be the first frequency at which the square of the magnitude of the transfer
function is one-half of its maximum value (the “half-power” bandwidth).

The low-frequency gain is
H 0 8( ) =

The -3 dB point occurs where

H j dBΩ−( ) = =3

2
28

2
32 .

Solving,
Ωhp n= ±0 1337 2. π

So the -3 dB DT-frequency bandwidth in radians is 0.1337.  In cycles it is 0.0213.  (Notice
that the bandwidths are not in radians/s or in Hz.  This is because they are DT bandwidths,
not CT bandwidths.)

7. Determine whether or not the CT systems with these transfer functions are causal.

(a) H sincf f( ) = ( ) (b) H sincf f e j f( ) = ( ) − π

(c) H rectjω ω( ) = ( )

(d) H rectj e jω ω ω( ) = ( ) − h sinct
t( ) =
−





1
2

1
2π π

Not Causal

(e) H f A( ) =

(f) H f Ae j f( ) = 2π h t A t( ) = +( )δ 1 Not Causal
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8. Determine whether or not the DT systems with these transfer functions are causal.
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sin
sin

F
F

F
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π h rectn n[ ] = −[ ]1 1 Causal

(d) H rect combF F F( ) = ( ) ∗ ( )10

9. Find and sketch the frequency response of each of these circuits given the indicated
excitation and response.

(a) Excitation, vi t( ) - Response, vL t( )
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(b) Excitation, vi t( ) - Response, iC t( )
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R = 1 kΩ 

C = 1 µF v (t)i

+

-

i  (t)C

In this case the transfer function is the reciprocal of the input impedance.

(c) Excitation, vi t( ) - Response, vR t( )

R = 1 kΩ 

C = 1 µF L = 1 mH v (t)i

+

-

v (t)R
+ -

(d) Excitation, ii t( )  - Response, vR t( )

R = 100 Ω 

C = 1 µF 

L = 1 mH 

i (t)i

v (t)R

+

-

Divide the excitation current between the two branches and multiply the
current in the right branch by R to get the response voltage.  Then solve for
the ratio of the response voltage to the excitation current.

10. Classify each of these transfer functions as having a lowpass, highpass, bandpass or
bandstop frequency response.

(a) H f
jf
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+
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(b) H f
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(d) H
sin
sin

F
F

F
( ) =

( )
( )
3π
π

This case is not as “pure” as the previous ones.  It is generally lowpass because the
transfer function magnitude at lower frequencies is generally greater than at high
frequencies.  But there are nulls in the transfer function that make it look somewhat
like a bandstop filter or a multiple bandstop filter.

(e) H sin sinj jΩ Ω Ω( ) = ( ) + ( )[ ]2

This case is also not perfectly clear.  The response at zero frequency is zero and the
response at Ω = π  is also zero.  These criteria fit a bandpass filter.  But the response

is also zero at Ω =
2

3

π
.  So it might again look like a bandstop in some ways.

11. Plot the magnitude frequency responses, both on a linear-magnitude and on a log-
magnitude scale, of the systems with these transfer functions, over the frequency range
specified.
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f j f
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20 4 422 2π π

  ,  − < <100 100f
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ω
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12. Draw asymptotic and exact magnitude and phase Bode diagrams for the frequency
responses of the following circuits and systems.

(a) An RC lowpass filter with R =1 MΩ and C = 0 1. µF.
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(b)
R = 10 Ω C = 1 µF 

L = 1 mH v (t)i

+

-

v (t)L

+

-

13. Find the transfer functions, H
V

V
f

f

f
o

i

( ) = ( )
( ) ,  of these active filters and identify them as

lowpass, highpass, bandpass or bandstop.

(a)

v (t)i
v (t)x

+

-

v (t)o

+

-

K

R2

R1

C2C1

The triangle with the “K ” inside is an ideal voltage amplifier of gain K (not an
operational amplifier).  It is, in circuit theory parlance, a “voltage-dependent voltage source”.
“Ideal” means its input impedance is infinite so no input current flows and its output
impedance is zero so the output voltage is independent of the output current (and therefore
any load connected to the output).



 M. J. Roberts - 8/16/04

Solutions 6-9

Writing Kirchhoff’s current law at the vX t( )  node and then writing the

relationship between  Vx f( )  and Vo f( ) using voltage division and the voltage amplifier gain,
K,
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( G1  is 
1

1R
.  That is, it is the conductance of the resistor, R1 .)
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Writing the two equations as one matrix equation,
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Solving by Cramer’s rule with the excitation voltage as a forcing function,
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The circuit is a highpass filter because at low frequencies the response
approaches zero and at high frequencies it approaches K.  This can be seen
both in the transfer function formula and in the physical nature of the circuit
connection itself.  At zero frequency no current flows through the capacitors
and therefore not current flows through resistor, R2 .  Therefore the voltage at
the input of the amplifier is zero making the response voltage zero.  At high
frequencies the capacitor impedances become practically zero, making the
excitation voltage  and the voltage at the amplifier input equal.  Therefore the
transfer function must be K at high frequencies.

(b)

v (t)i
v (t)x

+

-

v (t)o

+

-

K
R2R1

C2

C1

Similar to (a)

14. Show that this system has a highpass frequency response.

∫
x(t)

y(t)

Write the differential equation from the block diagram.  You should get

d

dt
t t

d

dt
ty y x( ) + ( ) = ( )

Fourier transform both sides and solve for the ratio of Y to X.

15. Draw the block diagram of a system with a bandpass frequency response using two
integrators as functional blocks.  Then find its transfer function and verify that it has a
bandpass frequency response.

Lowpass cascaded with highpass.  Find the transfer function of both stages (lowpass and
highpass) and multiply the transfer functions.
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16. Find the transfer function, H
Y

X
j

j

j
Ω

Ω
Ω

( ) = ( )
( ) , and sketch the frequency response of each

of these DT filters over the range, − < <4 4π πΩ .

(a)

D

x[n] y[n]

y x xn n n[ ] = [ ] − −[ ]1

H j e jΩ Ω( ) = − −1
 (b) Similar to (a)

(c)

D

x[n]

D

y[n]

H j
e

e

j

jΩ
Ω

Ω( ) =
−
+

−

−
1
1

(d)

D

D

x[n] y[n]

Let z be the output of the left-hand summer.  Then

y x x z

z x z

n n n n

n n n

[ ] = [ ] − −[ ] + [ ]
[ ] = [ ] − −[ ]

1

1

Take the DTFT of both equations, eliminate Z and solve for the ratio of Y to X.

H j
e

e

j

j
Ω

Ω

Ω( ) =
−
+

−

−

2

1

2
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17. Find the minimum stop band attenuation of a moving-average filter with N = 3.  Define

the stop band as the frequency region, F Fc < <
1
2

, where Fc  is the DT frequency of the

first null in the frequency response.

From the text, for a moving-average filter

H
sin

sin
F

e

N

N F

F

j NF

( ) =
+

+( )( )
( )

− π π
π1

1

The first null in the frequency response occurs at

π πN F F
N

+( ) = ⇒ =
+

=1
1

1
1
4

 .

The phrase, “minimum stop band attenuation” refers to the point in the stop band at which
the reduction in magnitude is the smallest.  That is, the point in the stop band in which the
transfer function is the largest.  The biggest magnitude response after the null frequency is at
the next maximum of H F( ) which occurs at

π π
N F F

N
+( ) = ⇒ =

+( ) =1
3
2

3
2 1

3
8

 .

18. In the system below, x sinct t t( ) = ( ) , fc =10 and the cutoff frequency of the lowpass filter
is 1 Hz.  Plot the signals, xt t( ) , yt t( ) , yd t( )  and y f t( )  and the magnitudes and phases
of their CTFT’s.

x (t)
y (t) = x (t)

cos(2πf t)c

t
t r

cos(2πf t)c

y (t)d
y (t)fLPF

x sinct t t( ) = ( ) X rectt f f( ) = ( )
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t 
-4 4

x
t
(t)

-0.5

1

Modulation

f 
-2 2

|X
t
( f )|

1

f 
-2 2

Phase of X
t
( f )

- π

π

y sinc cost t t t( ) = ( ) ( )20π

Fourier transforming,

Y rect rectt f f f( ) = −( ) + +( )[ ]1
2

10 10

t 
-4 4

y
t
(t)

-1

1

Modulated Carrier

f 
-10 10

|Y
t
( f )|

0.5

f 
-10 10

Phase of Y
t
( f )

- π

π

y sinc cosd t t t( ) = ( ) ( )2 20π Y rect rect rectd f f f f( ) = −( ) + ( ) + +( )[ ]1
4

20 2 20
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t 
-4 4

y
d
(t)

-0.5

1

Demodulated Carrier

f 
-20 20

|Y
d
( f )|

0.5

f 
-20 20

Phase of Y
d
( f )

- π

π

y sincf t t( ) = ( )1
2

Y
rect

f f
f( ) = ( )2

4

t 
-4 4

x
f
(t)

-0.25

0.5

Demodulated and Filtered Carrier

f 
-2 2

|X
f
( f )|

0.5

f 
-2 2

Phase of X
f
( f )

- π

π

19. In the system below, x sinc combt t t t( ) = ( ) ∗ ( )10 , m =1, fc =100 and the cutoff
frequency of the lowpass filter is 10 Hz.  Plot the signals, xt t( ) , yt t( ) , yd t( )  and y f t( )
and the magnitudes and phases of their CTFT’s.

y (t) = x (t)

cos(2πf t)c

x (t)t
t r

cos(2πf t)c

y (t)d
y (t)fLPFm

1

Similar to Exercise 18.

20. An RC lowpass filter with a time constant of 16 ms is excited by a DSBSC signal,
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x sin cost t t( ) = ( ) ( )2 20π π  .

Find the phase and group delays at a the carrier frequency.

The transfer function of the RC lowpass filter is

H
.

j
A

j

A

j
ω

ωτ ω
( ) =

+
=

+1 1 0 016
  .

The phase of the transfer function is

φ ω ωτ ωj( ) = − ( ) = − ( )− −tan tan .1 1 0 016   .

The carrier frequency is 10 Hz.  Therefore

φ π πj20 0 016 20 0 7881( ) = − ×( ) =−tan . .

and the phase delay is − ( ) = =
φ π

ω π
j

c

20 0 788
20

0 01254 12 54
.

. .or ms .  The derivative of the

phase shift function is

d

d
j

ω
φ ω τ

ωτ
( )( ) = −

+ ( )1
2  .

Evaluating this derivative at the carrier frequency we get

− ( )( )





=
+ ( )

=
+ ×( )

=
=

d

d
j

c c
ω

φ ω τ
ω τ πω ω 1

0 016

1 0 016 20
7 952 2

.

.
. ms  .

21. A pulse train,
p rect combt t t( ) = ( ) ∗ ( )100 10 10

is modulated by a signal,
x sint t( ) = ( )4π  .

Plot the response of the modulator, y t( ) , and the CTFT’s of the excitation and response.

Similar to Exercise 18.

y sin rectt t t
n

n

( ) = ( ) −









=−∞

∞

∑4 100
10

π

Y sinc sincf
j k

f k
k

f k
k k

( ) = 



 + −( ) − 



 − −( )








=−∞

∞

=−∞

∞

∑ ∑20 10
2 10

10
2 10δ δ

22. In the system below, let the excitation be
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x rect combt t t( ) = ( ) ∗ ( )1000 250 250

and let the filter be ideal, with unity passband gain.  Plot the signal power of the response,
y t( ) , of this system versus the sweep frequency, fc, over the range, 0 2000< <fc  for a LPF
bandwidth of

(a) 5 Hz

(b) 50 Hz

and (c) 500 Hz.

LPFx(t) y(t)

cos(2πf t)c

Multiplier
x  (t)sh

x rect comb cossh ct t t f t( ) = ( ) ∗ ( )[ ] ( )1000 250 250 2π

x cos rectsh c
n

t f t t
n( ) = ( ) −









=−∞

∞

∑2 1000
250

π

X sinc combsh c cf
f f

f f f f( ) = 
















∗ −( ) + +( )[ ]1

1000 1000 250
1
2

δ δ

X sincsh
k

c cf
f

f k f f f f( ) = 



 −( )






 ∗ −( ) + +( )[ ]

=−∞

∞

∑1
8 1000

250δ δ δ

X sincsh c c
k

f
k

f f k f f k( ) = 



 − −( ) + + −( )[ ]

=−∞

∞

∑1
8 4

250 250δ δ

Y sinc rectf
k

f f k f f k
f

Bc c
k

( ) = 



 − −( ) + + −( )[ ]












=−∞

∞

∑1
8 4

250 250
2

δ δ

where “B” is the bandwidth of the LPF.

Y

rect sinc

rect sinc

f

f

B

k
f f k

f

B

k
f f k

c
k

k
c

( ) =











 − −( )

+ 









 + −( )



















=−∞

∞

=−∞

∞

∑

∑
1
8

2 4
250

2 4
250

δ

δ

Y sinc sincf
k

f f k
k

f f kc
f k B

c
f k Bc c

( ) = 



 − −( ) + 



 + −( )











+ < − <
∑ ∑1

8 4
250

4
250

250 250

δ δ
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P
k k

y
f k B f k Bc c

= 



 + 















+ < − <
∑ ∑1

64 4 4
2

250

2

250

sinc sinc

f
c2000

Signal Power
0.1

f
c2000

Signal Power
0.1

f
c2000

Signal Power
0.1

23. A signal, x(t) is described by

x rect combt t t( ) = ( ) ∗ ( )500 1000 500

(a) If x(t), is the excitation of an ideal lowpass filter with a cutoff frequency of 
3 kHz, plot the excitation , x(t) and the response, y(t) on the same scale and 
compare.

Fourier transform the excitation,  to yield X.  Write the transfer function, H,
of the ideal filter as a rectangle function.  Form the transform of the response,
Y, from X times H.  Recognize it as a finite summation of impulses.  Inverse
transform the impulses in pairs to form y, and graph y.

-2 ms 2 ms

1

t

y(t)

This looks like the partial sums in the discussion of convergence of the CTFS
because, mathematically, the same thing is happening.

(b) Similar to (a)

24. Determine whether or not the CT systems with these transfer functions are causal.

The test for causality is that a causal system has an impulse response that is zero fall
time, t < 0 .

 (a) H j
j

ω
ω

( ) =
2

(b) H j
j

ω
ω

( ) =
+
10

6 4
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(c) H j
j j

ω
ω ω ω

( ) =
− +

=
+( ) +

4
25 6

4

3 16
2 2

Using 
 
e t t

j a
at− ( ) ( )← →

+( ) +
sin uω ω

ω ω0
0
2

0
2

F

h sin ut e t tt( ) = ( ) ( )−3 4 Causal

(d) H j
j

e jω
ω ω

ω( ) =
− +

4
25 62 (e) H j

j
e jω

ω ω
ω( ) =

− +
−4

25 62

(f) H j
j

j
ω ω

ω ω
( ) =

+
− +

9
45 62 (g) H jω

ω
( ) =

+
49

49 2

25. Determine whether or not the DT systems with these transfer functions are causal.

(a) H rect combF F F e j F( ) = ( ) ∗ ( )[ ] −10 20π

(b) H sinF j F( ) = ( )2π (c) H F e j F( ) = − −1 4π

(d) H j
e

e

j

jΩ
Ω

Ω( ) =
− −
8

8 5

Similar to Exercise 24, except for discrete time.

26. Find and sketch the frequency response of each of these circuits given the indicated
excitation and response.

(a) Excitation, vi t( ) - Response, vC t2( )

R  = 1 kΩ 

C  = 1 µF v (t)i

+

-

+

-

R  = 10 kΩ 

C  = 0.1 µF v  (t)C2

1

1 2

2

The transfer function can be found in multiple ways.  One way is to think of
this circuit as two voltage dividers.  The first voltage division is from the
excitation, vi t( ) , to the voltage across the first capacitor.  The second voltage

division is from that voltage to the response voltage,  vC t2 ( ) .
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H
V

V
j

j

j

Z j

R Z j
C

i

ω
ω

ω
ω

ω
π

π

( ) = ( )
( ) = ( )

+ ( )
2

1

first volltage division

second v

1

1
2

2
2

j C

R
j C

ω

ω
+

ooltage division

= ( )
+ ( )
Z j

R Z j j R C
π

π

ω
ω ω1 2

1

22 1+

Z j
j C

R
j C

j C
R

j C

π ω
ω ω

ω ω

( ) =
+







+ +

1 1

1 1
1

2
2

1
2

2

Substitute Z jπ ω( )  into the expression for the transfer function and simplify.

H j
R R C C j C C R R C

ω
ω ω

( ) =
− + +( ) +[ ]

1

1 2
1 2 1 2 1 2 1 2 2

(b) Excitation, vi t( ) - Response, iC t1( )

R  = 1 kΩ 

C  = 1 µF v (t)i

i   (t)C1

+

-

R  = 10 kΩ 

C  = 0.1 µF 

1

1 2

2

Think of the transfer function as the transfer function from the excitation to
the current in R1  times the transfer function from the current in R1  to iC t1 ( ) .

H
I

V

I

V
j

j

j

j

j
C

i

R

i

ω
ω
ω

ω
ω

( ) = ( )
( ) = ( )

( )
1 1

first transsfer function

se

R
j C

j C
R

j C

2
2

1
2

2

1

1 1

+

+ +

ω

ω ω
ccond transfer function

inp

= ( )
1

Z ji ω
uut impedance

second

j R C

j R C
C

C

ω

ω
2 2

2 2
2

1

1

1

+

+ +

  transfer function

Z j R Z j R
j R C

j C C R C Ci ω ω ω
ω ωπ( ) = + ( ) = +

+
+( ) −1 1

2 2

1 2
2

2 1 2

1

Combine expressions and simplify to yield

H j
j C j R C

R R C C j R C C R C
ω

ω ω
ω ω

( ) =
+( )

− + +( ) +[ ]
1 2 2

2
1 2 1 2 1 1 2 2 2

1

1

(c) Excitation, vi t( ) - Response, vR t2( )
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C  = 1 µF 

v (t)i

+

-

v   (t)R2

+

-

R  = 10 kΩ 2R  = 10 kΩ 1

1 C  = 1 µF 2

Similar to (a).

(d) Excitation, ii t( )  - Response, vR t1( )

C  = 1 µF 

i (t)i

v   (t)R1

+

-

R  = 10 kΩ 2

R  = 10 kΩ 1

1

C  = 1 µF 2

(e) Excitation, vi t( ) - Response, vRL t( )

v (t)i v   (t)RL

+

-

+

-

R  = 10 kΩ 1 R  = 1 kΩ L

R  = 10 kΩ 2

C  = 1 µF 1 C  = 1 µF 2

Write two nodal equations and solve for the transfer function.

Summing currents to zero at the middle node and the right-hand node,

V V V

V V V

R i RL

RL L i R

j j C j C G j j C j j C

j j C G G j G j j C

1

1

1 2 1 1 2

2 2 2 2

0

0

ω ω ω ω ω ω ω

ω ω ω ω ω

( ) + +[ ] − ( ) − ( ) =

( ) + +[ ] − ( ) − ( ) =
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Solve for the transfer function,

H j
R R C C j R C C

R R C C j C C
R

R
R R C

R R

RL

L

L

ω
ω ω

ω ω
( ) =

− + +( ) +

− + +( ) +






+








 +

+

2
1 2 1 2 1 1 2

2
1 2 1 2 1 2

2
1 2 2

2

1

1

ω
-25000 25000

|H( jω )|

1

ω
-25000 25000

Phase of H( jω )

- π

π

27. Find and sketch versus frequency the magnitude and phase of the input impedance,

Z
V

Iin
i

i

f
f

f
( ) = ( )

( )  and transfer function, H
V

V
f

f

f
o

i

( ) = ( )
( ) ,  for each of these filters.

(a)

1 µF

v (t)i

i (t)i

v (t)o

+

-

+

-

1 kΩ

(b)

10 nFv (t)i v (t)o

+

-

+

-

100 Ω 50 mHi (t)i

28. The signal, x(t),  in Exercise 23 is the excitation of an RC lowpass filter with R =1kΩ
and C = 0 3. µF.  Sketch the excitation and response voltages versus time on the same
scale.

From Exercise 23,
x rect combt t t( ) = ( ) ∗ ( )500 1000 500
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X sincf
n

f n
n

( ) = 



 −( )

=−∞

∞

∑1
2 2

500δ

The transfer function is

H f
j fRC

( ) =
+

1
2 1π

Therefore the output is

Y sincf
j fRC

n
f n

n

( ) =
+





 −( )

=−∞

∞

∑1
2

1
2 1 2

500
π

δ

Y sincf
n

j nRC
f n

n

( ) = 



 +

−( )
=−∞

∞

∑1
2 2

1
1000 1

500
π

δ

Converting to the time domain,

y
sinc

t

n

j nRC
e j nt

n

( ) =







+=−∞

∞

∑1
2

2
1000 1

1000

π
π

or

y sinct
n e

j nRC

e

j nRC

j nt j nt

n

( ) = + 



 +

+
− +



















−

=

∞

∑1
2

1
2 1000 1 1000 1

1000 1000

1

π π

π π

y sinct
n j nRC e e e e

nRC

j nt j nt j nt j nt

n

( ) = + 





−( ) + +
( ) +

























− −

=

∞

∑1
2

1
2

1000

1000 1

1000 1000 1000 1000

2
1

π
π

π π π π

y sinc
sin cos

t
n nRC nt nt

nRCn

( ) = + 





( ) + ( )
( ) +





















=

∞

∑1
2

1
2

2000 1000 2 1000

1000 1
2

1

π π π
π

-2 ms 2 ms

1

t

29. Draw asymptotic and exact magnitude and phase Bode diagrams for the frequency
responses of the following circuits and systems.

(a)
R  = 1 kΩ 

C  = 1 µF v (t)i

+

-

+

-

R  = 10 kΩ 

C  = 0.1 µF v  (t)C2

1

1 2

2

From Exercise 26(b)
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H j
R R C C j C C R R C

ω
ω ω

( ) =
− + +( ) +[ ]

1

1 2
1 2 1 2 1 2 1 2 2

H
.

j
j

ω
ω ω

( ) =
− + ×− −

1
1 10 2 1 106 2 3

10
1

10
2

10
3

10
4

10
5

10
6

-140

-120

-100

-80

-60

-40

-20

0

ω 

|H
( j

ω
)| dB

10
1

10
2

10
3

10
4

10
5

10
6

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

ω 

Ph
as

e 
of

 H
( j

ω
)

(b)
10

jω+10
jω

jω+10
X(jω) Y(jω)

(c) A system whose transfer function is H
,

j
j

j
ω ω

ω ω
( ) =

− +
20

10 000 202

H
. .

j
j

j j j j

j

j

ω ω
ω ω

ω
ω ω

( ) =
+ −( ) + +( ) =

+ −










20
10 99 5 10 99 5

20

10000 1
500 10000

2

30. Find the transfer function for the following circuit.  What function does it perform?

v (t)i v (t)o

v (t)x
+

-

+

-

R

Ci (t)i

i (t)f f

i

31. Design an active highpass filter using an ideal operational amplifier, two resistors and
one capacitor and derive its transfer function to verify that it is high pass.
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Use an inverting amplifier configuration.  Let the feedback impedance be a simple
resistor.  Choose an input impedance that is high at low frequencies and approaches a

constant at high frequencies so that the transfer function, −
( )
( )

Z j

Z j
f

i

ω
ω

 approaches zero at

low frequencies and approaches a constant at high frequencies.

32. Find the transfer functions, H
V

V
f

f

f
o

i

( ) = ( )
( ) ,  of these active filters and identify them as

lowpass, highpass, bandpass or bandstop.

(a)

v (t)i

v (t)x+

-
v (t)o

+

-

C3

C4

R1

R2

R5

Sum currents to zero at node, vx t( ) , and at the input node of the operational
amplifier, which must be at zero volts because the ideal operational amplifier
gain is infinite.  Remember the input impedance of the operational amplifier
is infinite so no current flows into its input terminals.

V V V

V V

x i o

x o

f G G j fC j fC f G f j fC

f j fC f G

( ) + + +( ) − ( ) − ( ) =

− ( ) − ( ) =
1 2 3 4 1 4

3 5

2 2 2 0

2 0

π π π

π

Solve for the transfer function.

H f
j fR C

f R R C C j fR C C
R

R

( ) =
( ) − +( ) − +







2

2 2 1

5 3

2

1 5 3 4 1 4 3
1

2

π

π π

What kind of filter is this?

(b)
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v (t)i

v (t)x
+

-
v (t)o

+

-

C3

C4
C1

R2

R5

Similar to (a).

(c)

v (t)i

v (t)x+

-
v (t)o

+

-

R3

R4

R1

C2

C5

Similar to (a)

33. When music is recorded on analog magnetic tape and later played back, a high-frequency
noise component, called tape “hiss” is added to the music.  For purposes of analysis
assume that the spectrum of the music is flat at –30 dB across the audio spectrum from
20 Hz to 20 kHz.  Also assume that the spectrum of the signal played back on the tape
deck has an added component  making the playback signal have a Bode diagram as
illustrated in Figure E33.  

f 
200 2 kHz

6 kHz 12 kHz

20 kHz

-30 dB

-24 dB

Figure E33  Bode diagram of playback signal

The extra high-frequency noise could be attenuated by a lowpass filter but that would also
attenuate the high-frequency components of the music, reducing its fidelity.  One solution to
the problem is to “pre-emphasize” the high-frequency part of the music during the
recording process so that when the lowpass filter is applied to the playback the net effect on
the music is zero but the “hiss” has been attenuated.  Design an active filter which could be
used during the recording process to do the pre-emphasis.
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The pre-emphasis active filter should have a low-frequency gain of one and a high-
frequency gain of 6 dB and should transition between those gains between 6 and 12 kHz
with a slope (asymptotic slope) of 6 dB/octave.  So the pre-emphasis filter should have one
real zero to create the first corner and one real pole to create the second corner.  If we use the
inverting amplifier configuration with an op-amp and make the feedback impedance a
resistor then the source impedance can create the zero and pole at the required locations.  The
design idea is to make the source impedance have the required low-frequency value and then
to make its high-frequency value lower, increasing the overall gain at high frequencies, as
illustrated in Figure S33.

R fR s1

R s2 Cs

v (t)i

+

- v (t)o

+

-

Figure S33  Pre-emphasis filter

The source impedance is

Z f

R R
j fC

R R
j fC

j fC R R R

j fC R R

R R

R R

j f
C R

j f
C R R

s

s s
s

s s
s

s s s s

s s s

s s

s s

s s

s s s

( ) =
+







+ +
=

+
+( ) +

=
+

+

+
+( )

1 2

1 2

1 2 1

1 2

1 2

1 2

2

1 2

1
2

1
2

2
2 1

2
1

2
1

π

π

π
π

π

π

The numerator provides the zero of the source impedance (the pole of the overall gain) and
the denominator provides the pole of the source impedance (the zero of the overall gain).  So
we want the gain-pole location to be set by

1
2 12000

2C Rs s

= ×π

and the gain-zero location to be set by

1
2 6000

1 2C R Rs s s+( ) = ×π   .

There is no unique solution so let’s arbitrarily set Rs2 10= kΩ.  Then it follows that
Cs =1 33. nF and Rs1 10= kΩ.  The overall gain is



 M. J. Roberts - 8/16/04

Solutions 6-27

H f
R

R R

R R

j f
C R

j f
C R R

R
R R

R R

j f
C R R

j f
C R

f

s s

s s

s s

s s s

f
s s

s s

s s s

s s

( ) = −

+

+

+
+( )

= −
+

+
+( )

+
1 2

1 2

2

1 2

1 2

1 2

1 2

2

2
1

2
1

2
1

2
1π

π

π

π

At low frequencies,

H f
R

R
f

s

( ) = −
1

 .

To make the low-frequency gain one, set R Rf s= =1 10 kΩ .

34. One problem with causal CT filters is that the response of the filter always lags the
excitation.  This problem cannot be eliminated if the filtering is done in real time but if
the signal is recorded for later “off-line” filtering one simple way of eliminating the lag
effect is to filter the signal, record the response and then filter that recorded response
with the same filter but playing the signal back through the system backward.  Suppose
the filter is a single-pole filter with a transfer function of the form,

H j
j

c

ω ω
ω

( ) =
+

1

1
 ,

where ωc  is the cutoff frequency (half-power frequency) of the filter.  

(a) What is the effective transfer function of the entire process of filtering the signal
forward, then backward?

 (b) What is the effective impulse response?

(a) The impulse response of the filter is   h Ht j( ) = ( )[ ]−F 1 ω .  The response of the filter

on the first pass through the filter forward is y x h1 t t t( ) = ( ) ∗ ( )  in the time domain or
Y X H1 j j jω ω ω( ) = ( ) ( ) in the frequency domain.  The response of the filter on the second
pass through the filter backward is y y h2 1t t t( ) = −( ) ∗ ( )  in the time domain or
Y Y H*

2 1j j jω ω ω( ) = ( ) ( )  in the frequency domain.  (This uses the CTFT property,

 g G*−( )← → ( )t jF ω .)  The final signal is y2 −( )t  in the time domain and Y*
2 jω( ) in the

frequency domain.  Therefore the final signal in the frequency domain is

Y Y H Y H X H H* * * * *
2 1 1j j j j j j j jω ω ω ω ω ω ω ω( ) = ( ) ( )[ ] = ( ) ( ) = ( ) ( ) ( )

and in the time domain this is y x h h2 t t t t( ) = ( ) ∗ ( ) ∗ −( ) .  So the effective transfer function is
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H H*j j
j j

c c
c

ω ω ω
ω

ω
ω

ω
ω

( ) ( ) =
+ −

=
+







1

1

1

1

1

1
2

and, using 
  
e

a

a
a t− ← →

+
F 2

2 2ω
, the effective impulse response is

h h u ut t e t e t ec
t

c
t c tc c c( ) ∗ −( ) = ( ) ∗ −( ) =− −ω ω ωω ω ω

2
.

Just as there is no phase shift in the frequency domain, the effective impulse response,
h h−( ) ∗ ( )t t  is symmetrical about t = 0 which also means it creates no time delay when it is
convolved with the excitation.

35. Repeat Exercise 18 but with the second cos 2πf tc( )  replaced by sin 2πf tc( ) .

Similar to Exercise 18.

36. In the system below, x sinct t t( ) = ( ) , fc =10 and the cutoff frequency of the lowpass filter
is 1 Hz.  Plot the signals, xt t( ) , yt t( ) , yd t( )  and y f t( )  and the magnitudes and phases
of their CTFT’s.

This is a single sideband system.  Analysis is similar to several previous communication
system exercises.  The biggest difference is the addition of the filter which removes a
sideband before transmission.

y (t) = x (t)
x (t)t

t r

cos(2πf t)c

y (t)d
y (t)fLPF

cos(2πf t)c

f
-fc fc

fm fm

|H( f )|

Y rect
.

.
rect

.
.t f

f f( ) =
−



 +

+











1
2

10 25
0 5

10 25
0 5

y sinc cos .t t
t

t( ) = 



 ( )1

2 2
20 5π

y sinc cos . cosd t
t

t t( ) = 



 ( ) ( )1

2 2
20 5 20π π

Y
rect . rect .

rect . rect .
d f

f f

f f
( ) =

−( )( ) + +( )( )
+ −( )( ) + +( )( )













1
4

2 20 25 2 0 25

2 0 25 2 20 25
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t 
-4 4

y
d
(t)

-0.25

0.5

Demodulated Carrier

f 
-20 20

|Y
d
( f )|

0.5

f 
-20 20

Phase of Y
d
( f )

- π

π

t 
-4 4

y
f
(t)

-0.125

0.25

Demodulated and Filtered Carrier

f 
-2 2

|Y
f
( f )|

0.25

f 
-2 2

Phase of Y
f
( f )

- π

π

37. A quadrature modulator modulates a sine carrier, sin 20πt( ) , with a signal, x t sinc1( ) = ( )t ,
and a cosine carrier, cos 20πt( ) , with a signal, x t rect2( ) = ( )t .  The quadrature

demodulator has a phase error making its local oscillators be sin 20
6

π π
t −



  and

cos 20
6

π π
t −



 .  Plot the two demodulated and filtered signals, x t1 f ( ) and x t2 f ( ) .

y sinc sin rect cost t t t t( ) = ( ) ( ) + ( ) ( )20 20π π

 
X sinc sin rect cos1 20 20d f t t t t( ) = ( ) ( ) + ( ) ( )F π π  −













sin 20
6

π π
t
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X
rect

sinc
1

602
10 10

1
2

10 10
2

10 10d

j
f

f
f

j
f f

f f f

j
f f e( ) =

( ) ∗ +( ) − −( )[ ]
+ ( ) ∗ −( ) + +( )[ ]



















∗ +( ) − −( )[ ] −
δ δ

δ δ
δ δ

π

X
rect rect

sinc sinc
1

60

4

10 10

10 10
10 10d

j
f

f
j j f f

f f
f f e( ) =

+( ) − −( )[ ]
+ −( ) + +( )[ ]












∗ +( ) − −( )[ ] −

δ δ
π

X

rect

rect

sinc

1

60 60

60 60

4

10 10 10

10 10 10

10 10

d

j
f

j
f

j
f

j
f

f
j

j

f f e f e

f f e f e

f f e

( ) =

+( ) ∗ +( ) − −( )









− −( ) ∗ +( ) − −( )





























+
−( ) ∗ +( )

− −

− −

δ δ

δ δ

δ

π π

π π

−− −

− −

− −( )









+ +( ) ∗ +( ) − −( )































































j
f

j
f

j
f

j
f

f e

f f e f e

π π

π π

δ

δ δ

60 60

60 60

10

10 10 10sinc

X

rect rect

rect rect

sinc

1

6 6

6 6

4

10 10 10 10

10 10 10 10

10

d

j j

j j

f
j

j

f f e f f e

f f e f f e

f

( ) =

+( ) ∗ +( ) − +( ) ∗ −( )









− −( ) ∗ +( ) − −( ) ∗ −( )





























+
−( )

−

−

δ δ

δ δ

π π

π π

∗∗ +( ) − −( ) ∗ −( )









+ +( ) ∗ +( ) − +( ) ∗ −( )

























































−

−

δ δ

δ δ

π π

π π

f e f f e

f f e f f e

j j

j j

10 10 10

10 10 10 10

6 6

6 6

sinc

sinc sinc








X

rect rect rect rect

sinc sinc sinc sinc
1

6 6 6 6

6 6 6 6
4

20 20

20 20
d

j j j j

j j j j

f
j

j f e f e f e f e

f e f e f e f e

( ) =
+( ) − ( ) − ( ) + −( )









+ ( ) − −( ) + +( ) − ( )


























− −

− −

π π π π

π π π π 



X

rect cos rect rect

sin sinc sinc sinc
1

6 6

6 6
4

20 2
6

20

2
6

20 20
d

j j

j j

f
j

j f e f f e

j f f e f e

( ) =
+( ) − 



 ( ) + −( )









+ 



 ( ) − −( ) + +( )





























−

−

π π

π π

π

π
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Now apply the lowpass filter,

X cos rect sin sinc1 4
2

6
2

6f f
j

j f j f( ) = − 



 ( ) + 



 ( )





π π

X cos rect sin sinc1

1
2 6 6f f f f( ) = 



 ( ) − 



 ( )





π π

x cos sinc sin rect1

1
2 6 6f t t t( ) = 



 ( ) − 



 ( )





π π

Similarly,

x cos rect sin sinc2

1
2 6 6f t t t( ) = 



 ( ) + 



 ( )





π π

t 
-4 4

x
1f

(t)

-0.25

1

Quadrature Demodulated and Filtered Signal

t 
-4 4

x
2f

(t)

-0.25

1

In-phase Demodulated and Filtered Signal

38. A pulse train,

p rect combt
w

t

w
t( ) = 



 ∗ ( )1

4 4

is modulated by a signal,
x sinct t( ) = ( )  .

Plot the response of the modulator, y t( ) , and the CTFT’s of the excitation and response for

(a) w =10 ms

and (b) w =1 ms .

This is similar to previous modulation exercises.
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y sinc rectt
w

t
t

n

wn

( ) = ( )
−













=−∞

∞

∑1 4

Y sinc rectf wk f k
k

( ) = ( ) −( )
=−∞

∞

∑4 4 4

t 
-3 3

x(t) and y(t)

-50

100

PAM Modulator Response (a)

f 
-200 200

|Y( f )|

4

f 
-200 200

Phase of Y( f )

- π

π

Because of the scale, it is difficult to see what is really happening in the magnitude
plot of the transform of the response.  It consists of a large number of closely-spaced
impulses.

39. In the system below, x sinct n
n[ ] = 



20

, Fc =
1
4

 and the cutoff DT frequency of the

lowpass filter is 
1
20

.  Plot the signals, xt n[ ] , yt n[ ] , yd n[ ]  and y f n[ ]  and the magnitudes

and phases of their DTFT’s.

x [n]
y [n] = x [n]

cos(2πF n)c

t
t r

cos(2πF n)c

y [n]d y [n]fLPF

This is a DT modulation system.  The analysis is very similar to that used for CT
modulation systems.

40. Repeat Exercise 22 but with an excitation,

x rect combt t t( ) = ( ) ∗ ( )1000 20 20  .

x rect comb cossh ct t t f t( ) = ( ) ∗ ( )[ ] ( )1000 20 20 2π
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x cos rectsh c
n

t f t t
n( ) = ( ) −









=−∞

∞

∑2 1000
20

π

X sinc combsh c cf
f f

f f f f( ) = 
















∗ −( ) + +( )[ ]1

1000 1000 20
1
2

δ δ

X sincsh
k

c cf
f

f k f f f f( ) = 



 −( )






 ∗ −( ) + +( )[ ]

=−∞

∞

∑1
8 1000

20δ δ δ

X sincsh c c
k

f
k

f f k f f k( ) = 



 − −( ) + + −( )[ ]

=−∞

∞

∑1
8 4

20 20δ δ

Y sinc rectf
k

f f k f f k
f

Bc c
k

( ) = 



 − −( ) + + −( )[ ]












=−∞

∞

∑1
8 4

20 20
2

δ δ

Y

rect sinc

rect sinc

f

f

B

k
f f k

f

B

k
f f k

c
k

k
c

( ) =











 − −( )

+ 









 + −( )



















=−∞

∞

=−∞

∞

∑

∑
1
8

2 4
20

2 4
20

δ

δ

Y sinc sincf
k

f f k
k

f f kc
f k B

c
f k Bc c

( ) = 



 − −( ) + 



 + −( )











+ < − <
∑ ∑1

8 4
20

4
20

20 20

δ δ

P
k k

y
f k B f k Bc c

= 



 + 















+ < − <
∑ ∑1

64 4 4
2

20

2

20

sinc sinc

f
c2000

Signal Power
0.1

f
c2000

Signal Power
0.1

f
c2000

Signal Power
0.1

41. The diffraction of light can be approximately described through the use of the Fourier
transform.  Consider an opaque screen with a small slit being illuminated from the left by
a normally-incident uniform plane light wave (Figure E41).
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Wavefronts

Propagation
Direction

Slit

Diffracting 
Screen

Viewing
Screen

x
1

x
0

z

Optical Axis

Figure E41  One-dimensional diffraction of light through a slit

If z
x

>>
π
λ

1
2

 is a good approximation for any x1 in the slit, then the electric field strength of

the light striking the viewing screen can be accurately described by

E E0 0

2

1 1

2

1

0
2

0 1

x K
e

j z
e x e dx

j
z

j
z

x j
z

x x( ) = ( )∫
−

−∞

∞
π
λ π

λ
π

λ

λ

where E1 is field strength at the diffracting screen, E0 is field strength at the viewing screen,
K is a constant of proportionality and λ  is the wavelength of the light.  The integral is a
Fourier transform with different notation.  The field strength at the viewing screen can be
written as

 
E E0 0

2

1

0
2

0x K
e

j z
e t

j
z

j
z

x

f
x

z

( ) = ( )  →

π
λ π

λ

λλ
F  .

The intensity, I0 0x( ) , of the light at the viewing screen is the square of the magnitude of the
field strength,

I Ex x0 0 0

2( ) = ( ) .

(a) Plot the intensity of light at the viewing screen if the slit width is 1 mm, the
wavelength of light is 500 nm, the distance, z, is 100 m, the constant of proportionality is

10 3−  and the electric field strength at the diffraction screen is 1
V
m

 .

The electric field exiting the diffraction slit is

E rect
.

x
x

1
1

0 001
( ) = 





Finding the screen electric field using the formula above,
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E sinc0 0

2

0
250 5 10

0
2

x
e

j
e

x
j

z

j
z

x( ) =
×





−

π
λ π

λ

The intensity is the square of the magnitude of the electric field,

I
sinc

sinc0 0

2 0
2

4 2
0

5 10
2500

4 10 20x

x

x( ) = ×






= × ( )
−

−

x
0-0.2 0.2

I(x
0
)

0.0004

(b) Now let the slit be replaced by two slits each 0.1 mm in width, separated by 1 mm
(center-to-center) and centered on the optical axis.  Plot the intensity of light at the viewing
screen if the other parameters are the same as in part (a).

Similar to (a)

x
0-1 1

I(x
0
)

1.6e-05

42. In Figure 42-1 is a circuit diagram of a half-wave rectifier followed by a capacitor to
smooth the response voltage.  Model the diode as ideal and let the excitation be a cosine
at 60 Hz with an amplitude of 120 2  volts.  Let the RC time constant be 0.1 seconds.
Then the response voltage will look as illustrated in Figure E42-2  .  Find and plot the
magnitude of the CTFT of the response voltage.

R Cv  (t)i v  (t)o

+

-

+

-

Figure E42-1  A half-wave rectifier with a capacitive smoothing filter
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t
0.05

-175

175 v (t)o

v (t)i

Figure E42-2  Excitation and response voltages

The response voltage has two parts, the exponential decay time and the cosinusoidal charging
time.  The dividing time, td , between these two parts is set by the intersection of the cosine

and the exponential decay.  The peak of the cosine is 120 2 .  The decay time constant is 0.1
seconds.  Therefore the dividing time is the solution of

120 2 120 120 2 0 1cos .πt ed

td

( ) =
−

or

cos .120 0 1πt ed

td

( ) =
−

This is a transcendental equation best solved numerically.  This equation is simple enough
that a trial-and-error method converges very quickly to a solution.  That solution is

td =15.23906 ms  .

Therefore the description of the response voltage over one period is

v
, .

cos , .

.

o

t

t
e t

t t
1

0 1

120 2
0 15 23906

120 15 23906 16
2
3

( ) =
< <

( ) < <









−
ms

msπ

or

v rect
.

.
cos rect

.
.

.
o

t

t e
t

t
t

1
0 1120 2

0 00761953
0 01523906

120
0 01595286

0 001427607
( ) =

−



 + ( ) −















−
π

The CTFT of the response is the CTFT of this voltage convolved with a comb to make it
periodically repeat.  The CTFT of one period is

V

. sinc .

.

.

.

o

t
j ft

j f

f
e e dt

f f f e

1

0 1 2

0

0 01523906

2 0 01595286

120 2
1
2

60 60 0 001427607 0 001427607

( ) =

+ −( ) + +( )[ ] ∗ ( )



















− −

− ( )

∫ π

πδ δ
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V . sinc .

. sinc .

.

.

.

.

o

t
j ft

j f

j f

f

e e

j f

f e

f e

1

0 1 2

0

0 01523906

2 60 0 01595286

2 60 0 01595286

120 2

10 2

1
2

0 001427607 0 001427607 60

1
2

0 001427607 0 001427607 60

( ) =

− −

















+ −( )( )

+ +( )( )











− −

− −( )( )

− +( )( )

π

π

π

π



























V . sinc .

. sinc .

.

. .

.
o

j f

j f

j f

f

e e

j f j f

f e

f e

1

0 01523906

0 1 2 0 01523906

2 60 0 01595286

2

120 2

10 2
1

10 2

1
2

0 001427607 0 001427607 60

1
2

0 001427607 0 001427607 60

( ) =

− −
















−

− −








+ −( )( )

+ +( )( )

− −

− −( )( )

−

π

π

π

π π

++( )( )





































60 0 01595286.

V . sinc .

. sinc .

.

. .

.

.

o

j f

j f

j f

f

e e

j f
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43. Create a discrete-space image consisting of 96 by 96 pixels.  Let the image be a
“checkerboard” consisting of 8 by 8 alternating black-and-white squares.

(a) Filter the image row-by-row and then column-by-column with a DT filter whose
impulse response is

h . . un n
n[ ] = ( ) [ ]0 2 0 8

and display the image on the screen using the imagesc command in MATLAB.

After defining the checkerboard we can filter it by convolving it with the impulse
response using the MATLAB conv function.

Notice how this lowpass spatial filter blurs the edges.  A lowpass filter does not
allow any fast transitions to occur.

(b) Filter the image row-by-row and then column-by-column with a DT filter whose
impulse response is

h . . un n n
n[ ] = [ ] − ( ) [ ]δ 0 2 0 8
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and display the image on the screen using the imagesc command in MATLAB.

Notice how this highpass spatial filter empahsize the edges and de-emphasizes the
constant regions between the edges.  A highpass filter does allow fast transitions to
occur.

44. In the system of Figure E0 let the CTFT of the the excitation be X trif
f

fc

( ) =






.  This

system is sometimes called a scrambler because it moves the frequency components of a
signal to new locations making it unintelligible.  

(a) Using only an analog multiplier and an ideal filter, design a “descrambler” which
would recover the original signal.  

(b) Sketch the magnitude spectrum of each of the signals in the scrambler-descrambler
system.

x(t)

cos(2πf t)c

Multiplier

y (t)s

Figure E0 A “scrambler”

No help here.  Left as a challenge for the student.

45. Electronic amplifiers that handle very-low-frequency signals are difficult to design
because thermal drifts of offset voltages cannot be distinguished from the signals.  For
this reason a popular technique for designing low-frequency amplifiers is the so called
“chopper-stabilized” amplifier (Figure E45).  
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v (t)
+

-
i v (t)

+

-
o

Typical Amplifier

Chopper-Stabilized Amplifier

v (t)
+

-
i

v (t)
+

-
o

BPF
LPF

Figure E45  A chopper-stabilized amplifier

A chopper-stabilized amplifier “chops” the excitation signal by switching it on and off
periodically.  This action is equivalent to a pulse amplitude modulation in which the pulse
train being modulated by the excitation is a 50% duty-cycle square wave which alternates
between zero and one.  Then the “chopped” signal is bandpass filtered to remove any slow
thermal drift signals from the first amplifier.  Then the amplified signal is “chopped” again
at exactly the same rate and in phase with the chopping signal used at the input of the first
amplifier.  Then this signal may be further amplified.  The last step is to lowpass filter the
signal out of the last amplifier to recover an amplified version of the original signal.  (This is
a simplified model but it illustrates the essential features of a chopper-stabilized amplifier.)

Let the following be the parameters of the chopper-stabilized amplifier:

Chopping frequency 500 Hz
Gain of the first amplifier 100 V/V
Bandpass filter Unity-gain, ideal, zero-phase. Passband 250 750< <f  
Gain of the second amplifier 10 V/V
Lowpass filter Unity-gain, ideal, zero-phase. Bandwidth 100 Hz

Let the excitation signal have a 100 Hz bandwidth.  What is the effective DC gain of this
chopper-stabilized amplifier?

Let the excitation be vi t( ).  Then the signal after the first amplifier is

v v rect comb1 100 1000 500 500t t t ti( ) = ( ) ( ) ∗ ( )[ ]
or, in the frequency domain,

V sinc V1 50
2

500f
m

f mi
m

( ) = 



 −( )

=−∞

∞

∑

The response signal from the bandpass filter is that part of the spectrum lying between 250
and 750 Hz which is

V sinc V Vbpf i if f f( ) = 



 −( ) + +( )[ ]50

1
2

500 500  .
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The response of the second amplifier is the response of the BPF pulse-amplitude modulated
by the synchronous switching.  In the frequency domain,

V sinc sinc V V2 25
1
2 2

500 500 500 500f
m

f m f mi i
m

( ) = 









 − −( ) + − +( )[ ]

=−∞

∞

∑

If the excitation is dc, then Vi f A f( ) = ( )δ  and

V sinc sinc2 25
1
2 2

500 500 500 500f A
m

f m f m
m

( ) = 









 − −( ) + − +( )[ ]

=−∞

∞

∑ δ δ  .

The response of the lowpass filter is that part of the signal below 100 Hz, which is

V sinc sinc sinc2
225

1
2

1
2

50
1
2

f A f f A f( ) = 









 ( ) + ( )[ ]





= 



 ( )δ δ δ

and the effective dc gain is

DC Gain =







=
50

1
2

20 264

2A

A

sinc
.  .

46. A common problem in over-the-air television signal transmission is “multipath”
distortion of the received signal due to the transmitted signal bouncing off structures.
Typically a strong “main” signal arrives at some time and a weaker “ghost” signal
arrives later.  So if the transmitted signal is xt t( ) , the received signal is

x x xr m t m g t gt K t t K t t( ) = −( ) + −( )
where K Km g>>  and t tg m> .

(a) What is the transfer function of this communication channel?

(b) What would be the transfer function of an “equalization” system that would
compensate for the effects of multipath?

The impulse response of the system is

h t K t t K t tm m g g( ) = −( ) + −( )δ δ  .

Therefore its transfer function is
H f K e K em

j ft
g

j ft
m g( ) = +− −2 2π π  .

An equalization system would then have a transfer function of the form,

Heq

j ft

m
j ft

g
j ftf

Ae

K e K em g
( ) =

+

−

− −

2

2 2

0π

π π


