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Chapter 6 - Fourier Transform Analysis of
Signalsand Systems

Selected Solutions

(In this solution manud, the symbol, [, is used for periodic convolution because the
preferred symbol which appearsin the text isnot in the font selection of the word processor
used to create this manual .)
1. A system has an impulse response,
hee (1) = 37 u(t),
and another system has an impul se response,
h,e(t) =0(t) - 3e™™ u(t) .

@ Sketch the magnitude and phase of the transfer function of these two systems in a
paralel connection.
H.(jw)=1

3 3
= - +1-—- =
jw+10 jw+10

HLP(jw)

~jw+10 T jw+10

He(jw)

IH o)
1

-40 40

Phase of HP(j w)

-40 a0 ©

(b) Sketch the magnitude and phase of the transfer function of these two systems in a
cascade connection.

2. Below are some pairs of signals, x(t) and y(t). Ineach case decide whether or not y(t)
isadistorted version of x(t).
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(e Constant added, distorted
()] Log-amplified, distorted

3. Classify each of these transfer functions as having a lowpass, highpass, bandpass or
bandstop frequency response.

(@) (b)

H(H)I HE)I
1 1

-10 10 -2 2

(©) (d)

HGQ) [HGw)|

Amn ‘ an Q -100 ‘ 100 ®

@ Lowpass (b) Bandpass (© Lowpass (d) Bandpass
(e) (f)

H(E)I HGQ)

F Q
-2 2 -4 4m

(e Highpass ) Bandstop

4. Classify each of these transfer functions as having a lowpass, highpass, bandpass or
bandstop frequency response.

@  H(f)=1- recté%% (b)  H(F) = rect(10F) Ocomb(F)

© H(jQ)= E]ect EZOJT%) - 77:%+ rectEEOn%) + g%]comb@é%@

Bandpass

5. A system has an impulse response,

B ~0.01
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What isits null bandwidth?

6. A system has an impulse response,

=L o]

What isits half-power DT-frequency bandwidth?

Using
a”u[n]eﬁa;
1-qge'®
the transfer function is
) 1 8
H(jQ)= = —
(J ) 1—ze_jQ 8_7e—19
8

ThisisaDT lowpassfilter. Its maximum transfer function magnitude occursat Q =0. The
-3 dB point must be the first frequency at which the square of the magnitude of the transfer
function is one-half of its maximum value (the “ half-power” bandwidth).

The low-frequency gainis
H(0)=8

The -3 dB point occurs where
82

‘H(jQ—SdB)‘Z - ?

32.

Solving,
Q,, =0.1337 £2nmt

So the -3 dB DT-frequency bandwidth in radiansis 0.1337. In cyclesit is 0.0213. (Notice
that the bandwidths are not in radians/s or in Hz. This is because they are DT bandwidths,
not CT bandwidths.)

7. Determine whether or not the CT systems with these transfer functions are causal.
@  H(f)=sinc(f) (b)  H(f)=sinc(f)e

©  H(jw)=rect(c)

(d  H(jw)=rect(aw)e® h(t) = %Tsi ncé‘%@ Not Causal
© H(f)=A
(f)  H(f)=Ae* h(t) = AS(t +2) Not Causal
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8. Determine whether or not the DT systems with these transfer functions are causal.

_ sin(77F) _Sn(77F) 2
@ HE)=50E) O HE)= e
© H(F)= %e‘j” hn] =rect[n-1] Causd

(d)  H(F) = rect(10F) Ocomb(F)

9. Find and sketch the frequency response of each of these circuits given the indicated
excitation and response.

(@  Excitation, v,(t) - Response, v, (1)

R=10Q Clz/luF
+ o——/\/\/\ |\ o +

Vi (t) L=1mH v, (1)

_C O_

Using voltage-division principles,

H(jw):VL(jw): Z (jw) _ jol __ —w’LC
Vi(iw)  Z (j0)+Ze(jw)+ Ze(i@) o 4 1 g 1-@’LC+jwRC
jwC
H(joo)|
3
-150000 ' 150008°
Phase of H(jw)

T,

-150000ﬁ\l 150000°
-Tt

(b)  Exditation, v,(t) - Response, i (t)
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yic@®
Vi (1) C=1uF /<

In this case the transfer function isthe reciprocal of the input impedance.
()  Exditation, v,(t) - Response, vg(t)

+

wWh o
R=1kQ

vi(t) Cc=1pF =< L=1mH

- O L4

(d)  Excitation, i (t) - Response, v(t)

o—> o +

i;(0)

R=1000 &V
L=1mH

—~ C=1pF

(e,

Divide the excitation current between the two branches and multiply the
current in the right branch by R to get the response voltage. Then solve for
the ratio of the response voltage to the excitation current.

10. Classify each of these transfer functions as having a lowpass, highpass, bandpass or
bandstop frequency response.

1 If
@ HN=1 O H)=15

B j10w
100- o + j10w

©  H(iw)=
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(d H(F)=

Thiscaseisnot as“pure’ asthe previousones. It is generally lowpass because the
transfer function magnitude at lower frequencies is generally greater than a high
frequencies. But there are nulls in the transfer function that make it look somewhat
like abandstop filter or amultiple bandstop filter.

©  H(jQ)=j[sin(Q)+sin(2Q)]
This caseisaso not perfectly clear. The response at zero frequency is zero and the
responseat Q = 77 isalso zero. These criteriafit abandpassfilter. But the response

isalsozeroat Q = %T So it might again look like a bandstop in some ways.

11. Plot the magnitude frequency responses, both on a linear-magnitude and on a log-
magnitude scale, of the systems with these transfer functions, over the frequency range
specified.

20
H(f)= , —100< f <100
@ (f) 20— 4P f2 +j421t

2x10°

(b) H(Jw):(100+jw)(1700—w2+j20a) . =500 < w <500

12. Draw asymptotic and exact magnitude and phase Bode diagrams for the frequency
responses of the following circuits and systems.

€) An RC lowpassfilter with R=1MQ and C =0.1 uF.

1
R [ OR 1 _ 1 _ 1
H = = = =
(Jw) LJ,R joRC+1 jad0®07 +1 jO.lew+1
jaC
J
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Phase of H(jw)

L
10" 10° 10" 10° 10°

(b)
R=10Q C=1pF

r VA

Vi (t) L=1mH v, (1)

_C O_

13. Find the transfer functions, H(f) = ://"((:)) , of these active filters and identify them as

lowpass, highpass, bandpass or bandstop.
@

Cy
+ O—l
Vi (t)
2

The triangle with the “K” insde is an ided voltage amplifier of gain K (not an
operational amplifier). Itis, incircuit theory parlance, a“voltage-dependent voltage source”.
“ldeal” means its input impedance is infinite so no input current flows and its output
impedance is zero so the output voltage is independent of the output current (and therefore
any load connected to the outpuit).
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Writing Kirchhoff’s current law at the v, (t) node and then writing the
relationship between V, (f) and V, () using voltage division and the voltage amplifier gain,
K,

O O
O U
v,(f)2rc, + —5 - +G0-V,(1)j2G, - V,(1)G = 0
0 . +R, 0
O | 2rfC, O
V(1)K =V,()
jznf<:2+RZ

1 o .
(G, ISE. That is, it isthe conductance of the resistor, R, .)

,_ i2rC,
1+ j2rRC,

j2rfRC, | _
VX(f)1+ jZﬂfRzCZK _Vo(f)

v,(1)g2tc +GE-V,(1)i27G -V, (1)6 =0

Writing the two equations as one matrix equation,

[, j2rfC, 0 B
. 11
E j2rfKR,C, —(1+ j2rtR2C2)$/°

Solving by Cramer’ s rule with the excitation voltage as aforcing function,

00 0
(F A\ f
DEOEV()

j2ricC,

0
A=-[j21fC, +———2
J41G 1+ j2nRC,

+GL+ j21fRC,) + [2TKGRC,

A= (21f)’RCC, - j27[C, +C, +GRC,(1-K)| -G,

O, j2rfC, o .
vi(1)= 2 B 1 iamre, T OH 127G (r)
j2rfKR,C, 0
H(f) = V(1) _ (27t | KRCC,
Vi(f)  (2rf)’RCC, - j21F[C, +C, +GRC,(1-K)| -G,
H(f)= (216 KRRCC,
(27)’RRCC, - j27(R(C, +C,) + RC,(L-K)) -1
Highpass
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The circuit is a highpass filter because at low frequencies the response
approaches zero and at high frequencies it approaches K. This can be seen
both in the transfer function formula and in the physical nature of the circuit
connection itself. At zero frequency no current flows through the capacitors
and therefore not current flows through resistor, R,. Therefore the voltage &
theinput of the amplifier is zero making the response voltage zero. At high
frequencies the capacitor impedances become practically zero, making the
excitation voltage and the voltage at the amplifier input equal. Therefore the
transfer function must be K at high frequencies.
(b)
Cy
|(

I\

2 T <

Similar to (a)
14. Show that this system has a highpass frequency response.

H(H—y0
X(0)— -

o

Write the differentia equation from the block diagram. Y ou should get

Sy +y() = 2x(0)

Fourier transform both sides and solve for theratio of Y to X.

15. Draw the block diagram of a system with a bandpass frequency response using two
integrators as functiona blocks. Then find its transfer function and verify that it has a
bandpass frequency response.

Lowpass cascaded with highpass. Find the transfer function of both stages (lowpass and
highpass) and multiply the transfer functions.
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16. Find the transfer function, H(jQ) = % and sketch the frequency response of each

of these DT filtersover therange, -4m<Q <41

@

x[n] (F)—-vInl

o1

y{n] =x{n] =x{n~1

H(jQ)=1-¢°
(b) Similarto(a)
©
x[n] \‘ 3 y[n]
D _TCBT_ D
.\ _1-e*
H(i9)=1;
(d)

(1)
\+J T

D

Let z be the output of the left-hand summer. Then

y{n| =x{n| =x[n -1 +2]n]
Zn] =x[n] -Zn-1]

Takethe DTFT of both equations, eliminate Z and solve for theratio of Y to X.

: 2-gl®
H(iQ)= e
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17. Find the minimum stop band attenuation of a moving-average filter with N = 3. Define

the stop band as the frequency region, F. <F <%, where F_ isthe DT frequency of the
first null in the frequency response.

From the text, for amoving-average filter

_e™ sin(m(N +1)F)
N+1 sin(rF)

H(F)

Thefirst null in the frequency response occurs at

1.1
N+1 4°

nN+)F=n0 E

The phrase, “minimum stop band attenuation” refers to the point in the stop band a which
the reduction in magnitude is the smallest. That is, the point in the stop band in which the
transfer function isthe largest. The biggest magnitude response after the null frequency is a

the next maximum of H(F) which occurs at

Mo

N +DF = o(N+1)

_3
5
18. In the system below, x, (t) = sinc(t), f, =10 and the cutoff frequency of the lowpass filter

is1Hz. Plot the signas, x,(t), y,(t), y,(t) and y,(t) and the magnitudes and phases
of their CTFT’s.

- (t
x (L= %0 LPF | Y;(t)
cos(2rt t) cos(2rtf )
x, (t) = sinc(t) X, (f)=rect(f)
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M odulation
IX.(F)I

x(0 1

Phase of Xt(f)

-2 2
-05
-TT

Fourier transforming,

y, (t) = sinc(t) cos(207t)

Y.(f)= E[rect(f ~10) + rect(f +10)|

2
Modulated Carrier
¥ (D)
YO ) o )
-10 10 f
Phase of Yt( f)
10 l 10 f
¥4 (t) = sinc(t) cos*(20rz) Yq(f) = %[rect(f - 20) + 2rect(f) +rect(f +20)]
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Demodulated Carrier
IY ()

(0

v, (9= Leincly v, (1)=2=)

Demodulated and Filtered Carrier

X (1))

oL
P

X0

0.5

Phase of Xf(f)

N B
A

-2 2
-0.25
=TT

19.In the system beow, x,(t) = sinc(10t) Ocomb(t), m=1, f =100 and the cutoff
frequency of the lowpassfilter is 10 Hz. Plot the signals, x,(t), v,(t), y,4(t) and y,(t)
and the magnitudes and phases of their CTFT’s.

% (t) —] m _,@_@ Y, (t) = x,(t) @ Ya(t) el v
| \

1 cos(2rtt) cos(2rtf t)

Similar to Exercise 18.

20. An RC lowpass filter with atime constant of 16 msis excited by aDSBSC signal,
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x(t) = sin(2rt) cog(20 1) .
Find the phase and group delays at athe carrier frequency.

The transfer function of the RC lowpassfilter is

M= A - A
1) = v jor 1+ 0016w

The phase of the transfer function is
Aj ) =-tan™(w) = -tan™(0.016 ¢ .
The carrier frequency is 10 Hz. Therefore

@(j207) = ~tan™(0.016 x 20 7} = 0.788

_¢(j20m) _0.788
- 20m

=0.01254 or 12.54 ms . The derivative of the

and the phase delay is

phase shift function is

i)

1+ (w1)®
Evduating this derivative at the carrier frequency we get

od . WO T 0.016
- = = =7. .
o\ A1) . 1 (@) 1r(00exzomp 0

21. A pulsetrain,

p(t) = rect(100t) (10comb(10t)

ismodulated by asignd,
x(t) = sin(4rt) .

Plot the response of the modulator, y(t) , and the CTFT’ s of the excitation and response.
Similar to Exercise 18.

n

y(t) = sin(4r) n:Zm rect @OO% 10

0§ 2o S

22. In the system below, let the excitation be
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x(t) = rect(1000t) [01250comb(250t)

and let the filter be idedl, with unity passband gain. Plot the signal power of the response,
y(t), of this system versus the sweep frequency, f_, over therange, 0< f_ <2000 for a LPF
bandwidth of

@ 5Hz
(b) 50 Hz

and (0 500 Hz.
Multiplier

X [ pE Ly

X(t)

cos(2rt.t)

rect0000) 0c0mb{2500] cort,
o) ot 28
HOOO sinc} L omb%%}[é (f- f)+f +1,)
Xm(f)=%§incgm%%i5(f ~250 {1 )+ 1+ 1]
Xo(f)=3 3 sncEhHa(f - 1, ~250K) + o f + 1, ~250K]

k——oo

= %kiosi nc%(gd(f ~ f, —250k) + &{ f + f, —250k)| %ect%%

where “B” is the bandwidth of the LPF.

HEC@!T%Z sinc%@S(f - f, —250K)

O
H
.
“g

+rect@zjéz sinc%%(f + f, — 250Kk)
v(r)=1F s snc%%‘?(f - f, —250K) + sinc%@é(f + fc—250k)§

8 @f +250k|<B

| f. —250k| <B
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P,= i% > sincz%(§+ > sincﬂ%%
64 @fe +250k|<B | f. —250K| <B

Signal Power
014
| | £
2000 ¢
Signal Power
014
L M~ f
2000 ¢
Signal Power
0.1_\_\_\_\
f
2000 ¢

23. A signal, x(t) is described by
x(t) = 500rect(1000t) Cicomb(500t)

@ If x(t), isthe excitation of an ideal lowpassfilter with a cutoff frequency of
3 kHz, plot the excitation , x(t) and the response, y(t) on the same scale and
compare.

Fourier transform the excitation, to yield X. Write the transfer function, H,
of theidedl filter as arectangle function. Form the transform of the response,
Y, from X timesH. Recognizeit as a finite summation of impulses. Inverse
transform the impulsesin pairsto formy, and graph y.

y(®

-2ms
Thislooks like the partia sumsin the discussion of convergence of the CTFS
because, mathematically, the same thing is happening.
(b) Similar to (a)
24. Determine whether or not the CT systems with these transfer functions are causal.

Thetest for causality isthat a causal system has an impulse response that is zero fall
time t <O.

@ Hi)=, O HiD= g,
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N _ 4
H(Ja)) - 25_w2 + J6w_ (Jw+3)2 +16

(©

Wy

(iw+a)’+af

h(t) = e sin(4t) u(t) Causal

Using e sin(aw,t)u(t) -

N 4 ” N 4 o

jw+9
45—’ + j6w

© Hjw)=—2

0 Hiiw)= 29+

25. Determine whether or not the DT systems with these transfer functions are causal.
@  H(F)=[rect(10F) Ccomb(F)]e"/**

(b)  H(F)=jsin(2rF) ©  H(F)=1-e**
oy 8e?

@ Hi9=g o

Similar to Exercise 24, except for discrete time.

26. Find and sketch the frequency response of each of these circuits given the indicated
excitation and response.

(@  Exditation, v,(t) - Response, v,(t)

R =1kQ R,=10kQ

f o AAN T ;

v, () C,=1HF C,= 0.1 uF == ‘&40
By | L.

The transfer function can be found in multiple ways. Oneway isto think of
thiscircuit astwo voltage dividers. Thefirst voltage divison isfrom the

excitation, v, (t) , to the voltage across the first capacitor. The second voltage
division isfrom that voltage to the response voltage, v, (t)-

Solutions 6-18
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1
H(jw):vcz(Jw): Z(jw) jaC,  _ Z(iw) 1
V(i) R+Z,(i0) g, L R+Z,(jo) [eRC,+1
first voltage division ] Q)CZ
second voltage division
1 0 1 0
e B, B
Z,(jw)=— 1
. +R, +-
JwCy JaC,

Substitute Zn(jw) into the expression for the transfer function and ssimplify.

H(jw)

_ 1

1-w’RRCC, +¢{(C, +C,)R +RC)|
(b)  Excitation, v,(t) - Response, i, (t)

R =1kQ R,= 10kQ

' j: (t)
C?1
v (t) C,= 1uFT C,=0.1uF =

/1

- O

Think of the transfer function as the transfer function from the excitation to
the current in R, times the transfer function from the currentin R, to i, (t).

1
. . +.7 .
H(jw):lm(Jw): w(io) e, _ 1 jwR,C, +1
V (jw) v (jw) _i+R2+_i Z(jw) ijZCZ+1+&
first transfer function ]C()Cl ] &cz input impedance Cl
second transfer function second transfer function
N Sy JORC, +1
Z\Jw)=R+Z (Jw)=R +-
(J ) R (J ) R Jw(cl"‘cz)‘szzQCz
Combine expressions and smplify to yield
H(i) joC,(juRC, +1)

" 1-&RRCG, + i dR(G +C,) * RC)]

()  Exditation, v,(t) - Response, v, (t)

Solutions 6-19
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C,=1pF C,=1pF
I( I

to ks ks °F

v R=10kQ R,=10kQ Vra(t)

- C O -
Similar to (a).
(d)  Exditation, i (t) - Response, vg,(t)

C,=1pF R,=10kQ
——| A AN
o
+
R,=10kQ < Yri(®) =< C,=1ypF

O

(6  Exditation, v,(t) - Response, v, (t)
R,= 10kQ
|( |(
o ks AN °—/
C,=1pF C,=1pF
YO R =10k R=1kQ < Va®
- C C -

Write two nodal equations and solve for the transfer function.

Summing currents to zero at the middle node and the right-hand node,

Ve (i@)ja, +j o€, +G - Vi(i @) @, Ve (i P ©,=0
VRL(jw)[jaC2+GL +Gz] _Vi(j a‘)GZ_VRl(j (‘)J @,=0
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Solve for the transfer function,

H(jw) = ~W'RRCGC, +]uR(G +C,) +1

. 0 RO U R +R,
-’ C, + +C,)A+ 2R +RC
RRCC, m@q JERERFRGD
H(jw)l
1
-25000 ' 25000
Phase of H(jw)

TC

-25000 \l 25000('0
-Tr

27. Find and sketch versus frequency the magnitude and phase of the input impedance,

Z.(f) _Vi(f) and transfer function, H(f) = VO(f), for each of thesefilters.

1(f) vi(f)
i(t) 1uF

+ +

v;(0) 1kQ Vo(t)
(a) -0 0 -
i(t) 100 Q 50 mH
+

+

V() 10nF==< V1)

() -o L

28. The signdl, x(t), in Exercise 23 is the excitation of an RC lowpass filter with R=1kQ

and C=0.3uF. Sketch the excitation and response voltages versus time on the same
scae.

From Exercise 23,
x(t) = 500rect(1000t) Ccomb(500t)
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Thetransfer functionis

~j2nfRC+1

-1 _
Y(f)_ZJanRC lzsnc%%f 500n)

Z Smc%g 11000ch +70(1 ~5000)

. S nc%@
y(t) — } @1000mt

2 £ j1000/mRC +1

oo j1000mt — 11000 mt
y(t)=EE1+ZS'nC%% © PR 0

1000mRC +1 -j1000 mRC +1%

o 1000mRC e ji000mt _ eleOOmt) +@ll000m | -j1000 m %
+ Z sinc ’

Therefore the output is

Converting to the time domain,

or

& (1000/mRC)” +1 H
1 % 000rmRCsin(1000 mt) + 2cos(1000 mt) (H
y()==3+ snc% NN
2H _1 (1000rmRC)” + i3

29. Draw asymptotic and exact magnitude and phase Bode diagrams for the frequency
responses of the following circuits and systems.

@
R =1kQ R,= 10kQ
e A
v () C,=1pF C,= 0.1 pF 7= D)
) | L.
From Exercise 26(b)
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H(jc) = :
M 1= PRRCC, + 1 (G +C)R +RC)]

. 1
H(jw)=
(i) 1-10%7 + |21x10° w

0
20 L
040
_o
= -60 |-
3
S 80 -
I
=100
120
140
10" 10° 10° 10* 10° 10°
w
0
—~-05
3
S Ar
T
5 15 F
2+
% 25 F
T .l
35 1 2 3 4 5 6
10 10 10 10 10 10
w
. 10 jw .
X(jw) . . Y(jw)
jwt+10 jwt+10

j 20w
10,000 - w* + j20w

(© A systemwhose transfer functionis H(jw) =

H('w)— ] 200 B 120w
VO = (jw+10-j99.5)(jw+10 +99.5) PR
500 100001

0
100003+ j
0

30. Find the transfer function for the following circuit. What function does it perform?

i R
i i(t) Ci
v, (1) Y \+/O(t)
23 5

31. Design an active highpass filter using an idea operational amplifier, two resistors and
one capacitor and deriveits transfer function to verify that it is high pass.
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Use an inverting amplifier configuration. Let the feedback impedance be a smple
resistor. Choose an input impedance that is high at low frequencies and approaches a

Z (jw)
Z,(jw)

low frequencies and approaches a constant at high frequencies.

congtant at high frequencies so that the transfer function, — approaches zero a

32. Find the transfer functions, H(f) = \\i"((:)) , of these active filters and identify them as
lowpass, highpass, bandpass or bandsttl)p.

@

Sum currents to zero at node, v, (t), and at the input node of the operational

amplifier, which must be at zero volts because the ideal operational amplifier
ganisinfinite. Remember the input impedance of the operational amplifier
isinfinite so no current flowsinto itsinput terminals.

V(1)(G, +G, +j2rfC, +j27C,) - V()G - V,(f)j2 #C, = 0
—Vx(f)j27'lfC3 _Vo(f)Gs =0
Solve for the transfer function.

0]
(2 )Rngcc —12n‘R1C +c H.+
What kind of filter isthis?

Rz

(b)
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== C,4 Rs
C
vo Yl \Z VR _
I\ I\ +
(t +
g) R — Vo(t)
= L
Similar to (a).

(©

Vi (t)
<+ CZI N 9

Similar to (a)

33. When music is recorded on analog magnetic tape and later played back, a high-frequency
noise component, called tape “hiss” is added to the music. For purposes of analysis
assume that the spectrum of the music is flat at —30 dB across the audio spectrum from
20Hzto 20 kHz. Also assume that the spectrum of the signa played back on the tape

deck has an added component making the playback signa have a Bode diagram as
illustrated in Figure E33.

-24dB

-30dB f

f

T T
200 2kHz 20 kHz

6kHz 12kHz

Figure E33 Bode diagram of playback signal

The extra high-frequency noise could be attenuated by a lowpass filter but that would also
attenuate the high-frequency components of the music, reducing its fidelity. One solution to
the problem is to “pre-emphasize” the high-frequency part of the music during the
recording process so that when the lowpassfilter is applied to the playback the net effect on
the music is zero but the “hiss’ has been attenuated. Design an active filter which could be
used during the recording process to do the pre-emphasis.
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The pre-emphasis active filter should have a low-frequency gain of one and a high-
frequency gain of 6 dB and should transition between those gains between 6 and 12 kHz
with a slope (asymptotic ope) of 6 dB/octave. So the pre-emphasis filter should have one
real zero to create the first corner and one real pole to create the second corner. If we use the
inverting amplifier configuration with an op-amp and make the feedback impedance a
resistor then the source impedance can create the zero and pole at the required locations. The
design ideais to make the source impedance have the required low-frequency vaue and then

to make its high-frequency vaue lower, increasing the overdl gain at high frequencies, as
illustrated in Figure S33.

R., Ry

Figure S33 Pre-emphasisfilter

The source impedanceis

. 1

2(1) RﬂHi szcE jzmcs(sRﬂPw)Rﬂ _RR."TCcR,
S I “jaic(R+R)+1 R+R, e, L
Re+Re+——— j2riC. jort +CS(R51+R52)

The numerator provides the zero of the source impedance (the pole of the overdl gain) and
the denominator provides the pole of the source impedance (the zero of the overdl gain). So
we want the gain-pole location to be set by

= 211 x12000
S’ 52
and the gain-zero location to be set by
1
———— =21 x 6000 .
C{Ri+R)

There is no unique solution so let’'s arbitrarily set R, =10kQ. Then it follows that
C,=1.33nF and Ry =10 kQ. Theoverall gainis
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1
H(f)=- anf — =R &1&;}2 ZMCS(&J'RQ)
+
RR. " 'CR, 2T TR,
Rsl+ Rsz JZTlf +¥
C(Re*Ry)
At low frequencies,
H(f) =~
R,

To make the low-frequency gainone, set R, = R; =10kQ .

34. One problem with causal CT filters is that the response of the filter dways lags the
excitation. This problem cannot be diminated if the filtering is done in red time but if
the signal isrecorded for later “off-line” filtering one smple way of diminating the lag
effect is to filter the signd, record the response and then filter that recorded response
with the same filter but playing the signal back through the system backward. Suppose
the filter isa single-polefilter with atransfer function of the form,

. 1
H(]CU): w !
1+j -
w

(o}

where w, isthe cutoff frequency (half-power frequency) of thefilter.

@ What is the effective transfer function of the entire process of filtering the signa
forward, then backward?

(b)  What isthe effective impul se response?

@ The impulse response of the filter is h(t) [H Jw] The response of the filter
on the first pass through the filter forward is yl() x(t) Oh(t) in the time domain or
Y, (jw) = X(j ) H(j & in the frequency domain. The response of the filter on the second
pass through the filter backward is y,(t)=y,(-t)On(t) in the time domain or
Y,(jw)=Y; (joyH(j ) in the frequency domain. (This uses the CTFT property,
9(-t) «B- G'(jw).) Thefina signd is y,(-t) in the time domain and Y, (jw) in the
frequency domain. Therefore the final signal in the frequency domain is

(i)=Y, (R & =i H ( §=X(1 gH(i 9H'(j P

and in the time domain thisis y,(t) = x(t) Oh(t) Oh{ t). So the effective transfer function is
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. - 1 1 1
1+J;1‘ja 1_'_$a)E
2a

and, using e I _, 1 the effective impulse responseis

h(t) OhE t) = we™ u(t) Dwe™ uF t) = 5 & g-all

Just as there is no phase shift in the frequency domain, the effective impulse response,
h(—t) Onh(t) is symmetrical about t =0 which also means it creates no time delay when it is
convolved with the excitation.

35. Repeat Exercise 18 but with the second cos(anct) replaced by sin(2nfct) .
Similar to Exercise 18.

36. In the system below, x, (t) = sinc(t), f, =10 and the cutoff frequency of the lowpass filter
is1Hz. Plot the signas, x,(t), y,(t), y,(t) and y,(t) and the magnitudes and phases
of their CTFT’s.

Thisisasingle sideband system. Analysisis smilar to severa previous communication
system exercises. The biggest difference is the addition of the filter which removes a
sideband before transmission.

HOOI = (T
xt@ﬂ&ﬂ;wﬁ WO =10,y X0 [T} vo9

cos(2rtf t) cos(21t 1)

_ 10 f —10.25 f +10.25
)= 2055
28 0.5
=14 nc%@cos(ZO.Snt)

2

(1) = %s nc%%cos(ZO.Snt) cos(2071)

1 Eect( (f —20.25)) + rect(2( f +0.25)) =
4 gkrect( (f -0.25)) +rect(2( f +20.25))8

Ya(f)=
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Demodulated Carrier
IY ()

(0

20 20
Phase of Y d( f)
n‘
20 \ 20 f
- TU

Demodulated and Filtered Carrier
IY ()l

2L
(=>4

y{®

0.25

2 2 f
Phase of Yf(f)
NA\/ \//\V t ‘
- 4
-2 2 f
-0.125 \

37. A quadrature modulator modulates a sine carrier, sin(207t), with a signal, x,(t) = sinc(t),
and a cosine carier, cog(20mt), with a signd, x,(t)=rect(t). The quadrature

demodulator has a phase error making its loca oscillators be sin@Ont—g@ and
cosP0rt - g@ Plot the two demodulated and filtered signals, x,, (t) and x,, (t).
y(t) = sinc(t) sin(207t) + rect(t) cos(20 1)

i

Xy(f)=F %nc(t)sin(zom) + rect () cos(20 n)@n%Ont - 50

Solutions 6-29



X

=
Q.

X

=
(=X

OM. J. Roberts - 8/16/04

+ a i
(" ect(f D—[af 10)- & f -10)] ED_[(SH 10)- (1 10"
DI-SII‘]C D—[5 (f- 10)+ 5(f+1o]D

rect( f +10) —rect(f -10)| U L
xld(f):la[ (1 +10)-ret( 1 ~10)] {a(f+ 10) - & f ~10)|e '
4 B{sinc(f -10) +sinc(f +10)|
do Ju o od
Dmect(f+1o)m@(f+ 10)e '® - §(f -10)e’ OBDD
do 0 oo
dg i 10
_Bg-rect(f -10 D%Hme - §f -10)e 0%%
X,q(f) =20 0
Y appo vl St0
0 sinc(f -10) D@(H 10)e '® -5(f -10)e '® @
0o U m
HEN o ot
0 Chsinc(f +10) D%(H 10)e '® - ¥ f -10)e 160%
HE 0
[ i rood
0 %ect(f +10) 05( f+ 10)e’ ¢ - rect(f +10) O f- 10)e’ Okl
i e
(] o o
DD—g[ect(f ~10) 05( f+ 10)e'® — rect(f —10) 0K f- 10)e o1 U
JDQD U
(f):ZBEﬂj 0 o
0 rrsine( f —10) 05(f+ 10)e’¢ —smc(f -10) 0g( f- 10)e JEB i
il i
E a%nc(f +10) 05(f+ 10)e’6 —smc(f +10) 04 f- 10)e 6%
[
0 o 0
_ DE{ect(f +20)e’e g —rect(f)e s —rect(f)e’® +rect(f -20)e JG’EQ
(=45 -0
40Q o i o i
Elrg;inc(f)eJ6 ~sinc(f —20)e '© +sinc(f +20)e’® —sinc(f)e '
U
0 ialn
_ Dg[ect(f +20)e’e —ZCO%QGC'[ ) +rect(f -20)e J“B O
X (f):lBD 0o
1d 4 l‘[
E%z %@snc ~sinc(f -20)e ' s +sinc(f +20)e 6%
HO
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Now apply the lowpass filter,

X,, ()= %E—chos%%ect(f) + jzgnggggnc(f)ﬁ
X,, (f) =%§o%§ea(f)-gn§gggnc(f)ﬁ
X, (1) = %E:os%@s n(t) - sin%@‘ect(t)ﬁ

Similarly,

X, (t) = % %os%grect(t) +si n%@s nc(t)ﬁ

Quadrature Demodulated and Filtered Signal

X 1f(t)

1

t
“ -0.25 Jr 4

In-phase Demodul atec!)and Filtered Signal
X

2f
1

t
“ -0.25 Jr 4

38. A pulsetrain,
p(t) = lrec:t@%@@comb(m)
W

ismodulated by asignd,
x(t) =sinc(t) .

Plot the response of the modulator, y(t), and the CTFT’s of the excitation and response for
@ w=10ms
and (b) w=1ms.

Thisis similar to previous modulation exercises.
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Y(f)

(] n
0 4

w

—00

I o

H

43

k=—00

PAM Modulator Response (a)
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sinc(4wk)rect(f — 4k)

[Y()l

x(t) and y(t)

100

-50

“\

200

Phase of Y (f)

-200 \

200 i

Because of the scale, it isdifficult to see what is really happening in the magnitude
plot of the transform of the response. It consists of alarge number of closely-spaced

impul ses.

39. In the system below, x,[ )] :sinc@!%@ F. :% and the cutoff DT frequency of the

lowpassfilter is 2—10 Plot thesignals, x,[n], y,[n], y4[n] and y,[n] and the magnitudes

and phases of their DTFT’s.

x{n]

@yt[n] =400 )
T

Cos(211F, n)

LPF

— Y¢[n]

cos(2mF, n)

This is a DT modulation system. The anaysis is very smilar to that used for CT

modulation systems.

40. Repeat Exercise 22 but with an excitation,

x(t) = rect(1000t) 020comb(20t) .

X (t) = [rect(2000t) C20comb(20t)] cos(27 1)
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= cog( 271 1) i rect @OOO% -
B,OOOanElOOO omb%%}[d (f- f.)+o(f +f )]

X$(f)=§ﬁnc%a f—ZOkEja(f—f s df+ 1)
:% i sinc%fga(f ~ ,~20K) + &(f + f, ~20K]

i sinc%gd(f —,~20K) + &(f + f, ~20K] %rect%@

nng|

=
Y(f)= sE, +;k<ssmc%§5(f—f ~20K) + smc%@d(f + £, -20K)0

P,= 1% > sncz%(§+ > sinczgg%
64 @f +20K|<B | f. —20k| <B

an

|fe 20k\ <B

Signal Power
0.1+
_l f
2000 ¢
Signal Power
0.1—ﬁ
f
2000 ¢
Signal Power
0.1+ ‘]
f
2000 ¢

41. The diffraction of light can be approximately described through the use of the Fourier
transform. Consider an opaque screen with asmall dit being illuminated from the left by
anormally-incident uniform plane light wave (Figure E41).
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Diffracting Viewing
Screen Screen

Propagation >T(1 )T(O

Direction — 44—+ - - e -

et \ Optical Axis
Slit

Wavefronts , |
I |

Figure E41 One-dimensiona diffraction of light through a dlit

2

If z>> % isagood approximation for any X, in the dit, then the electric field strength of

the light striking the viewing screen can be accurately described by

J_271z
.
er o«

© —'z—nxx
e Az _,[oEl(Xl)e J/\z 01dX1

E =K
o) Az
where E, isfield strength at the diffracting screen, E, is field strength at the viewing screen,
K is a constant of proportiondity and A is the wavelength of the light. The integrd is a

Fourier transform with different notation. The field strength at the viewing screen can be
written as

. 2mz
J—
e A i T2
E,y (%) =K oE e’AZ“T@l(t)gﬂﬁ .

Theintensity, Io(xo), of thelight at the viewing screen is the square of the magnitude of the
field strength,
2
'(XO):‘EO(XO)‘ :
Plot the intensity of light at the viewing screen if the dit width is 1 mm, the

wavelength of light is 500 nm, the distance, z, is 100 m, the constant of proportionality is
107 and the electric field strength at the diffraction screenis 1% .

The electric field exiting the diffraction dit is

E(xl) = rect%@

Finding the screen electric field using the formula above,
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Theintensity isthe square of the magnitude of the electric field,

sinc? E;fiog
x107?

o(%o) = oeog - 4x107s nc?(20x,)
I(xo)
0.0004
-0.2 ' 0.2 %
(b) Now let the dlit be replaced by two ditseach 0.1 mm in width, separated by 1 mm

(center-to-center) and centered on the optical axis. Plot the intensity of light at the viewing
screen if the other parameters are the same asin part (a).

Similar to (a)

I (xo)

1.6e-05

X

1 1 0

42. In Figure 42-1 is a circuit diagram of a half-wave rectifier followed by a capacitor to
smooth the response voltage. Model the diode as idedl and let the excitation be a cosine

at 60 Hz with an amplitude of 1202 volts. Let the RC time constant be 0.1 seconds.
Then the response voltage will look as illustrated in Figure E42-2 . Find and plot the
magnitude of the CTFT of the response voltage.

+ o N l o+
vi (1) R< C Vo (1)
- O T O -

Figure E42-1 A haf-wave rectifier with a capacitive smoothing filter
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175 Vo (t)

N

-175

Figure E42-2 Excitation and response voltages

The response voltage has two parts, the exponentia decay time and the cosinusoidal charging
time. The dividing time, t,, between these two parts is set by the intersection of the cosine

and the exponential decay. The peak of the cosineis 120+/2. The decay time constant is 0.1
seconds. Therefore the dividing timeis the solution of

ty
120+/2 cog(1207t, ) = 120+/2e ©
or
ty

cog(1207t,) = € 0

This is a transcendental equation best solved numerically. This equation is ssmple enough
that atrial-and-error method converges very quickly to asolution. That solution is

t, =15.23906 ms .

Therefore the description of the response voltage over one period is

t

-t

e ot , 0<1<15.23906 ms
v, (1) =120420 5
%:os(lzom) , 1523906 <t <167 ms
or
-0.00761953
0.01523906

§+ cog(1207t) rect

O-t ~0.01595286
v, (t) =120v2 0-1rect§
al!) (%3 0.001427607 %

The CTFT of the response is the CTFT of this voltage convolved with a comb to make it
periodicaly repeat. The CTFT of one period is

|j01523906 _t
0 e 0l ¥t
V() =120ﬁ% 0
l[5( f —60) + &( f +60)] 0.001427607sinc(0.001427607 f ) /2" (01552
12

Oodod
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.01523906
%eﬁe‘jz”ft Ei
U10-jorf O

-

V,,(f)=120721h % 0.001427607sinc(0.001427607( f - 60))e! " -e0lCosse2s6)
0

a % 0.001427607sinc(0.001427607(  +60))e™ 127" +e0)00158025)

|
I

_0.01523906
01 g 127001523906

0
N
~10- j2rf E H10-j27t H

TgRgeR o™

V() =120V20 % 0.001427607sinc(0.001427607( f - 60))e! " -e0lCorsse2z6)

OO

= % 0.001427607sinc(0.001427607(  +60))e™ 127" +e0)00159025)

I A e |

_0.01523906
01 g i2r 001523906

10+ j2rf

I Y A mInp|
|
(¢]

1 . .
V() =120V20 50.001427607s nc(0.001427607( f —60))e™ /2 -e0N0015052%)

|

a % 0.001427607sinc(0.001427607(  +60))e™ /2" +e0)0015052%)

H

The CTFT of the actual periodic responseisthe product of this CTFT with the CTFT of

I A

60comb(60t) whichiis comb%@. Therefore

_0.01523906
01 g2 001523906

10+ j2rtf

|
(¢

[ |

. . f
V() =120V25=0.001427607sinc(0.001427607( f — 60))e™ i 27" ~60)(0.01595286) 5oy
o 0

NIk N

0.001427607sinc(0.001427607(  +60))e™ /2" +e00015052%)

IZI]:H:_LI:II:IQ'_I:II:II:I@I:I

MOoOO
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V (Pl

50

ittty [ et ttEttty

-600 600

Phaseofvo(f)
-600 Jr , 600 f
. .'T[ : . M :

43. Create a discrete-space image consisting of 96 by 96 pixels. Let the image be a
“checkerboard” consisting of 8 by 8 alternating black-and-white squares.

(8 Filter the image row-by-row and then column-by-column with a DT filter whose
impulse responseis

h[n] = 0.2(0.8)" u[n|
and display the image on the screen using thei nagesc command in MATLAB.

After defining the checkerboard we can filter it by convolving it with the impulse
response using the MATLAB conv function.

Notice how this lowpass spatial filter blursthe edges. A lowpass filter does not
allow any fast transitions to occur.

(b) Filter the image row-by-row and then column-by-column with a DT filter whose

impulse responseis
h[n] = d[n] - 0.2(0.8)" u[n|
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and display the image on the screen using thei nagesc command in MATLAB.

Notice how this highpass spatial filter empahsize the edges and de-emphasizes the
constant regions between the edges. A highpass filter does alow fast transitions to

occur.

uf
44. In the system of Figure EO let the CTFT of the the excitation be X(f) = triEff_H This

system is sometimes called a scrambler because it moves the frequency components of a
signal to new locations making it unintelligible.

(& Using only an analog multiplier and an ideal filter, design a “descrambler” which
would recover the origina signal.

(b) Sketch the magnitude spectrum of each of the signals in the scrambler-descrambler
system.

Multiplier
X)) .0
T

COS(21Tf 1)
Figure EO A “scrambler”
No help here. Left asachallenge for the student.
45. Electronic amplifiers that handle very-low-frequency signals are difficult to design
because thermal drifts of offset voltages cannot be distinguished from the signals. For

this reason a popular technique for designing low-frequency amplifiersis the so cdled
“chopper-stabilized” amplifier (Figure E45).
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Typical Amplifier

+ +
V; (t) Vo(t)

Chopper-Stabilized Amplifier

+
V() - BPF o
I h LPF _°:_r/o(t)

Figure E45 A chopper-stabilized amplifier

A chopper-stabilized amplifier “chops” the excitation signal by switching it on and off
periodically. This action is equivaent to a pulse amplitude modulation in which the pulse
train being modulated by the excitation is a 50% duty-cycle square wave which aternates
between zero and one. Then the “chopped” signal is bandpass filtered to remove any dow
thermal drift signalsfrom the first amplifier. Then the amplified signal is “chopped” again
at exactly the same rate and in phase with the chopping signal used at the input of the first
amplifier. Then this signal may be further amplified. The last step is to lowpass filter the
signa out of the last amplifier to recover an amplified version of the origina signal. (Thisis
asimplified model but it illustrates the essential features of a chopper-stabilized amplifier.)

L et the following be the parameters of the chopper-stabilized amplifier:

Chopping frequency 500 Hz

Gain of thefirst amplifier 100 VIV

Bandpass filter Unity-gain, ideal, zero-phase. Passband 250 < |f| < 750
Gain of the second amplifier 10V/V

Lowpass filter Unity-gain, ideal, zero-phase. Bandwidth 100 Hz

Let the excitation signal have a 100 Hz bandwidth. What is the effective DC gain of this
chopper-stabilized amplifier?

Let the excitation be v, (). Thenthe signal after the first amplifier is
v,(t) = 100v, (t)] rect(1000t) [1500comb(500t)]
or, in the frequency domain,

V,(f)=50 z sincv,( f - 500m)

The response signal from the bandpass filter is that part of the spectrum lying between 250
and 750 Hz whichis

Vi (f) =50s nc%gvi(f ~500) +V,(f +500)] .
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The response of the second amplifier isthe response of the BPF pulse-amplitude modulated
by the synchronous switching. In the frequency domain,

V,(f)=25s nc%@j sinc Vi f ~500m ~500) + v, f ~500m +500)
I the excitation is dc, then V() = A3(f) and

V,(f)=25As nc%@nw sincgggé(f —500m - 500) + & f —500m +500)] .

The response of the lowpassfilter isthat part of the signal below 100 Hz, whichis

V,(f)=25As nc%% nc%gé( £)+&(f) E: 50ASinc? %Qé( f)
and the effectivedc gainis
50Asinc? %Q
—

46. A common problem in over-the-air televison signa transmisson is “multipath”
distortion of the received signal due to the transmitted signal bouncing off structures.
Typically a strong “main” signal arrives at some time and a wesker “ghost” signa

arriveslater. Soiif the transmitted signdl is x,(t), the received signdl is

DC Gain= =20.264 .

X, () =Ky, x, (t=t,) + Ky %, (t =)
where K, >>K and t, > t.

@ What isthe transfer function of this communication channel ?

(b) What would be the transfer function of an “equalization” system that would
compensate for the effects of multipath?

The impulse response of the system is

h(t) = K,o(t-t,) + K,ot-t,) -

Thereforeits transfer function is ‘
H(f)=K,e 7™ +K e '*™

An equalization system would then have atransfer function of the form,

Ae—ertftO
= - j 2rft,, - j2rtt
K.e +K,e 7

H(f)
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