
Laplace Transform Analysis of
Signals and Systems
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Transfer Functions

• Transfer functions of CT systems can be
found from analysis of
– Differential Equations

– Block Diagrams

– Circuit Diagrams
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A circuit can be described by a system of differential
equations
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Using the Laplace transform, a circuit can be described by
a system of algebraic equations 

R s sL s sL s sg1 1 1 2I I I V( )+ ( )− ( ) = ( )

sL s sL s
sC

s R sI I I I2 1 2 2 2

1
0( )− ( )+ ( )+ ( ) =

Transfer Functions
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A circuit can even be described by a block diagram.

Transfer Functions
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A mechanical system can
be described by a system of
differential equations

or a system of algebraic equations.
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Transfer Functions
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The mechanical system can also be described by a block
diagram.

Time Domain Frequency Domain

Transfer Functions
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System Stability

• System stability is very important

• A continuous-time LTI system is stable if its
impulse response is absolutely integrable

• This translates into the frequency domain as
the requirement that all the poles of the
system transfer function must lie in the open
left half-plane of the s plane (pp. 675-676)

• “Open left half-plane” means not including
the ω axis
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System Interconnections
Cascade

Parallel
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Feedback

E X H Ys s s s( ) = ( )− ( ) ( )2
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E(s) Error signal
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Analysis of Feedback Systems
Beneficial Effects

H
H

s
K

K s
( ) =

+ ( )1 2

If K is large enough that                      then                       .  This

means that the overall system is the approximate inverse of the 
system in the feedback path.  This kind of system can be useful
for reversing the effects of another system.
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s
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Analysis of Feedback Systems

A very important example of feedback systems is an
electronic amplifier based on an operational amplifier

Let the operational amplifier gain be
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Analysis of Feedback Systems

The amplifier can be modeled as a feedback system with this
block diagram.

The overall gain can be written as
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If the operational amplifier low-frequency gain,      , is very
large (which it usually is) then the overall amplifier gain
reduces at low-frequencies to

the gain formula based on an ideal operational amplifier.
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Z
0 s
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Analysis of Feedback Systems
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Analysis of Feedback Systems

The change in overall system gain is about 0.001% for a change
in open-loop gain of a factor of 10.

The half-power bandwidth of the operational amplifier itself is
15.9 Hz  (100/2π).  The half-power bandwidth of the overall

amplifier is approximately 14.5 MHz, an increase in bandwidth
of a factor of approximately 910,000.

If and thenA p j j0
710 100 100 9 999989 0 000011= = − −( ) = − +H . .

If and thenA p j j0
610 100 100 9 99989 0 00011= = − −( ) = − +H . .
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Analysis of Feedback Systems

Feedback can stabilize an unstable system.  Let a forward-path
transfer function be

This system is unstable because it has a pole in the right half-
plane.  If we then connect feedback with a transfer function,
K, a constant, the overall system gain becomes

and, if K > p, the overall system is now stable.

H ,1

1
0s

s p
p( ) =

−
>

H s
s p K

( ) =
− +

1
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Analysis of Feedback Systems

Feedback can make an unstable system stable but it can also
make a stable system unstable.  Even though all the poles
of the forward and feedback systems may be in the open left
half-plane, the poles of the overall feedback system can be
in the right half-plane.

A familiar example of this kind of instability caused by
feedback is a public address system.  If the amplifier gain
is set too high the system will go unstable and oscillate,
usually with a very annoying high-pitched tone.
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Analysis of Feedback Systems

Public Address System
As the amplifier gain is
increased, any sound
entering the microphone
makes a stronger sound
from the speaker until, at
some gain level, the
returned sound from the
speaker is a large as the
originating sound into the
microphone.  At that point
the system goes unstable
(pp. 685-689).



5/10/04 M. J. Roberts - All Rights Reserved 19

Analysis of Feedback Systems
Stable Oscillation Using Feedback

Prototype 
Feedback 

System

Feedback 
System 
Without 

Excitation
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Analysis of Feedback Systems
Stable Oscillation Using Feedback

Can the response be non-zero when the
excitation is zero?  Yes, if the overall
system gain is infinite.  If the system
transfer function has a pole pair on the
ωaxis, then the transfer function is infinite
at the frequency of that pole pair and there can be a response
without an excitation.  In practical terms the trick is to be sure the
poles stay on the ω axis.  If the poles move into the left half-plane

the response attenuates with time.  If the poles move into the right
half-plane the response grows with time (until the system goes non-
linear).
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Analysis of Feedback Systems

A real example of a system that oscillates stably is a laser.
In a laser the forward path is an optical amplifier.

The feedback action is provided by putting mirrors at each
end of the optical amplifier.

Stable Oscillation Using Feedback
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Analysis of Feedback Systems

Laser action begins when a photon is spontaneously emitted from
the pumped medium in a direction normal to the mirrors.

Stable Oscillation Using Feedback
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Analysis of Feedback Systems

If the “round-trip” gain of the
combination of pumped laser
medium and mirrors is unity,
sustained oscillation of light will
occur.  For that to occur the
wavelength of the light must fit into
the distance between mirrors an
integer number of times.

Stable Oscillation Using Feedback
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Analysis of Feedback Systems

A laser can be modeled by  a block diagram in which the K’s
represent the gain of the pumped medium or the reflection or
transmission coefficient at a mirror, L is the distance between
mirrors and c is the speed of light.

Stable Oscillation Using Feedback
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Analysis of Feedback Systems
The Routh-Hurwitz Stability Test

The Routh-Hurwitz Stability Test is a method for
determining the stability of a system if its transfer function
is expressed as a ratio of polynomials in s.  Let the
numerator be N(s) and let the denominator be

D s a s a s a s aD
D

D
D( ) = + + + +−

−
1

1
1 0L
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Analysis of Feedback Systems

The first step is to construct the “Routh array”.

The Routh-Hurwitz Stability Test
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The first two rows contain the coefficients of the denominator 
polynomial.  The entries in the following row are found by the 
formulas,

The Routh-Hurwitz Stability Test

b

a a

a a

aD

D D

D D

D
−

−

− −

−

= −2

2

1 3

1

b

a a

a a
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D
−

−

− −
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= −4

4

1 5

1

...

The entries on succeeding rows are computed by the same 
process based on previous row entries.  If there are any zeros 
or sign changes in the      column, the system is unstable. The 
number of sign changes in the  column is the number of poles 
in the right half-plane (pp. 693-694).

aD

Analysis of Feedback Systems
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Analysis of Feedback Systems
Root Locus

Common Type of Feedback System

System Transfer Function H
H

H H
s

K s
K s s

( ) = ( )
+ ( ) ( )

1

1 21

Loop Transfer Function T H Hs K s s( ) = ( ) ( )1 2



5/10/04 M. J. Roberts - All Rights Reserved 29

Analysis of Feedback Systems
Root Locus

Poles of H(s) Zeros of 1 + T(s)

T is of the form T
P
Q

s K
s
s

( ) = ( )
( )

Poles of H(s) Zeros of 1 + K
s
s

P
Q

( )
( )

Poles of H(s)

Q Ps K s( )+ ( ) = 0

or
Q

P
s

K
s

( ) + ( ) = 0
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Analysis of Feedback Systems
Root Locus

K can range from zero to infinity.  For K approaching zero,
using

the poles of H are the same as the zeros of                which
are the poles of T.  For K approaching infinity, using

the poles of H are the same as the zeros of               which
are the zeros of T.  So the poles of H start on the poles of T
and terminate on the zeros of T, some of which may be at
infinity.  The curves traced by these pole locations as K is
varied are called the root locus.

Q Ps K s( )+ ( ) = 0

Q s( ) = 0

Q
P

s
K

s
( ) + ( ) = 0

P s( ) = 0
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Analysis of Feedback Systems
Root Locus

Let                                    and let                .  

Then

No matter how large K gets
this system is stable because 
the poles always lie in the 
left half-plane (although for 
large K the system may be
very underdamped).  

H1 1 2
s

K
s s

( ) =
+( ) +( ) H2 1s( ) =

T s
K

s s
( ) =

+( ) +( )1 2 Root
Locus
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Analysis of Feedback Systems
Root Locus

Root
Locus

Let

and let                .

At some finite value of K
the system becomes
unstable because two
poles move into the right
half-plane.

H2 1s( ) =

H1 1 2 3
s

K
s s s

( ) =
+( ) +( ) +( )
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Analysis of Feedback Systems

1. Each root-locus branch begins on a pole of T and
terminates on a zero of T.

2. Any portion of the real axis for which the sum of the
number of real poles and/or real zeros lying to its right on
the real axis is odd, is a part of the root locus.

3. The root locus is symmetrical about the real axis.
.
.

Four Rules for Drawing a Root Locus

Root Locus
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.

.
4. If the number of finite poles of T exceeds the number of finite
zeros of  T by an integer, m, then m branches of the root locus
terminate on zeros of T which lie at infinity.  Each of these branches
approaches a straight-line asymptote and the angles of these
asymptotes are at the angles,

with respect to the positive real axis.  These asymptotes intersect on
the real axis at the location,

k
m

k
π

, , , ,...=1 3 5

Analysis of Feedback Systems
Root Locus

σ = −( )∑ ∑1
m

finite poles finite zeros
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Analysis of Feedback Systems
Root Locus Examples
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Analysis of Feedback Systems
Gain and Phase Margin

Real systems are usually designed with a margin of error to
allow for small parameter variations and still be stable.

That “margin” can be viewed as a gain margin or a phase
margin.

System instability occurs if, for any real ω,

a number with a magnitude of one and a phase of -π
radians.

T jω( ) = −1
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Analysis of Feedback Systems
Gain and Phase Margin

So to be guaranteed stable, a system must have a T whose
magnitude, as a function of frequency, is less than one when
the phase hits -π or, seen another way, T must have a phase, as

a function of frequency, more positive than - π for all |T|

greater than one.

The difference between the a magnitude of T of 0 dB and the
magnitude of T when the phase hits - π is the gain margin.

The difference between the phase of T when the magnitude
hits 0 dB and a phase of - π is the phase margin.
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Analysis of Feedback Systems
Gain and Phase Margin
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Analysis of Feedback Systems
Steady-State Tracking Errors in Unity-Gain Feedback Systems

A very common type of feedback system is the unity-gain
feedback connection.

The aim of this type of  system is to make the response
“track” the excitation.  When the error signal is zero, the
excitation and response are equal.
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Analysis of Feedback Systems
Steady-State Tracking Errors in Unity-Gain Feedback Systems

The Laplace transform of the error signal is

The steady-state value of this signal is (using the final-
value theorem)

If the excitation is the unit step,           , then the steady-
state error is

E
X
H

s
s

s
( ) = ( )

+ ( )1 1

lim e lim E lim
X
Ht s s

t s s s
s

s→∞ → →
( ) = ( ) = ( )

+ ( )0 0
11

A tu( )

lim e lim
Ht s

t
A

s→∞ →
( ) =

+ ( )0
11
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Analysis of Feedback Systems
Steady-State Tracking Errors in Unity-Gain Feedback Systems

If the forward transfer function is in the common form,

then

If            and             the steady-state error is zero and the
forward transfer function can be written as

which has a pole at s = 0.
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0
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Analysis of Feedback Systems
Steady-State Tracking Errors in Unity-Gain Feedback Systems

If the forward transfer function of a unity-gain feedback
system has a pole at zero and the system is stable, the
steady-state error with step excitation is zero.  This type
of system is called a “type 1” system (one pole at s = 0 in
the forward transfer function).  If there are no poles at
s = 0, it is called a “type 0” system and the steady-state
error with step excitation is non-zero.
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Analysis of Feedback Systems
Steady-State Tracking Errors in Unity-Gain Feedback Systems

The steady-state error with ramp excitation is

Infinite for a stable type 0 system

Finite and non-zero for a stable type 1 system

Zero for a stable type 2 system (2 poles at s = 0 in
the forward transfer function)
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Block Diagram Reduction
It is possible, by a series of operations, to reduce a 
complicated block diagram down to a single block.

Moving a Pick-Off Point



5/10/04 M. J. Roberts - All Rights Reserved 45

Block Diagram Reduction
Moving a Summer
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Block Diagram Reduction

Combining Two Summers
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Block Diagram Reduction

Move Pick-Off Point
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Block Diagram Reduction

Move Summer
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Block Diagram Reduction

Combine Summers
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Block Diagram Reduction

Combine Parallel Blocks
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Block Diagram Reduction

Combine Cascaded Blocks
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Block Diagram Reduction

Reduce Feedback Loop



5/10/04 M. J. Roberts - All Rights Reserved 53

Block Diagram Reduction

Combine Cascaded Blocks
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Mason’s Theorem

Number of Paths from Input to Output  - N p

Number of Feedback Loops  - NL

Transfer Function of ith Path from Input to Output  - Pi s( )

Loop transfer Function of ith Feedback Loop  - Ti s( )

∆ s s s s s s si
i

N

i j
i
j

i j k
i j k

L

( ) = + ( )+ ( ) ( )+ ( ) ( ) ( )+
=
∑ ∑ ∑1

1

T T T T T T
th loopand
th loop not

sharing a signal

th, th, th 
loops not

sharing a signal

L

Definitions:
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Mason’s Theorem

The overall system transfer function is

H
P

s
s s

s

i i
i

N p

( ) =
( ) ( )

( )
=
∑ ∆

∆
1

where          is the same as         except that all feedback
loops which share a signal with the ith path,        , are
excluded.

∆ i s( ) ∆ s( )
Pi s( )
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Mason’s Theorem
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System Responses to Standard Signals

H
N
D

s
s
s

( ) = ( )
( )Let                       be proper in s.  Then the Laplace transform

of the unit step response is

Y H
N
D

N
D

s s
s

s s
s
s

K
s

( ) = ( ) = ( )
( ) = ( )

( ) +−1
1

If the system is stable, the inverse Laplace transform of
is called the transient response and the steady-state

response is            . 

N
D

1 s
s
( )
( )

H 0( )
s

K = ( )H 0

Unit Step Response
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System Responses to Standard Signals

H
N
D

s
s
s

( ) = ( )
( )Let                       be proper in s.  If the Laplace transform of the

excitation is some general excitation, X(s), then the Laplace 
transform of the response is

Y
N
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N
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1 1

same poles
as system

same poles
as excitation
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Let                       .  Then the unit step response is                       

Unit Step Response

H s
A

s
p

( ) =
−1

y ut A e tpt( ) = −( ) ( )1

System Responses to Standard Signals
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System Responses to Standard Signals

Let                                         

Η s
A

s s
( ) =

+ +
ω

ζω ω
0
2

2
0 0

22

(pp. 710-712)

Unit Step Response
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System Responses to Standard Signals

Let                                        Η s
A

s s
( ) =

+ +
ω

ζω ω
0
2

2
0 0

22

Unit Step Response
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System Responses to Standard Signals
H

N
D

s
s
s

( ) = ( )
( )Let                       be proper in s.  If the excitation is a suddenly-

applied, unit-amplitude cosine, the response is

which can be reduced and inverse Laplace transformed into
(pp. 713-714)

If the system is stable, the steady-state response is a sinusoid of
same frequency as the excitation but, generally, a different
magnitude and phase.

Y
N
D

s
s
s

s
s

( ) = ( )
( ) +2

0
2ω
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N
D

H cos H ut
s
s

j t j t( ) = ( )
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+ ( ) + ∠ ( )( ) ( )−L 1 1
0 0 0ω ω ω
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Pole-Zero Diagrams and
Frequency Response

If the transfer function of a system is H(s), the frequency 
response is H(jω).  The most common type of transfer function

is of the form,

Therefore H(jω) is

H s A
s z s z s z

s p s p s p
N

D

( ) =
−( ) −( ) −( )
−( ) −( ) −( )

1 2

1 2

L

L

H j A
j z j z j z

j p j p j p
N

D

ω ω ω ω
ω ω ω

( ) =
−( ) −( ) −( )
−( ) −( ) −( )

1 2

1 2

L

L
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Pole-Zero Diagrams and
Frequency Response

Let H s
s

s
( ) =

+
3

3

H j
j

j
ω ω

ω
( ) =

+
3

3

The numerator, jω, and the

denominator, jω + 3, can be 

conceived as vectors in the 
s plane.

H j
j

j
ω ω

ω
( ) =

+
3

3
∠ ( ) = ∠ + ∠ − ∠ +( )

=
H j j jω ω ω3 3

0
{
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Pole-Zero Diagrams and
Frequency Response

lim H lim
ω ω

ω ω
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+
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Pole-Zero Diagrams and
Frequency Response
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Butterworth Filters
The squared magnitude of the transfer function of an nth order, 
unity-gain, lowpass Butterworth filter with a corner frequency of 
1 radian/s is

This is called a normalized
Butterworth filter because
its gain is normalized to 
one and its corner 
frequency
is normalized to 
1 radian/s.

H j nω
ω

( ) =
+

2

2

1
1
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Butterworth Filters
A Butterworth filter transfer function has no finite zeros and
the poles all lie on a semicircle in the left-half plane whose
radius is the corner frequency in radians/s and the angle
between the pole locations is always π/n radians.
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Butterworth Filters
Frequency Transformations

A normalized lowpass Butterworth filter can be transformed
into an unnormalized highpass, bandpass or bandstop Butterworth
filter through the following transformations (pp. 721-725).

Lowpass to Highpass

Lowpass to Bandpass

Lowpass to Bandstop

s
s

c→ ω

s
s
s

L H

H L

→ +
−( )

2 ω ω
ω ω

s
s

s
H L

L H

→
−( )

+
ω ω

ω ω2
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Standard Realizations of Systems

There are multiple ways of drawing a system block diagram
corresponding to a given transfer function of the form,
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Standard Realizations of Systems
Canonical Form

The transfer function can be conceived as the product of two
transfer functions,

and 
H

Y
X1

1

1
1

1 0

1
s

s
s s a s a s aN

N
N( ) = ( )

( ) =
+ + + +−

− L
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Standard Realizations of Systems
Canonical Form

The system can then be realized in this form, 
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Standard Realizations of Systems
Cascade Form

The transfer function can be factored into the form,

and each factor can be realized in a small canonical-form
subsystem of either of the two forms,

and these subsystems can then be cascade connected.

H s A
s z
s p

s z
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s z
s p s p s p s p

N

N N N D
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Standard Realizations of Systems
Cascade Form

A problem that arises in the cascade form is that some poles
or zeros may be complex.  In that case, a complex conjugate
pair can be combined into one second-order subsystem of the
form,
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Standard Realizations of Systems
Parallel Form

The transfer function can be expanded in partial fractions of
the form,

Each of these terms describes a subsystem.  When all the
subsystems are connected in parallel the overall system is
realized.
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Standard Realizations of Systems
Parallel Form
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State-Space Analysis
• In larger systems it is important to keep the

analysis methods systematic to avoid errors

• One popular method for doing this is through
the use of state variables

• State variables are signals in a system which,
together with the excitations, completely
characterize the state of the system

• As the system changes dynamically the state
variables change value and the system moves
on a trajectory through state space
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State-Space Analysis

• State space is an N-dimensional space where
N is the order of the system

• The order of a system is the number of state
variables needed to characterize it

• State variables are not unique, there can be
multiple correct sets
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State-Space Analysis

• There are several advantages to state-space
analysis
– Reduction of the probability of analysis errors

– Complete description of the system signals

– Insight into system dynamics

– Can be formulated using matrix methods and the
system state can be expressed in two matrix
equations

– Combined with transform methods it is very
powerful
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State-Space Analysis
To illustrate state-space methods, let the system be this circuit

Let the state variables be the capacitor voltage and the inductor
current and let the output signals be v i .out Rt t( ) ( )and
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State-Space Analysis
Two differential equations in the two state variables, called the 
state equations, characterize the circuit,

Two more equations called the output equations define the 
responses in terms of the state variables,

′ ( ) = ( )i vL Ct
L

t
1 ′ ( ) = − ( )− ( )+ ( )v i v iC L C int

C
t

G
C

t
C

t
1 1

v vout Ct t( ) = ( ) i vR Ct G t( ) = ( )
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State-Space Analysis

The state equations can be written in matrix form as

and the output equations can be written in matrix form as
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State-Space Analysis

A block diagram for the 
system can be drawn 
directly from the state 
and output equations.
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State-Space Analysis

The state and output equations can be written compactly as

where

′( ) = ( )+ ( )q Aq Bxt t t
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State-Space Analysis
The solution of the state and output equations can be found
using the Laplace transform.

or

Multiplying both sides by

The matrix,                , is conventionally designated by the
symbol,         .  Then  

s s s sQ q AQ BX( )− ( ) = ( )+ ( )+0

s s sI A Q BX q−[ ] ( ) = ( )+ ( )+0

sI A−[ ]−1

Q I A BX qs s s( ) = −[ ] ( )+ ( )[ ]− +1 0

sI A−[ ]−1

Φ s( )

Q BX q BX qs s s s s s( ) = ( ) ( )+ ( )[ ] = ( ) ( )+ ( ) ( )+

−

+

−

Φ Φ Φ0 0
zero state
response

zero input
response

1 24 34 1 24 34
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State-Space Analysis

The time-domain solution is then

where                          and        is called the state transition 
matrix.

q Bx qt t t t( ) = ( )∗ ( )+ ( ) ( )
−

+

−

φ φ
zero state
response

zero input
response

1 24 34 1 24 34
0

  φ t s( )← → ( )L Φ φ t( )
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State-Space Analysis

To make the example concrete, let the excitation and initial
conditions be

and let 
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State-Space Analysis
Solving for the states in the Laplace domain,
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Substituting in numerical component values,
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State-Space Analysis
Inverse Laplace transforming, the state variables are

and the response is

or
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State-Space Analysis

In a system in which the initial conditions are zero (the
zero-input response is zero), the matrix transfer function
can be found from the state and output equations.

or

The response is

and the matrix transfer function is

s s s sQ q AQ BX( )− ( ) = ( )+ ( )+

=

0

0
123
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H C B Ds s( ) = ( ) +Φ
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State-Space Analysis
Any set of state variables can be transformed into another
valid set through a linear transformation.  Let         be the
initial set and let          be the new set, related to          by

Then

and using                           ,

where

q1 t( )
q2 t( ) q1 t( )
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q T q1
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State-Space Analysis

By a similar argument,

where

Transformation to a new set of state variables does not change
the eigenvalues of the system.

y C q D xt t t( ) = ( )+ ( )2 2 2

C C T2 1
1= − D D2 1=


