ThezTransform



Relation to the Laplace Transform

« Theztransformisto DT signals and systems
what the Laplace transform isto CT signals
and systems
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Definition
The ztransform can be viewed as a generalization of the

DTFT or as natural result of exciting adiscrete-time

LTI system with itseigenfunction. The DTFT is
defined by

(0]

x[n] = %‘[ 2nX(jQ)eandQ AT 5 X(jQ) = Z x[n]erier

n=—oo

If astrict analogy with the Laplace transform were
made Q would replace w, 2 would replace a, Swould

replace s, a summation would replace the integral and
the z transform would be defined by

(00} (00} (00}

X(§)= Y Anle™ =3 x[n]e=" = 5 (xn]e)e”™

n=-—oco n=-—oo n=-—oo
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Definition
X(9)= 3 drle™= 3 Al = 3 (qrle™)e™

n=-co n=-—o0 n=-—oo

00

Viewed this way the factor, €™, would be a“convergence”
factor in that same way that the factor, e, was for the
L aplace transform.

The other approach to defining the z transform is to excite a

DT system with its eigenfunction, Az". The response would
be

] =[] O] = AZ CH{] = 'S W™ = A7 S Hmlz™

= ] e

2 transform of h[n]
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Definition

The universally accepted definition of the ztransform of aDT
function, X, is

[0}

X(2)=H ¥n|z"

n=—oo

and x and X form a“ z-transform pair”,

x[n] £F - X(2)
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Convergence

The DTFT’ s of some common functions do not, in the strict
sense, converge. The DTFT of the unit sequence would be

X(jQ)=S unle=§ e
PR

which does not converge. But the z transform of the unit

sequence does exist. Itis

e}

X(2)=% unlz"=Y ™
PRL]
and the z transform exists for values of z whose magnitudes are
greater than one. This defines a region of convergence (ROC)
for the z transform of the unit sequence, the exterior of the unit
circlein the z plane.
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Convergence

The series, Z 7z ", 1ISageomeltric series. The general formula
n=0

for the summation of afinite geometric seriesis

N-1 3[ , 1=1
"=/ N

This formula also appliesto the infinite series above if the
magnitude of zis greater than one. In that case the z transform
of the unit sequenceis

oz 1
X(Z)_z—l_l—z‘l ’

2>1
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Transfer Functions

If X Isthe excitation, h isthe impulse response and y isthe
system response of adiscrete-time LTI system, then

Y(2) = X(2)H(2)

and H is called the transfer function of the system. This
IS directly analogous to previous transfer functions,

Y(jw)=X(jw)H(j &)
Y(iQ) = X(jQ)H(iQ)
Y(s)= X(s)H(s)
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Region of Convergence

Taking a path analogous to that used the development of the
L aplace transform, the z transform of the causal DT signal

o Aa"un|, la|>0
X(2)=A i a"un|z" = Aia”z"” = Ai mn|
n=—oo n=0 n=0 DZ A
and the series convergesif |z > |a]. This m@
defines the region of convergence as the
exterior of acirclein the z plane centered ROC ROC
at the origin, of radius, |a|. The ztransform d - Re(2)
1S 7 ROC ROC
X(z)=A , Z>a
@=A_* . [2>0
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Region of Convergence

By similar reasoning, the z transform and region of convergence

of the anti-causal signal, Aa™"u[-n| , la|>0 are
Im(z)
F
[Z]
o
A Az 1 ROC
X(2) = = A - Re(2)
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The Unilateral z Transform

Just as it was convenient to define aunilateral Laplace transform
It is convenient for analogous reasons to define a unilateral z
transform

o)

X(2)= ¥n|z"

n=0

which will ssimply be referred to as the z transform from this
point on.
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Properties

If two causal DT signals form these transform pairs,
o[n £ - G(z) and hn| £F - H(2)
then the following properties hold for the z transform.

Linearity

ag[n] +Bh[n| L - aG(z)+BH(2)
Time Shifting

Delay:  g[n-n| & -2™G(z),n,=0

] |:| ny—1 |:|
Advance: n+n.| I - Z° G(2) - mz™g, n. >0
gln+n; G(2) mzzog[ |z"g .

[ 5/10/04 M. J. Roberts - All Rights Reserved 12 ]




Properties

Change of Scale
[z
a"g[n] £F - G, 0
Initial Value Theorem
g[0] =1imG(z2)

Z— 00

Z-Domain Differentiation

-ng[n] £ - ZEG(Z)

dz

Convolution in Discrete Time

g[n| Oh[n] B~ H(2)G(2)
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Properties

Differencing
o[n]-g[n-1 ~f- (2 z*)G(2)

Accumulation

n

> ol - £ -2-6(2)=

o z-1 1-z7

Final Vaue Theorem

G(2)

limg[n| = Iirrll(z—l)G(z)
(if the limit exists)
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The Inverse z Transform

Thereisan inversion integral for the z transform,

_ 1 -1
X[n]_jZT[CX(Z)Z dz

but doing it requires integration in the complex plane and
It israrely used in engineering practice.

There are two other common methods,

Synthetic Division
Partial-Fraction Expansion
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Synthetic Division

Suppose it is desired to find the inverse z transform of

s Z
‘7o
H(z):23 15,,17 1 N
127 "36% 18 | 22 Tl t
A 15, 17 _1)._7
Synthetically dividing 12 36 18 2
the numerator by the s oo 17, 1
denominator yields the 12 36 18
infinite series 8, 1r 1
4~ 36" 18
3 -1 6/ ) 322 ﬁ E_i
MYV 4° 48" 144 T2
67
Thiswill always work but the answer 144"

IS not in closed form.
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Partial-Fraction Expansion

Algebraically, partial fraction expansion for finding inverse
z transforms is identical to the same method applied to
Inverse Laplace transforms. For example,

10
s
1 10
T s mz pie
Thisfraction isimproper inz. We could synthetically
divide the numerator by the denominator once, yielding a
remainder that Is proper in z as with the Laplace transform

but there is an alternate method that may be preferred in
some situations.
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Partial-Fraction Expansion
H(2) _ Z%‘;S
o o

Dividing both sides by z makes the fraction proper in zand
partial fraction expansion proceeds normally.

4 9

7 2 1 1

Z2—— Z—- Z——

3 3 4

Then 4Z 9Z
= b, -

H(z)= -2 5t S ;
Z—— Z——- Z-

3 3 4

| 51004
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Solving Difference Equations

The unilateral ztransform iswell suited to solving difference
equations with initial conditions. For example,

y[n+2] - —y[n +1]+ 2 Y[n] BL ﬁ . forn=0
y[0] =10 and y[1] = 4
z transforming both sides,
Z[Y(2)-y[0] - Z'ly[l]] (2)-y[0]] +%Y(Z):i1
the initial conditions are called for systematically. “




Solving Difference Equations
Applying initial conditions and solving,

116 2
Y(2)=z2-3 + 4 4.3

[]

[]

1, e
4 2

Wil = e Fy 4 * 5l

and

This solution satisfies the difference equation and the initial
conditions.
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Z Transform - Laplace Transform
Relationships

Let asignal, x(t), be sampled to form
x[n] =x(nT,)
and impulse sampled to form
X,(t) = x(t) f, comb( )

These two signals are equivalent in the sense that their
Impul se strengths are the same at corresponding times and
the correspondence between timesist = nT..
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Z Transform - Laplace Transform
Relationships

Let aDT system have the impulse response, h[n], and let aCT

system have the impulse response, h,(t) = S hn|o(t—nT,).
o) S

n=-—o

If x[n] is applied to the X[7] yl7]

DT system and x,(t)is
applied to the CT system, _lﬂ””“““ n— h[n] — _IMJJJJ‘”HLn

their responses will be
eguivalent in the sense
that theimpulse strengths (%) Y50

.th . 44
arethe same M M., — ho JMJML:

—F—-ﬂ—];
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Z Transform - Laplace Transform
Relationships

The transfer function of the DT system is

H(z) = nio h[n|z™

and the transfer function of the CT systemis

H,(s) = i h[n]e™"

n=-—o

The equivalence between them is seen in the transformation,

Ho(s)=H(2),
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Z Transform - Laplace Transform
Relationships

The relationship, z= €5 maps points in the s plane into points
In the z plane and vice versa.

0 Im(z) 0 Im(z)

3| 1Z] 3n [Z]

1 5] L1° Is]

I b I a b

T |° y Re(z) 1, 7 Re(2)
-0 -0

K Ja T

I 1

Different contours in the s plane map into the same contour in
the z plane.
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Z Transform - Laplace Transform

Relationships

Im(z) "y Im(z)
3n 3n
T 2] T
I I
1 1
Re(z) Re(z)
i I
I I
3n 3n
1 1
Im(z) e Im(z)
3n 3 |
I [s] T, [5]
s ]
1, 1.
.G Re(z) : -0 Re(z)
L .7 It
1 1
T 1,
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The Bilateral z Transform

The bilateral z transform can be used to analyze non-causal
signals and/or systems. It isdefined by

[0}

X(2)=H x[n|z"= :Zox[n] Z"+ n_Z:ox[n] z"

n=-—oo =

This can be manipulated into
X(2)= X(2) - x[0] + X (2)

where

X(=YHnlz" and X (2= H-n|Z

n=0 n=0

[ 5/10/04 M. J. Roberts - All Rights Reserved 26 ]




The Bilateral z Transform

The bilateral z transform can be found using the unilateral
z transform by these four steps.

1. Find the unilateral ztransform X (z) and its ROC.

]
ac DZD’
time inverse of the anti-causal part of x[n].

2. Find the unilateral ztransform, X of the discrete-

3. Make the change of variable,z - }, In the result of
step 2 and in its ROC. z

4. Add theresults of steps 1 and 3 and subtract x[0O] to
form X(2).
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