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Continuous vs Continuous-Time
Signals

All continuous signals that are functions of time are 
continuous-time (CT) but not all CT signals are continuous
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Sampling a CT Signal to Create a
Discrete-Time (DT) Signal

• Sampling is the acquisition of the values of a
CT signal at discrete points in time

• x(t) is a CT signal, x[n] is a DT signal
x xn nTs[ ] = ( ) where Ts is the time between samples
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Introduction to the CT Unit Step
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There is no area under the single point,          , so the
function value at that one point (if it is finite) does not 
affect the integral’s value. 

g t0( )
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The CT Unit Step Function
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The product signal, g(t)u(t), can be thought of as the signal, g(t),
“turned on” at time, t = 0. 



5/10/04 M. J. Roberts - All Rights Reserved 6

The CT Signum Function
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The signum function, in a sense, returns an indication of
the sign of its argument.
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The CT Unit Ramp Function
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Introduction to the CT Impulse
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Let another function, g(t), be finite and continuous at t = 0.
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Introduction to the CT Impulse
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As the width of           approaches zero, δa t( )
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The CT unit impulse is implicitly defined by
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The CT Unit Step and CT Unit Impulse
As a approaches zero, g(t) approaches a CT unit step and     
approaches a CT unit impulse

′( )g t

The CT unit step is the integral of the CT unit impulse and 
the CT unit impulse is the generalized derivative of the CT 
unit step
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Graphical Representation of the
CT Impulse

The CT impulse is not a function in the ordinary sense because its
value at the time of its occurrence is not defined.  It is represented
graphically by a vertical arrow.  Its strength is either written beside 
it or is represented by its length.
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Properties of the CT Impulse

g gt t t dt t( ) −( ) = ( )
−∞

∞

∫ δ 0 0

The sampling property

δ δa t t
a

t t−( )( ) = −( )0 0

1

The scaling property

The sampling property “extracts” the value of a function at
a point.

This property illustrates that the impulse is different from 
ordinary mathematical functions.
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The CT Unit Comb

The CT unit comb is defined by

comb , an integert t n n
n

( ) = −( )
=−∞

∞

∑ δ

The comb is a sum of infinitely many uniformly-spaced impulses.
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The CT Unit Rectangle Function
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The product signal, g(t)rect(t), can be thought of as the signal, g(t),
“turned on” at time, t = -1/2 and “turned back off” at time, t = +1/2. 
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The CT Unit Triangle Function
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The unit triangle, defined this way, is related to the unit rectangle
through an operation called convolution to be introduced in
Chapter 3.
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The CT Unit Sinc Function
sinc
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The unit sinc
function is related to
the unit rectangle
function through the
Fourier transform,
to be introduced in
Chapter 5.
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The CT Dirichlet Function
drcl ,
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For odd N, the Dirichlet function is the sum of infinitely many
uniformly-spaced sinc functions.
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Combinations of CT Functions
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Transformations of CT Functions
Let a CT function be defined graphically by 

g ,t t( ) = >0 5and let
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Transformations of CT Functions
Amplitude Scaling, g gt A t( )→ ( )
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Transformations of CT Functions

Time shifting, t t t→ − 0
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Transformations of CT Functions
Time scaling, t

t
a

→
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Transformations of CT Functions

g gt A
t t

a
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A multiple transformation can be done in steps
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The sequence of the steps is significant
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Transformations of CT Functions
g gt A

t t
a

( )→ −





0Multiple transformations, 
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Transformations of CT Functions

Multiple transformations, A bt tg −( )0
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Transformations of CT Functions
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Transformations of CT Functions
Differentiation
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Transformations of CT Functions
Integration
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Even and Odd CT Functions
Even Functions Odd Functions

g gt t( ) = −( ) g gt t( ) = − −( )
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Even and Odd Parts of CT Functions

g
g g

e t
t t( ) = ( )+ −( )

2
The even part of a CT function is

The odd part of a CT function is g
g g

o t
t t( ) = ( )− −( )

2

A function whose even part is zero is odd and a function
whose odd part is zero is even.

The derivative of an even CT function is odd and the derivative
of an odd CT function is even.

The integral of an even CT function is an odd CT function, plus a
constant, and the integral of an odd CT function is even.
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Products of Even and Odd CT
Functions
Two Even Functions
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Products of Even and Odd CT
Functions

An Even Function and an Odd Function
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Products of Even and Odd CT
Functions

An Even Function and an Odd Function
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Products of Even and Odd CT
Functions
Two Odd Functions
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Integrals of Even and Odd CT
Functions

g gt dt t dt
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Periodic CT Functions

A function that is not periodic is aperiodic.

g gt t nT( ) = +( )If a CT function, g(t), is periodic,                          , where n is 
any integer and T is a period of the function. 

The minimum positive value of T for which                        is 
called the fundamental period of the function,     .  The reciprocal
of the fundamental period is the fundamental frequency,               . 

g gt t T( ) = +( )

f T0 01= /
T0
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Sums of CT Periodic Functions
The period of the sum of CT periodic functions is the least common
multiple of the periods of the individual functions summed.  If the 
least common multiple is infinite, the sum function is aperiodic.
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Discrete-Time Sinusoids

g cos cos gn A
mn

N
A mF n n[ ] = +







+( )2
2

0
0

π θ π θor or [[ ] = +( )A m ncos Ω0 θ

The general form of a periodic discrete-time (DT) sinusoid with 
fundamental period,      ,  is

where m and      are integers and      is therefore the reciprocal of 
an integer. Unlike a CT sinusoid, a DT sinusoid is not necessarily 
periodic. 

N0 F0

If a DT sinusoid has the form,                                      , then K must be
a ratio of integers (a rational number) for        to be periodic.  If K is
rational in the form, p/q, and all common factors in p and q have
been cancelled, then the fundamental period of the sinusoid is q, 
not q/p (unless p = 1). 

g cosn A Kn[ ] = +( )2π θ

N0

g n[ ]
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Discrete-Time Sinusoids
Periodic Sinusoids
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Discrete-Time Sinusoids
An Aperiodic Sinusoid
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Discrete-Time Sinusoids
Two DT sinusoids whose analytical expressions look different,

g cos1 12n A K n[ ] = +( )π θ g cos2 22n A K n[ ] = +( )π θand

may actually be the same.  If 

K K m2 1 2= + π

then (because n is discrete time and therefore an integer), 

A K n A K ncos cos2 21 2π θ π θ+( ) = +( )

,   where m is an integer

(Example on next slide)
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Discrete-Time Sinusoids
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Discrete-Time Exponentials
The form of the discrete-time exponential is

g n A n[ ] = α g n Ae n[ ] = βor

where α β= e

Real α Complex α



5/10/04 M. J. Roberts - All Rights Reserved 44

The Discrete-Time Impulse Function
δ n
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The DT unit impulse is a function in the ordinary sense (in
contrast with the CT unit impulse).  It has a sampling property,

A n n n A n
n

δ −[ ] [ ] = [ ]
=−∞

∞

∑ 0 0x x

but no scaling property.  That is,

δ δn an[ ] = [ ] , for any non-zero, finite integer a.
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The DT Unit Sequence Function
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The DT Unit Ramp Function
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The DT Rectangle Function
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The DT Comb Function

combN
m

n n mN
0 0[ ] = −[ ]
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Transformation of DT Functions
Let g[n] be graphically defined by

g ,n n[ ] = >0 15
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Transformation of DT Functions
Time Shifting n n n→ + 0 n0,       an integer
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Transformation of DT Functions

Time compression

n Kn→

K an integer > 1
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Transformation of DT Functions

Time expansion n
n
K

→ , K > 1

For all n such that n/K is an integer,            is defined. g
n
K







For all n such that n/K is not an integer,             is not defined.g
n
K
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Transformation of DT Functions
Differencing

∆g g gn n n[ ] = +[ ] − [ ]1
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Transformation of DT Functions
Accumulation

g hn m
m

n

[ ] = [ ]
=−∞
∑
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Even and Odd DT Functions

g
g g

e n
n n[ ] = [ ] + −[ ]

2
g

g g
o n

n n[ ] = [ ] − −[ ]
2

g gn n[ ] = −[ ] g gn n[ ] = − −[ ]
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Products of Even and Odd DT
Functions

Two Even Functions
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Products of Even and Odd DT
Functions

An Even Function and an Odd Function
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Products of Even and Odd DT
Functions

Two Odd Functions
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Accumulation of Even and Odd
DT Functions

g g gn n
n N

N

n

N

[ ] = [ ] + [ ]
=− =
∑ ∑0 2

1

g n
n N

N
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∑ 0
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Periodic DT Functions

n n mN→ +
A periodic DT function is one which is invariant to the
transformation,                      , where N is a period of the 
function and m is any integer.

The minimum positive integer value of N for which
                         is called the fundamental period, g gn n N[ ] = +[ ] N0
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Signal Energy and Power

E t dtx = ( )
−∞

∞

∫ x
2

The signal energy of a CT signal, x(t), is 

The signal energy of a DT signal, x[n], is

E nx
n

= [ ]
=−∞

∞

∑ x
2
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Signal Energy and Power
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Signal Energy and Power
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Signal Energy and Power

Some signals have infinite signal energy.  In that case
It is more convenient to deal with average signal power.

P
T

t dtx
T

T

T

= ( )
→∞

−

∫lim x
1 2

2

2

The average signal power of a CT signal, x(t), is

P
N

nx
N

n N

N

= [ ]
→∞

=−

−

∑lim x
1

2
2

1

The average signal power of a DT signal, x[n], is



5/10/04 M. J. Roberts - All Rights Reserved 65

Signal Energy and Power
For a periodic CT signal, x(t), the average signal power is

P
T

t dtx T
= ( )∫1 2

x

where T is any period of the signal.

P
N

nx
n N

= [ ]
=
∑1 2

x

For a periodic DT signal, x[n], the average signal power is

where N is any period of the signal.  (The notation,

means the sum over any set of consecutive n’s exactly N in length.) 
n N=
∑



5/10/04 M. J. Roberts - All Rights Reserved 66

Signal Energy and Power

A signal with finite signal energy is 
called an energy signal.

A signal with infinite signal energy and 
finite average signal power is called a 
power signal.


