Description and Analysis of
Systems



Systems

« Broadly speaking, a system is anything that
responds when stimulated or excited

* The systems most commonly analyzed by
engineers are artificial systems designed and
built by humans

e Engineering system analysisisthe
application of mathematical methods to the
design and analysis of systems

[ 5/10/04 M. J. Roberts - All Rights Reserved




Systems

e Systems have inputs and outputs

o Systems accept excitation signals at their
Inputs and produce response signals at their
outputs

o Systems are often usefully represented by
block diagrams

A single-input, single-output system block diagram

x(?) H =y
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System Examples
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A Multiple-Input, Multiple-
Output System Block Diagram
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CT and DT Systems

CT systems respond to and produce CT signals

x(7) H

X[p]l—— H

-y (1)

~-y|n]

DT systems respond to and produce DT signals
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An Electrical Circuit Viewed as a
System

An RC lowpass filter isasimple electrical system

It is excited by avoltage,v. (t) , and responds with a
voltage, v, (t)

It can be viewed or modeled as a single-input, single-
output system

R
Vin (_{S;._WOTL; -?Ow(f) v. (1)— H

_"Vout(t)
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Response of an RC Lowpass
Filter to a Step Excitation

If an RC lowpassfilter is excited by a step of voltage,

v, (t)=Au(t)

ItsSresponse is

Vo)

F
A
0 -'0 el
V. A%L e RC u
o
RC

If the excitation is doubled, the response doubles.
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A DT System

_|_

x[n] —(F J - y[n]
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Delay by onein
discrete time.

If the excitation, x[n], is the unit sequence, the responseis

y[n]

il = 5400
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If the excitation is doubled, the response doubles.
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Homogeneity

* In a homogeneous system, multiplying the
excitation by any constant (including
complex constants), multiplies the response
by the same constant.

Homogeneous System

x() — H F—y0

Multiplier

x(r)—@m H F— Ky

K
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Time Invariance

 |f an excitation causes a response and
delaying the excitation smply delays the
response by the same amount of time,
regardless of the amount of delay, then the
system Is time invariant

Time Invariant System

x[n]— H F——yln]

X[n}—= Delay, n, X no]__ ‘]—[ —> yln-n]
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Additivity
 |If one excitation causes aresponse and another excitation
causes another response and if, for any arbitrary excitations,

the sum of the two excitations causes a response which isthe
sum of the two responses, the system is said to be additive

Additive System

Xl(f)—b— 'J‘( —-—yl(f)

X, (1) —» ‘J‘( — Y,(0)

Adder

X, (1) + X(1)
Xl(t) 4"@ 1 = > ‘j—[ — yl(t) + Y2(Z)

X)(D)
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Linearity and LTI Systems

 |f asystem is both homogeneous and additive
itislinear.

e |f asystem isboth linear and time-invariant it
Iscalled an LTI system

e Some systems which are non-linear can be
accurately approximated for analytical
purposes by alinear system for small
excitations
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Stability

* Any system for which the response is
bounded for any arbitrary bounded excitation,
IS called a bounded-input-bounded-output
(BIBO) stable system
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Incremental Linearity

 |f asystem can be modeled asalinear system
with an offset added to itsresponseit Is
called an incrementally linear system

Incrementally Linear System

X(O— H =Y
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Causality

« Any system for which the response occurs
only during or after the time In which the
excitation is applied is called a causal system.

o Strictly speaking, all real physical systems are
causal
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Memory

o |f asystem’sresponse at any arbitrary time
depends only on the excitation at that same
time and not on the excitation or response at
any other time s called a static system and Is
sad to have no memory

e A system whose response at some arbitrary
time does depend on the excitation or
response at another time is called a dynamic
system and is said to have memory
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Static Non-Linearity

 Many real systems are non-linear because the
relationship between excitation amplitude
and response amplitude is non-linear

V-| Diagram for a
Linear Resistor

iJI.Ef) IEI )

i)y,
slope =~}E j v ( I)
»v(1) - V(1)

V-I Diagram for a Diode
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Static Non-Linearity

* Intheanalog multiplier below, if the two excitations are the
same single excitation signal, the response signal isthe
square of that single excitation signal

 Inthat case, doubling the excitation would cause the
response to increase by afactor of 4

« Such asystem is not homogeneous and therefore not linear
Analog

Multiplier
X,() -y (1) =X (D)X)(7)

Xy(2)
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Invertibility

* A systemissaid to beinvertibleif unique
excitations produce unique responses.

* |n other words, If asystem isinvertible,
knowledge of the response is sufficient to
determine the excitation

+ 0
\A I) ||
Thisfull-wave rectifier is

a non-invertible system
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Eigenfunctions of LTI Systems

 The eigenfunction of an LTI system isthe
complex exponential

 The eigenvalues are either real or, If
complex, occur in complex conjugate pairs

 Any LTI system excited by a complex
sinusoid responds with another complex
sinusoid of the same frequency, but generally
a different amplitude and phase

e All these statements are true of both CT and
DT systems
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Impulse Response of DT Systems

Discrete-time LTI systems are described mathematically
by difference equations of the form,

a,y[n +a,,y[n-4+-+a,_,y[n-D]
=b,x[n] +b,_, x[n=1] +---+b,_, x[n = N]

For any excitation, X[n], the response, y[n], can be found by
finding the response to x[n] as the only forcing function on the
right-hand side and then adding scaled and time-shifted
versions of that response to form y[n].

If X[n] isaunit impulse, the response to it as the only forcing
function is ssmply the homogeneous solution of the difference
eguation with initial conditions applied. The impulse response
Is conventionally designated by the symbol, h[n].
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Impulse Response of DT Systems

Since the impulse is applied to the system at time, n = 0, and
that is the only excitation of the system, the impulse response
IS zero before time, n = 0.

hin|]=0, n<0

After time n = 0, the impulse has come and gone and the
excitation isagain zero. Therefore for n > 0, the solution of
the difference equation describing the system is the
homogeneous sol ution.

h[n]=y,[n] , n>0

Therefore, the impulse response is of the form,
h[n] =y,[n]yn
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|mpulse Response Example

Let aDT system be described by
3y[] +2y[n -1 +y[n-2] =x[n
A
Impulsed|n|

The eigenfunction isthe DT complex exponential, a”

Substituting into the homogeneous difference equation,
a"+20" +a"? =0
Dividing through by oa"™
3a°+2a +1=0
Solving, a = -0.333+£)0.4714
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|mpulse Response Example

The homogeneous solution is then of the form,
h[n] = K,(-0.333+j0.4714)" + K,(-0.333 - j0.4714)"

The constants can be found be applying initial conditions.
For the case of unit impulse excitation at time, n = 0,

3h[0] +2h[0-1] +h[0-2] =x[0] =10 h[0] =3
3h[] + 2@[1?11 + h[l?Zl =x[] =00 h[1 =-;

1 =0

"3
0] = K,(-0.333+0.4714)° + K,(-0.333 - j0.4714)" = K, +K, =1
Y = K,(-0.333+j0.4714) + K,(-0.333 - j0.4714) = -

K,=0.1665+)0.1181 , K, =0.1665 —)0.1181
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|mpulse Response Example

The impulse response is then
_ 10.1665+ j0.1181)(-0.333+j0.4714)" O

o] =0 S

#(0.1665 - j0.1181)(-0.333~ j0.4714)" ]

which can aso be written in the forms,

n [GO.1665 + | 0-1181)ej 21856
h[n] =(0.5722)" 0 _ O
#(0.1665 — j0.1181)e '****"

n BD.1665(ej 21858n | o j2.1858n) [
h[n] = (0'5722) E"J 0.118](ej 2.1858n _e—j2.1858n)éu[n]

h[n] =(0.5722)"[0.333co5(2.1858n) - 0.2362sin(2.1858n)| u[ ]
h[n] = 0.4083(0.5722)" co5(2.1858n + 0.6169)
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|mpulse Response Example

h[n]
i
0.5
——o oo+ 'Tlli.!ob—»n
-5 10
-0.5 +

h[n] = 0.4083(0.5722)" co5(2.1858n + 0.6169)
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System Response

* Oncetheresponseto aunit impulselis
known, the response of any discrete-time LTI
system to any arbitrary excitation can be
found

« Any arbitrary excitation is simply a sequence
of amplitude-scaled and time-shifted DT
Impul ses

* Therefore the response is ssmply a sequence

of amplitude-scaled and time-shifted DT
Impul se responses
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Simple System Response Example

System Excitation
X[#]

24

.w
30 7

S ?tﬁam Impulse Response
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!
2__

—a-8-0-0-0-0-0-000 TTTTT"'M—.—.—.—.—.—.—.—.—.—.—- 11
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y[f’z]

2__
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More Complicated System
Response Example

x[7]

h[#]
f
19
AIJJ_UJ_‘_L'_‘_L._I_A_A_A_A_A_A_A\ 7l
10 5 5 10 15 20

System
Excitation

System
|mpulse
Response

System
Response
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The Convolution Sum

Theresponse, y[n], to an arbitrary excitation, x[n], is of the
form,

Y[n] :"'X[—l] h[n+1] +X[O]}'[ri +x[1] h[n—]_]+...

where h[n] i1s the impulse response. This can be written in
amore compact form,

(0]

y{n[= % mlh{n-m]

m=—oo

called the convolution sum.
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A Convolution Sum Example

x[#] h[#]
Fy Fy
-4 o —
*—> » *——a—w |1 —e *—o—o *—o—a—» [}
4 3 -2 -1 1 2 3 4 4 3 -2 -1 1 2 3 4
h[-#] hi# - m]
4 4
— {2 2 '
l i L]
4350 133 5" 350 n2ndinns
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A Convolution Sum Example

X[ n=-1 h-1 - ] [ n=0 hiO - 1]
A A
2 1> 2 )
‘ ‘ ‘ 1 ‘ ‘ _.'—1
"5 %5 1] 153" E3 20113 RN | I T N R R R T
x[m]h[-1 - m1] xX[m]h[O - m]
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A Convolution Sum Example

x[m] n=1 h1 - ] x[rm] n=72 h2 - ]
A
2 2 2- 2
1+— 1
4 5 -2 -1 1 2 3 4 4 3 2 1 1 2 3 4 4 3 -2 -1 2 4 4 3 2 1 2 3 4
X[mIh[1 - ] x[m]h[2 - m]
1
44 4
2
. . — o o »ill . . — o =
4 3 2 -1 1 2 3 4 4 3 -2 -1 1 2 3 4
yli]=6 y[2] =4
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A Convolution Sum Example

x[n] h[n]
k &
2—9 21
/] 1]
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yl#al
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Convolution Sum Properties

Discrete-time convolution is defined mathematically by
y[n] =x[n] Ch[n| = % x[m]h[n-m]|

m=—oo

The following properties can be proven from the definition.

x[n] DA n- ny| = Ax[n—ny]
L et

. y{n] =x{n| Ch[n
y[n=n,] =x[n] Oh[n= ny| =x[n—ny| O[]

y[n] -y[n~1] =x{r] c(n[n] - h{n-1]) = (x[n] ~x[n~1]) [}
and the sum of the impulse strengthsiny is the product of

the sum of the impulse strengths in x and the sum of the
Impulse strengthsin h.
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Convolution Sum Properties
(continued)

Commutativity
X[n| Oy[n] = y[n] Cx[n]
Associativity
(x[n] Oy[n]) Oz[n] = x[n] A(y[n] Oz ))
Distributivity

(X[ +y[n]) Cz[n] = x[n] C[n] +y[n] Cz[n]
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System I nterconnections

If the response of one system is the excitation of another
system the two systems are said to be cascade connected

X[n]—+ h [n]|—=X[n]«h [n]—{ h [n]|—=y[n]={x[n]*h,[n] }xh,[n]

X[n]—=h [n]*h,[n] [— Y[

The cascade connection of two systems can be viewed as
a single system whose impulse response is the convolution
of the two individual system impulse responses. Thisisa

direct consequence of the associativity property of
convolution.
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System I nterconnections

If two systems are excited by the same signal and their
responses are added they are said to be parallel connected.
x[n]xh,[n]

~ h,[n]
X[n]— } y[n]=x[n]xh,[n]+x[n]xh[n]=x[n]x{h, [n]+h,[n]}
= h,[n]

x[n]xh,[n]

X[n]— h [n]+h,[n] +y(n]

The parallel connection of two systems can be viewed as
a single system whose impulse response is the sum
of the two individual system impulse responses. Thisisa

direct consequence of the distributivity property of
convolution.
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Stability and Impulse Response

It can be shown that a BIBO-stable DT system has an
Impulse response that is absolutely summable. That is,

i h[n] isfinite

n=—o0
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Unit Impulse Response and Unit
Seguence Response

In any discrete-time LTI system let an excitation, X[n], produce
the response, y[n]. Then the excitation x[n] - X[n - 1] will
produce the response y[n] - y[n- 1] .

It follows then that the unit impulse response is the first
backward difference of the unit sequence response and,
conversely that the unit sequence response is the accumulation
of the unit impul se response.
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Complex Exponential Response

Let adiscrete-time LTI system be excited by a complex
exponential of the form,

x[n| = 2"

The response is the convolution of the excitation with the
Impul se response or

00

M= S 2°hn-m= 5 Z"hm

m=—oo m=—oo

which can be written as

=2 Wnjz"

m=—oo

. J

-
complex
constant
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Complex Exponential Response

The response of adiscrete-time LTI system to a complex
exponential excitation is another complex exponential of
the same functional form but multiplied by a complex
constant. That complex constant is

S hnjz"

n=—oo

Later thiswill be called the z transform of the impulse

response and will be one of the important transform
methods.
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lmpulse Response of CT Systems
Example

Let a CT system be described by

a,y"(t) +ayy'(t)+a,y(t) = x(t)
and let the excitation be aunit impulse at time, t = 0. Then the
response, y, isthe impulse response, h.

3, h"(t)+a h'(t) +a, h(t) = (t)

Since the impulse occurs at time, t = 0, and nothing has excited
the system before that time, the impulse response before time,

t =0, iszero. Aftertime, t =0, the impulse has occurred and
gone away. Therefore there is no excitation and the impulse
response is the homogeneous solution of the differential equation.
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lmpulse Response of CT Systems
Example

3, h"(t)+a h'(t) +a, h(t) = (t)

What happens at time, t = 0? The equation must be satisfied at

all times. So the left side of the equation must be a unit impulse.
We already know that the |eft side Is zero beforetime, t =0

because the system has never been excited. We know that the

left side is zero after time, t = 0, because it is the solution of the
homogeneous equation whose right side is zero. These two facts are
both consistent with an impulse. The impulse response might have
In it an impulse or derivatives of an impulse since all of these occur
only at time, t = 0. What the impulse response does havein it
depends on the form of the differential equation.
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Impulse Response of CT Systems

Example

3, h"(t) +a h(t) +ah(t) = 4(t)

Y

N\

Won't work
(These graphs are
1 Intended to depict
Will work ., thebehavior of the
Impul se response
and its derivatives
In an infinitessmal
: - interval centered at
Won't work .. t=0)
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lmpulse Response of CT Systems

Continuous-time LTI systems are described by differential
equations of the general form,

a,y"(t)+a, ,y" () +-- +ay(t) + a y(t)
=b_x"(t)+b__, x™(t)+--- +b x'(t) + b, x(t)

m

For all times, t<O0:
If the excitation, x(t), isan impulse, then for all time, t <0,
It iszero. Theresponse, y(1), is zero beforetime, t = 0,
because there has never been an excitation before that time.
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lmpulse Response of CT Systems

For all time, t > O:

The excitation is zero. The response is the homogeneous
solution of the differential equation.

At time, t = 0:
The excitation isan impulse. In general it would be possible
for the response to contain an impulse plus derivatives of an
Impulse because these all occur at time, t = 0 and are zero
before and after that time. Whether or not the response contains
an impulse or derivatives of an impulse at time, t = 0, depends
on the form of the differential equation,

3,y (t) +a,, Y1)+ +ayy'(t) + a y(t)
= by X™(t) +0, , XTI(E) +-- 4y x (1) + by (1)
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lmpulse Response of CT Systems

a,y"(t)+a,, Yy () +-- ey (1) + g y(t)
=b_x"(t)+b__, x"V(t)+--- +b x'(t) + b, x(t)

Casel: m<n
If the response contained an impulse a time, t = 0, then
the nth derivative of the response would contain the nth
derivative of an impulse. Since the excitation contains
only the mth derivative of an impulse and m< n, the
differential equation cannot be satisfied at time, t = 0.
Therefore the response cannot contain an impulse or any
derivatives of an impulse.
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lmpulse Response of CT Systems

a,y"(t) +a,, Y1)+ +ayy'(t) + a y(t)
= by X™(1) +0 , XTI(E) +-- + by X' (1) + by (1)

Case2: m=n
In this case the highest derivative of the excitation and
response are the same and the response could contain an
Impulse at time, t = 0, but no derivatives of an impulse.

Case3: m>n
In this case, the response could contain an impulse at
time, t = 0, plus derivatives of an impulse up to the
(m - n)th derivative.

Cases 2 and 3 arerare in the analysis of real systems.
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The Convolution Integral

If acontinuous-time LTI system is excited by an arbitrary
excitation, the response could be found approximately by
approximating the excitation as a sequence of contiguous

rectangular pulses of width, T .
X(1)

A

Excitation .

Approximate  — T UL

Excitation T - 1
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The Convolution Integral

Approximating the excitation as a pulse train can be expressed
mathematically by

x(t) O+ xe )rectEHT D+x rect +x( )rect[t_TpDer
g, g O 17, F

or
[ 1 nTD

Dnzoo (nT )reCtE—E

The excitation can be written in terms of pulses of width, T,
and unit area as

1 [t

) O Z T,x(nT, )rectg—g

n=-—oo

shifted unlt area pulse
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The Convolution Integral

L et the response to an unshifted pulse of unit area and width, T
be the “unit pulse response”,

h,(t)
Then, invoking linearity, the response to the overall excitation is
(approximately) a sum of shifted and scaled unit pulse responses
of the form,
y(t) Oy T,x(nT,)h,(t-nT,)

As T approaches zero, the unit pulses become unit impul ses,

the unit pulse response becomes the unit impul se response, h(t),
and the excitation and response become exact.
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The Convolution Integral

As T approaches zero, the expressions for the approximate
excitation and response approach the limiting exact forms,

Superposition Convolution
Integral Integral

X(t) = J X(7)5(t — 7)dr y(t) = J X(7)h(t —7)dr

Notice the similarity of the forms of the convolution integral for
CT systems and the convolution sum for DT systems,

(0]

y(t) = } X(7)h(t —7)dr y[n] = > x| m| h[n—m|

m=-—oo
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A Graphical Illustration of the
Convolution Integral

The convolution integral is defined by
x(t) Oh(t) = | X(1)h(t —7)dr

For illustration purposes | et the excitation, x(t), and the
Impulse response, h(t), be the two functions below.

h(z) X(7)

2\ 2
. 1 . 1

1 —1 1
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A Graphical Illustration of the

Convolution Integral

In the convolution integral thereis afactor, h(t — 1)

We can begin to visualize this quantity in the graphs below.

h(1t)

2

h(-t)

2

/

—1
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A Graphical Illustration of the
Convolution Integral

The functional transformation in going from h(t) to h(t - 1) Is

hr)DTE B 71)002 -h({r t))=h(t-T)

h(z-T)

g

—1]
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A Graphical Illustration of the
Convolution Integral

The convolution value is the area under the product of x(t)
and h(t - t). Thisareadependsonwhat tis. First, asan
example, let t = 5.

L x® ) X(Dh(>-1)
- T : I : —t T

| | =
_1 1 4 5 -1 |1 4 5

For this choice of t the area under the product is zero. Therefore

! y(t) = x(t) Oh(t)
then y(5) = O.
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A Graphical Illustration of the
Convolution Integral

Now lett = 0.
X(T)h(-7)
4
h(-t) 21 X(T)
=T [ 1 ¢ AT t
JX(’C)h(—T)dT

Therefore y(0) = 2, the area under the product.
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A Graphical Illustration of the
Convolution Integral

The process of convolving to find y(t) isillustrated below.

-1 t=-05 t=0 t=05 t=1 1

0 n ' o

NV

4 3 2 1

z
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Convolution Integral Properties

Ifg(t) =

X(t) OAS(t- t,) = Ax(t - t)
9,(t) 33(t) then gt —t,) = g, (t —t,) 0(t) = g, (t) O(t- t,)
13(1)=X(OTH() then y(1)=x(1)" () (O ()
and y(at) =|a/x(at) Oh(at)
Commutativity
X(t) Oy(t) = y(t) Ox(t)
Associativity
[x(t) Oy(t)] Cz(t) = x(t) O y(t) (1)
Distributivity

[x(t) +y(t)] Cz(t) = x(t) Oz(t) + y(t) Cz(t)
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System I nterconnections

The system-interconnection propertiesfor CT systems are

exactly the same asfor DT systems.

X() —h(t) —Xx(O) #h (1) — h,(1) =y (O)=[x(#)xh () ] hy,(7)

Cascade

Connection x(f) —= h, () * hy(t)

— y(t)

x(t)xh (1)

h

r

Connection x(t) xh (1)

() = h,)+h() -y

hy(#)
x(1)— y(O)=x()xh, )+ x(#)xh,()=x(1)* [h, (£)+h(1)]
Parallel )
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Stability and Impulse Response

A CT system isBIBO stableif itsimpulse response is
absolutely integrable. That isif

I h(t)dt isfinite.
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Unit Impulse Response and Unit
Step Response

In any continuous-time LTI system let an excitation, x(t),
produce the response, y(t). Then the excitation

d

a(x(t))

will produce the response
d

a(Y(t))

It follows then that the unit impulse response is the first
derivative of the unit step response and, conversely that the
unit step response is the integral of the unit impul se response.
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Complex Exponential Response

Let acontinuous-time LTI system be excited by a complex
exponential of the form,

x(t) =€

The response is the convolution of the excitation with the
Impul se response or

y(t)=h(t) Oe*= [ h(r)es"dr = e® [h(r)ear

'
complex constant

The quantity, I h(t)e>'dr , will later be designated the

Laplace transform of the impulse response and will be an
Important transform method for CT system analysis.
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Block Diagrams

A very useful method for describing and analyzing systemsis
the block diagram. A block diagram can be drawn directly
from the difference or differential equation which describes
the system. For example, if the system is described by

y[n] +3y[n -1 -2y[n-2] =x|n|

It can also be described by the block diagram below in which
“D” represents adelay of onein discrete time.

-y|n]
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It can also be described by the block diagram below.

But thisform of block diagram is not the preferred form.

Block Diagrams

If a CT system is described by the differential equation,

2y"(t) +5y'(t) + 4y(t) =x(t)

X(f) —~

1

4

-y(0)

T l
e d

4 dt

|

1L d

2 dt
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Block Diagrams

Although the previous block diagram is correct, it is not the
preferred way of representing CT systems in block-diagram
form. A preferred formisillustrated below.

y'l(t) y'(t)

X(f) —

1
2

P

Thisform is preferred because, as a practical matter,
Integrators are more desirable elements for an actual
hardware simulation than differentiators.
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Block Diagrams

-y()

y'(t) Y1)
This block diagram x(t)— L i i i
can be converted into :
the differentialeguation 3 |-
of the system by realizing that
If the response of the last integrator 7 L

IS y(t) that the excitation of that integrator
must bey’(t) and, similarly, the excitation of the previous
integrator must bey” (t). Then, describing the action of the
summer, the differential equation is

1 S

y" (1) =x(t) = y'(t) = 2y(t) O 2y" () + 5y'(t) + 4y(t) =

2
and thisisthe original differential equation.

x(t)
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