
The Fourier Series
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Representing a Signal

• The convolution method for finding the
response of a system to an excitation takes
advantage of the linearity and time-
invariance of the system and represents the
excitation as a linear combination of impulses
and the response as a linear combination of
impulse responses

• The Fourier series represents a signal as a
linear combination of complex sinusoids
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Linearity and Superposition
If an excitation can be expressed as a sum of complex sinusoids
the response can be expressed as the sum of responses to 
complex sinusoids.
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Real and Complex Sinusoids
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Jean Baptiste Joseph Fourier

3/21/1768 - 5/16/1830
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Continuous-
Time

Fourier
Series

Concept
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CT Fourier Series Definition
The Fourier series representation,         , of a signal, x(t),
over a time,                        , ist t t TF0 0< < +

xF t( )

x XF
j kf t

k

t k e F( ) = [ ] ( )

=−∞

∞

∑ 2π

where X[k] is the harmonic function, k is the harmonic
number and                  (pp. 212-215).  The harmonic function 
can be found from the signal as

f TF F=1/

X xk
T

t e dt
F

j kf t

t

t T

F

F

[ ] = ( ) − ( )
+

∫1 2

0

0

π

The signal and its harmonic function form a Fourier series
pair indicated by the notation,                           .  x Xt k( )← → [ ]FS
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CTFS of a Real Function

It can be shown (pp. 216-217) that the continuous-time
Fourier series (CTFS) harmonic function of any real-valued 
function, x(t), has the property that

X X*k k[ ] = −[ ]

One implication of this fact is that, for real-valued functions,
the magnitude of the harmonic function is an even function 
and the phase is an odd function.  
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The Trigonometric CTFS
The fact that, for a real-valued function, x(t),

X X*k k[ ] = −[ ]
also leads to the definition of an alternate form of the CTFS, 
the so-called trigonometric form.

x X X cos X sinF c c F st k kf t k kf( ) = [ ] + [ ] ( )( ) + [ ]0 2 2π π FF
k

t( )( ){ }
=

∞

∑
1

X x cosc
F

F

t

t T

k
T

t kf t dt
F

[ ] = ( ) ( )( )
+

∫2
2

0

0

π

X x sins
F

F

t

t T

k
T

t kf t dt
F

[ ] = ( ) ( )( )
+

∫2
2

0

0

π

where
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The Trigonometric CTFS
Since both the complex and trigonometric forms of the
CTFS represent a signal, there must be relationships 
between the harmonic functions.  Those relationships are
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Periodicity of the CTFS

It can be shown (pg. 218) that the CTFS representation,
of a function, x(t), is periodic with fundamental period,      .  
Therefore, if x(t) is also periodic with fundamental period,
      and if       is an integer multiple of      then the two functions
are equal for all t, not just in the interval,                         .

xF t( )
TF

t t t TF0 0< < +
TFT0 T0
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CTFS Example #1
Let a signal be defined by                                and let
                 which is the same as   

x cost t( ) = ( )2 400π
TF = 5 ms T0

X x cosc
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F
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t kf t dt
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∫2
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0

0
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∫
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CTFS Example #1
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CTFS Example #2
Let a signal be defined by                                and let
                   which is

x cost t( ) = ( )2 400π
2 0TTF =10 ms
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CTFS Example #2
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CTFS Example #3
Let                                                          and let x cos sint t t( ) = − ( )+ ( )1

2
3
4

20
1
2

30π π TF = 200 ms
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CTFS Example #3
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CTFS Example #3
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CTFS Example #3
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Linearity of the CTFS

These relations hold only if the harmonic functions, X, of all
the component functions, x, are based on the same
representation time.
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CTFS Example #4
Let the signal be a 50% duty-cycle square wave with an 
amplitude of one and a fundamental period , T0 1=

x rect combt t t( ) = ( )∗ ( )2
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CTFS Example #4
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CTFS Example #4
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CTFS Example #4
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CTFS Example #4
A graph of the magnitude and phase of the harmonic function
as a function of harmonic number is a good way of illustrating it.
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CTFS Example #5
Let                                 and let                      which is 
1.5 periods of this signal. 

x cost t( ) = ( )2 400π TF = 7 5. ms
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CTFS Example #5
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CTFS Example #5
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CTFS Example #5
The CTFS representation of this cosine is the signal
below, which is an odd function, and the discontinuities
make the representation have significant higher harmonic
content.  This is a very inelegant representation.
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CTFS of Even and Odd Functions

• For an even function
– The complex CTFS harmonic function,        , is

purely real

– The sine harmonic function,         , is zero

• For an odd function
– The complex CTFS harmonic function,        , is

purely imaginary

– The cosine harmonic function,         , is zero

Xs k[ ]

X k[ ]

X k[ ]

Xc k[ ]
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CTFS Example #6
This signal has no known functional description but it
can still be represented by a CTFS.
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CTFS Example #6
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CTFS Example #6
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CTFS Example #6
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CTFS Properties

Linearity

  α β α βx y X Yt t k k( )+ ( )← → [ ] + [ ]FS

Let a signal, x(t), have a fundamental period,       and let a
signal, y(t), have a fundamental period,       .  Let the CTFS
harmonic functions, each using the fundamental period as
the representation time,      , be X[k] and Y[k].  In the
properties which follow the two fundamental periods are the
same unless otherwise stated.

T x0

T y0

TF
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CTFS Properties

Time Shifting
  x Xt t e kj kf t−( )← → [ ]− ( )

0
2 0 0FS π

  x Xt t e kj k t−( )← → [ ]− ( )
0

0 0FS ω
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CTFS Properties

Frequency Shifting 
(Harmonic Number 

Shifting)

  e t k kj k f t2
0

0 0π( ) ( )← → −[ ]x XFS

  e t k kj k t0 0
0

ω( ) ( )← → −[ ]x XFS

A shift in frequency (harmonic number) corresponds to 
multiplication of the time function by a complex exponential.

Time Reversal   x X−( )← → −[ ]t kFS
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CTFS Properties
Time Scaling

Let z x ,t at a( ) = ( ) > 0

Case 1.  T
T

a
TF

x
z= =0

0

Z Xk k[ ] = [ ]

for z(t)

Case 2.  T TF x= 0 for z(t)

If a is an integer,

Z
X ,

k

k
a

k
a[ ] =













an integer

0 , otherwise
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CTFS Properties
Time Scaling (continued)
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CTFS Properties

Change of Representation Time

With              , T TF x= 0   x Xt k( )← → [ ]FS

With                 , T mTF x= 0   x Xt km( )← → [ ]FS

X
X ,

m k

k
m

k
m[ ] =













an integer

0 , otherwise

(m is any positive integer)
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CTFS Properties
Change of Representation Time
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CTFS Properties

Time Differentiation

  
d
dt

t j kf kx X( )( )← → ( ) [ ]FS 2 0π

  
d
dt

t j k kx X( )( )← → ( ) [ ]FS ω0

 FS← →

 FS← →
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Time Integration

Case 1.  X 0 0[ ] =

  
x

Xλ λ
π

( ) ← → [ ]
( )−∞

∫ d
k

j kf

t
FS

2 0

  
x

Xλ λ
ω

( ) ← → [ ]
( )−∞

∫ d
k

j k

t
FS

0

Case 2.  X 0 0[ ] ≠

x λ λ( )
−∞
∫ d
t

is not periodic

CTFS Properties
Case 1 Case 2
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CTFS Properties
Multiplication-Convolution Duality

  x y X Yt t k k( ) ( )← → [ ] ∗ [ ]FS

(The harmonic functions, X[k] and Y[k], must be based
on the same representation period,      .)TF

  x y X Yt t T k k( ) ( )← → [ ] [ ]FS
0

The symbol,    , indicates periodic convolution.
Periodic convolution is defined mathematically by

x y x yt t t d
T

( ) ( ) = ( ) −( )∫ τ τ τ
0

x y x yt t t tap( ) ( ) = ( )∗ ( ) where           is any single period ofxap t( ) x t( )
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CTFS Properties
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CTFS Properties

Conjugation

  x X* *t k( )← → −[ ]FS

Parseval’s Theorem

1

0

2 2

0T
t dt k

T
k

x X( ) = [ ]∫ ∑
=−∞

∞

The average power of a periodic signal is the sum of the
average powers in its harmonic components.
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Convergence of the CTFS

For continuous signals, 
convergence is exact at 
every point.

A Continuous Signal

Partial CTFS Sums

x XN
j kf t

k N

N

t k e( ) = [ ] ( )

=−
∑ 2 0π
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Convergence of the CTFS

For discontinuous signals, 
convergence is exact at 
every point of continuity.

Discontinuous Signal

Partial CTFS Sums
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Convergence of the CTFS

The Gibbs Phenomenon
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Discrete-
Time
Fourier
Series
Concept
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The Discrete-Time Fourier Series
The formal derivation of the discrete-time Fourier series (DTFS)
is on pages 259-262.  The results are

x XF
j kF n

k N

n k e F

F

[ ] = [ ] ( )

=
∑ 2π X xk

N
n e

F

j kF n

n n

n N

F

F

[ ] = [ ] − ( )

=

+ −

∑1 2
1

0

0
π

where       is the representation time,               , and the notation, NF F
NF

F

= 1

k N F=
∑

means a summation over any range of consecutive k’s exactly
       in length.NF
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The Discrete-Time Fourier Series
Notice that in

x XF
j kF n

k N

n k e F

F

[ ] = [ ] ( )

=
∑ 2π

the summation is over exactly one period, a finite  summation.  
This is because of the periodicity of the complex sinusoid, 

e j kF nF− ( )2π

in harmonic number, k.  That is, if k is increased by any integer
multiple of       the complex sinusoid does not change. NF

e ej kF n j k mN F nF F F− ( ) − +( )( )=2 2π π

This occurs because discrete time, n, is always an integer.

(m an integer)
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The Discrete-Time Fourier Series

  
x X X xn k e k

N
n ej kF n

k N

j kF n

n N

[ ] = [ ] ← → [ ] = [ ]( )

=

− ( )

=
∑ ∑2

0

20

0

0

0

1π πFS

or in terms of radian frequency

  
x X X xn k e k

N
n ej k n

k N

j k n

n N

[ ] = [ ] ← → [ ] = [ ]( )

=

− ( )

=
∑ ∑Ω Ω0

0

0

0

1

0

FS

where Ω0 0
0

2
2= =π π

F
N

In the very common case in which the representation time is
taken as the fundamental period,      , the DTFS isN0
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DTFS Example
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DTFS Properties
Let a signal, x[n], have a fundamental period,      , and let a
signal, y[n], have a fundamental period,       .  Let the DTFS
harmonic functions, each using the fundamental period as
the representation time,      , be X[k] and Y[k].  In the 
properties to follow the two fundamental periods are the same
unless otherwise stated.

N x0

N y0

NF

Linearity

  α β α βx y X Yt t k k( )+ ( )← → [ ] + [ ]FS
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DTFS Properties

Time Shifting   x Xn n e kj kF n−[ ] ← → [ ]− ( )
0

2 0 0FS π

  x Xn n e kj k n−[ ] ← → [ ]− ( )
0

0 0FS Ω
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DTFS Properties

Time Reversal   x X−[ ]← → −[ ]n kFS

Frequency Shifting
(Harmonic Number

Shifting)

  e n k kj k F n2
0

0 0π( ) [ ]← → −[ ]x XFS

  e n k kj k n0 0
0

Ω( ) [ ]← → −[ ]x XFS

Conjugation   x X* *n k[ ]← → −[ ]FS
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DTFS Properties
Time Scaling

Let z x ,n an a[ ] = [ ] > 0

If a is not an integer, some values of z[n] are undefined
and no DTFS can be found.  If a is an integer (other than
1) then z[n] is a decimated version of x[n] with some 
values missing and there cannot be a unique relationship
between their harmonic functions.  However, if

z
x ,

n

n
m

n
m[ ] =













an integer

0 , otherwise
then

Z Xk
m

k N mNF[ ] = [ ] =1
0  ,  
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DTFS Properties
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DTFS Properties

Change of Representation Time

With               , N NF x= 0   x Xn k[ ]← → [ ]FS

With                 , N qNF x= 0   x Xn kq[ ]← → [ ]FS

(q is any positive integer)

X
X ,

q k

k
q

k
q[ ] =













an integer

0 , otherwise
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DTFS Properties
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DTFS Properties

  
x

X
,m

k

e
k

m

n

j kF[ ]← → [ ]
−

≠
=−∞

− ( )∑ FS

1
02 0π

  
x

X
,m

k

e
k

m

n

j k[ ]← → [ ]
−

≠
=−∞

− ( )∑ FS

1
0

0Ω

Accumulation

Parseval’s 
Theorem

1

0

2 2

0 0
N

n k
n N k N

x X[ ] = [ ]
= =
∑ ∑
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DTFS Properties

First Backward 
Difference

  x x Xn n e kj kF[ ] − −[ ]← → −( ) [ ]− ( )1 1 2 0FS π

  x x Xn n e kj k[ ] − −[ ]← → −( ) [ ]− ( )1 1 0FS Ω

Multiplication-
Convolution 

Duality

  
x y Y X Y Xn n k k q k q

q N

[ ] [ ] ← → [ ] [ ] = [ ] −[ ]
=
∑FS

0

  x y Y Xn n N k k[ ] [ ] ← → [ ] [ ]FS
0
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DTFS Properties

 FS← →

 FS← →

 FS← →
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Convergence of the DTFS

• The DTFS converges exactly with a finite
number of terms.  It does not have a “Gibbs
phenomenon” in the same sense that the
CTFS does
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LTI Systems with Periodic
Excitation

The differential equation describing an RC lowpass filter is

RC t t tout out in′ ( )+ ( ) = ( )v v v

If the excitation,         , is periodic it can be expressed as a
CTFS,

vin t( )

v Vin in
j kf t

k

t k e( ) = [ ] ( )

=−∞

∞

∑ 2 0π

The equation for the kth harmonic alone is

RC t t t k eout k out k in k in
j kf t′ ( )+ ( ) = ( ) = [ ] ( )v v v V, , ,
2 0π
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LTI Systems with Periodic
Excitation

If the excitation is periodic, the response is also, with the
same fundamental period.  Therefore the response can be
expressed as a CTFS also.

v V,out k out
j kf tt k e( ) = [ ] ( )2 0π

Then the equation for the kth harmonic becomes

j k f RC k e k e k eout
j kf t

out
j kf t

in
j kf t2 0

2 2 20 0 0π π π πV V V[ ] + [ ] = [ ]( ) ( ) ( )

Notice that what was once a differential equation is now
an algebraic equation.
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LTI Systems with Periodic
Excitation

Solving the kth-harmonic equation,

V
V

out
ink

k
j k f RC

[ ] = [ ]
+2 10π

Then the response can be written as

v V
V

out out
j kf t

k

in j kf t

k

t k e
k

j k f RC
e( ) = [ ] = [ ]

+
( )

=−∞

∞
( )

=−∞

∞

∑ ∑2

0

20 0

2 1
π π

π
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LTI Systems with Periodic Excitation

The ratio,             , is the frequency response of the system.
V
V

out

in

k
k
[ ]
[ ]


