
The Fourier Transform
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Extending the CTFS

• The CTFS is a good analysis tool for systems
with periodic excitation but the CTFS cannot
represent an aperiodic signal for all time

• The continuous-time Fourier transform
(CTFT) can represent an aperiodic signal for
all time
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CTFS-to-CTFT Transition

Its CTFS harmonic function is X sinck
Aw
T

kw
T

[ ] =




0 0

Consider a periodic pulse-train signal, x(t), with duty cycle, 
w
T0

As the period,     , is increased, holding w constant, the duty 
cycle is decreased.  When the period becomes infinite (and 
the duty cycle becomes zero) x(t) is no longer periodic.

T0
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CTFS-to-CTFT Transition

w
T= 0

2 w
T= 0

10

Below are plots of the magnitude of X[k] for 50% and 10% duty
cycles.  As the period increases the sinc function widens and its
magnitude falls. As the period approaches infinity, the CTFS
harmonic function becomes an infinitely-wide sinc function with
zero amplitude.
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CTFS-to-CTFT Transition
This infinity-and-zero problem can be solved by normalizing 
the CTFS harmonic function.  Define a new “modified” CTFS 
harmonic function,

T k Aw w kf0 0X sinc[ ] = ( )( )
and graph it versus      instead of versus k.kf0
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CTFS-to-CTFT Transition
In the limit as the period approaches infinity, the modified
CTFS harmonic function approaches a function of continuous
frequency f (     ).kf0



5/10/04 M. J. Roberts - All Rights Reserved 7

Forward Inverse

  
X x xf t t e dtj ft( ) = ( )( ) = ( ) −

−∞

∞

∫F 2π

  
x X X-1t f f e dfj ft( ) = ( )( ) = ( ) +

−∞

∞

∫F 2π

 f  form

  
X xj t x t e dtj tω ω( ) = ( )( ) = ( ) −

−∞

∞

∫F
  
x X X-1t j j e dj t( ) = ( )( ) = ( ) +

−∞

∞

∫F ω
π

ω ωω1
2

 ω formForward Inverse

Definition of the CTFT

  x Xt f( )← → ( )F   x Xt j( )← → ( )F ωor

Commonly-used notation:
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Some Remarkable Implications
of the Fourier Transform

The CTFT expresses a finite-amplitude, real-valued, aperiodic 
signal which can also, in general, be time-limited, as a summation 
(an integral) of an infinite continuum of weighted, infinitesimal-
amplitude, complex sinusoids, each of which is unlimited in
time.  (Time limited means “having non-zero values only for a
finite time.”)
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Frequency Content

Lowpass Highpass

Bandpass
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Convergence and the
Generalized Fourier Transform

Let               .  Then from the 
definition of the CTFT, 

x t A( ) =

X f Ae dt A e dtj ft j ft( ) = =−

−∞

∞
−

−∞

∞

∫ ∫2 2π π

This integral does not converge so, 
strictly speaking, the CTFT does not 
exist.  
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Convergence and the Generalized
Fourier Transform

x ,σ
σ σt Ae t( ) = >− 0

Its CTFT integral,

does converge.

Xσ
σ πf Ae e dtt j ft( ) = − −

−∞

∞

∫ 2

But consider a similar function,



5/10/04 M. J. Roberts - All Rights Reserved 12

Convergence and the
Generalized Fourier Transform

Carrying out the integral,                                      .  Xσ
σ

σ π
f A

f
( ) =

+( )
2

22 2

If          then                                   .  The area under this
function is

f ≠ 0 lim
σ

σ
σ π→ +( )

=
0 2 2

2

2
0A

f

Area =
+( )−∞

∞

∫A
f

df
2

22 2

σ
σ π

which is A, independent of the value of σ.  So, in the limit as 

σ approaches zero, the CTFT has an area of A and is zero unless

           .  This exactly defines an impulse of strength, A.  
Therefore

f = 0

  A A fF← → ( )δ

Now let σ approach zero.
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Convergence and the
Generalized Fourier Transform

By a similar process it can be shown that

  
cos 2

1
20 0 0π δ δf t f f f f( )← → −( ) + +( )[ ]F

and

  
sin 2

20 0 0π δ δf t
j

f f f f( )← → +( ) − −( )[ ]F

These CTFT’s which involve impulses are called 
generalized Fourier transforms (probably because
the impulse is a generalized function).
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Convergence and the Generalized
Fourier Transform
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Negative Frequency
This signal is obviously a sinusoid.  How is it described
mathematically?

It could be described by

x cos cost A
t

T
A f t( ) =







= ( )2
2

0
0

π π

But it could also be described by

x cost A f t( ) = −( )( )2 0π
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Negative Frequency

x(t) could also be described by

x cos cos ,t A f t A f t A A A( ) = ( ) + −( )( ) + =1 0 2 0 1 22 2π π

x t A
e ej f t j f t

( ) = + −2 20 0

2

π π

and probably in a few other different-looking ways.  So who is
to say whether the frequency is positive or negative?  For the
purposes of signal analysis, it does not matter.

or
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CTFT Properties
If   F Fx X X and y Y Yt f j t f j( )( ) = ( ) ( ) ( )( ) = ( ) ( )or orω ω
then the following properties can be proven.

Linearity   α β α βx y X Yt t f f( )+ ( )← → ( )+ ( )F

  α β α ω β ωx y X Yt t j j( )+ ( )← → ( )+ ( )F
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CTFT Properties

Time Shifting

  x Xt t f e j ft−( )← → ( ) −
0

2 0F π

  x Xt t j e j t−( )← → ( ) −
0

0F ω ω
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CTFT Properties

  x Xt e f fj f t( ) ← → −( )+ 2
0

0π F

Frequency Shifting

  x Xt e j t( ) ← → −( )+ ω ω ω0
0

F
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CTFT Properties

Time Scaling   
x Xat

a
f
a

( )← → 





F 1

  
x Xat

a
j

a
( )← → 





F 1 ω

Frequency Scaling
  
1
a

t
a

afx X



 ← → ( )F

  
1
a

t
a

jax X



 ← → ( )F ω
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The “Uncertainty” Principle
The time and frequency scaling properties indicate that if a signal 
is expanded in one domain it is compressed in the other domain.
This is called the “uncertainty principle” of Fourier analysis.

  e e
t

f
− 



 − ( )← →

π π2 2

2

2

2F

  e et f− −← →π π2 2F
 e et f− −← →π π2 2

2F
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CTFT Properties

Transform of 
a Conjugate

  x X* *t f( )← → −( )F

  x X* *t j( )← → −( )F ω

Multiplication-
Convolution

Duality

  x y X Yt t f f( )∗ ( )← → ( ) ( )F

  x y X Yt t j j( )∗ ( )← → ( ) ( )F ω ω

  x y X Yt t f f( ) ( )← → ( )∗ ( )F

  
x y X Yt t j j( ) ( )← → ( )∗ ( )F 1

2π
ω ω
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CTFT Properties
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CTFT Properties
An important consequence of multiplication-convolution
duality is the concept of the transfer function.

In the frequency domain, the cascade connection multiplies
the transfer functions instead of convolving the impulse
responses.
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CTFT Properties

Time 
Differentiation

  
d
dt

t j f fx X( )( )← → ( )F 2π

  
d
dt

t j jx X( )( )← → ( )F ω ω

Modulation
  
x cos X Xt f t f f f f( ) ( )← → −( ) + +( )[ ]2

1
20 0 0π F

  
x cos X Xt t j j( ) ( )← → −( )( ) + +( )( )[ ]ω ω ω ω ω0 0 0

1
2

F

Transforms of
Periodic Signals

  
x X X Xt k e f k f kfj kf t

k k

F( ) = [ ] ← → ( ) = [ ] −( )− ( )

=−∞

∞

=−∞

∞

∑ ∑2
0

π δF

  
x X X Xt k e j k kj k t

k k

F( ) = [ ] ← → ( ) = [ ] −( )− ( )

=−∞

∞

=−∞

∞

∑ ∑ω ω π δ ω ωF 2 0
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CTFT Properties
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CTFT Properties

Parseval’s 
Theorem

x Xt dt f df( ) = ( )
−∞

∞

−∞

∞

∫ ∫2 2

x Xt dt j df( ) = ( )
−∞

∞

−∞

∞

∫ ∫2 21
2π

ω

Integral Definition
of an Impulse

e dy xj xy−

−∞

∞

∫ = ( )2π δ

Duality
  X x X xt f t f( )← → −( ) −( )← → ( )F Fand

  X x X xjt jt( )← → −( ) −( )← → ( )F F2 2π ω π ωand
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CTFT Properties

Total-Area
Integral

X x x0 2

0

( ) = ( )







 = ( )−

−∞

∞

→ −∞

∞

∫ ∫t e dt t dtj ft

f

π

x X X0 2

0

( ) = ( )







 = ( )+

−∞

∞

→ −∞

∞

∫ ∫f e df f dfj ft

t

π

X x x0
0

( ) = ( )







 = ( )−

−∞

∞

→ −∞

∞

∫ ∫t e dt t dtj tω

ω

x X X0
1

2
1

2
0

( ) = ( )







 = ( )+

−∞

∞

→ −∞

∞

∫ ∫π
ω ω

π
ω ωωj e d j dj t

t

Integration   
x

X
Xλ λ

π
δ( ) ← → ( ) + ( ) ( )

−∞
∫ d

f
j f

f
t

F

2
1
2

0

  
x

X
Xλ λ ω

ω
π δ ω( ) ← → ( ) + ( ) ( )

−∞
∫ d

j
j

t
F 0
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CTFT Properties

x X0( ) = ( )
−∞

∞

∫ f df

X x0( ) = ( )
−∞

∞

∫ t dt
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CTFT Properties
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Extending the DTFS

• Analogous to the CTFS, the DTFS is a good
analysis tool for systems with periodic
excitation but cannot represent an aperiodic
DT signal for all time

• The discrete-time Fourier transform (DTFT)
can represent an aperiodic DT signal for all
time
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DTFS-to-DTFT Transition

DT Pulse Train

This DT periodic rectangular-wave signal is analogous to the
CT periodic rectangular-wave signal used to illustrate the 
transition from the CTFS to the CTFT.
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DTFS-to-DTFT Transition

DTFS of 
DT Pulse Train

As the period of the
rectangular wave
increases, the period of
the DTFS increases
and the amplitude of
the DTFS decreases.
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DTFS-to-DTFT Transition
Normalized

DTFS of
DT Pulse Train

By multiplying the
DTFS by its period and
plotting versus
instead of k, the
amplitude of the DTFS
stays the same as the
period increases and
the period of the
normalized DTFS
stays at one.

kF0
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DTFS-to-DTFT Transition

The normalized DTFS approaches this limit as the DT
period approaches infinity.
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Definition of the DTFT

  
x X X xn F e dF F n ej Fn j Fn

n

[ ] = ( ) ← → ( ) = [ ]∫ ∑ −

=−∞

∞
2

1

2π πF

F  Form

  
x X X xn j e d j n ej n j n

n

[ ] = ( ) ← → ( ) = [ ]∫ ∑ −

=−∞

∞1
2 2π π

Ω Ω ΩΩ ΩF

Ω Form

ForwardInverse

ForwardInverse
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DTFT Properties

Linearity
  α β α βx y X Yn n F F[ ] + [ ]← → ( )+ ( )F

  α β α βx y X Yn n j j[ ] + [ ]← → ( )+ ( )F Ω Ω
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DTFT Properties
Time

Shifting
  x Xn n e Fj Fn−[ ] ← → ( )−

0
2 0F π

  x Xn n e jj n−[ ] ← → ( )−
0

0F Ω Ω
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DTFT Properties

  e n F Fj F n2
0

0π x X[ ]← → −( )F

  e n jj nΩ Ω Ω0
0x X[ ]← → −( )( )F

Frequency
Shifting

Time
Reversal

  x X−[ ]← → −( )n FF

  x X−[ ]← → −( )n jF Ω



5/10/04 M. J. Roberts - All Rights Reserved 40

DTFT Properties
  x x Xn n e Fj F[ ] − −[ ]← → −( ) ( )−1 1 2F π

Differencing

  x x Xn n e jj[ ] − −[ ]← → −( ) ( )−1 1F Ω Ω
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DTFT Properties

  
x

X
X combm

F
e

F
m

n

j F[ ]← → ( )
−

+ ( ) ( )
=−∞

−∑ F

1
1
2

02π
Accumulation

  
x

X
X combm

j
em

n

j[ ]← → ( )
−

+ ( ) 





=−∞
−∑ F Ω Ω

Ω1
1
2

0
2π
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DTFT Properties

As is true for other transforms, convolution in the time domain is 
equivalent to multiplication in the frequency domain

Multiplication-
Convolution

Duality

  x y X Yn n F F[ ] ∗ [ ]← → ( ) ( )F

  x y X Yn n j j[ ] ∗ [ ]← → ( ) ( )F Ω Ω

  x y X Yn n F F[ ] [ ] ← → ( ) ( )F

  
x y X Yn n j j[ ] [ ] ← → ( ) ( )F 1

2π
Ω Ω
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DTFT Properties
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DTFT Properties

Accumulation
Definition of a 
Comb Function

e Fj Fn

n

2π

=−∞

∞

∑ = ( )comb

The signal energy is proportional to the integral of the 
squared magnitude of the DTFT of the signal over one 
period. 

Parseval’s
Theorem x Xn j d

n

[ ] = ( )
=−∞

∞

∑ ∫2 2

2

1
2π π

Ω Ω

x Xn F dF
n

[ ] = ( )
=−∞

∞

∑ ∫2 2

1
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The Four Fourier Methods
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Relations Among Fourier Methods
Discrete Frequency Continuous Frequency

CT

DT
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CTFT - CTFS Relationship
X Xf k f kf

k

( ) = [ ] −( )
=−∞

∞

∑ δ 0
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CTFT - CTFS Relationship

X Xp p pk f kf[ ] = ( )
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CTFT - DTFT Relationship

Let x x comb xδ δt t
T

t
T

nT t nT
s s

s s
n

( ) = ( ) 





= ( ) −( )
=−∞

∞

∑1

and let x xn nTs[ ] = ( )

X XDTFT sF f F( ) = ( )δ X Xδ f
f
fDTFT

s

( ) =






X XDTFT s CTFT s
k

F f f F k( ) = −( )( )
=−∞

∞

∑

There is an “information equivalence” between          
and         .  They are both completely described by
the same set of numbers.

xδ t( )
x n[ ]
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CTFT - DTFT Relationship
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DTFS - DTFT Relationship

X XF k F kF
k

( ) = [ ] −( )
=−∞

∞

∑ δ 0
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DTFS - DTFT Relationship

X Xp
p

pk
N

kF[ ] = ( )1


