Fourier Transform Analysis of
Signals and Systems



|deal Filters

* Filters separate what i1s desired from what Is
not desired

 Inthe signals and systems context afilter
separates signals in one frequency range from
signals in another frequency range

 Anideal filter passesall signal power in its
passband without distortion and completely
blocks signal power outside its passband
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Distortion

« Distortion is construed in signal analysis to mean “changing

the shape” of asignal

* Multiplication of asignal by a constant (even a negative one)
or shifting it in time do not change its shape
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Distortion

Since a system can multiply by a constant or shift in time without
distortion, a distortionless system would have an impul se response
of the form,

h(t) = Ad(t —t,) | H(f) | | H(F) |
or A f AJL
h[n] :Aé[n—no] _ f . F
The corresponding
transfer functions are /H(/) /H{F)
i A
H(F) = Ag T2 =y NINN L
_ 1 P
or . -2TC o \ \
H(F) = Ag™12™" FLl
0
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Filter Classifications

There are four commonly-used classification of filters, lowpass,
highpass, bandpass and bandstop.

Ideal Lowpass Filter

Ideal Highpass Filter
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Filter Classifications

Ideal Bandpass Filter Ideal Bandstop Filter
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Bandwidth

e Bandwidth generally means “arange of
frequencies’
* Thisrange could be the range of frequencies

afilter passes or the range of frequencies
present in asignal

 Bandwidth istraditionally construed to be
range of frequencies in positive frequency
space
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Bandwidth

Common Bandwidth Definitions
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|mpulse Responses of Ideal Filters

Ideal CT Lowpass

h{?)
Wjﬂﬁﬂﬁ"&o—‘j

Ideal CT Highpass

h; Y
I

Ideal DT Lowpass

h[An]

il.....

—"'TnT""U""TE

Ideal DT Highpass

h[An]

—tﬂmﬂmﬂ"-’—

s

[ 5/10/04 M. J. Roberts - All Rights Reserved

° J




|mpulse Responses of Ideal Filters

Ideal CT Bandpass Ideal DT Bandpass
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Ideal CT Bandstop Ideal DT Bandstop
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|mpulse Response and Causality

« All the impulse responses of ideal filters
contain sinc functions, alone or In
combinations, which are infinite in extent

 Therefore all ideal filter impulse responses
begin beforetime, t =0

e Thismakesidea filters non-causal

 |deal filters cannot be physically realized, but
they can be closaly approximated
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Examples of Impulse Responses
and Freguency Responses of Redl
Causal Filters
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Examples of |mpulse Responses
and Freguency Responses of Redl
Causal Filters
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Examples of Causal Filter Effects

on Signals

Excitation of a Causal Lowpass Filter
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4

1

— t (ms)

1+ I

Response of a Causal Lowpass Filter
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Examples of Causal Filter Effects

on Signals

Excitation of a Causal Highpass Filter
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Examples of Causal Filter Effects
on Signals

Excitation of a Causal Bandpass Filter

Response of a Causal Bandpass Filter
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Examples of Causal Filter Effects
on Signals

Excitation of a Causal Lowpass Filter
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Two-Dimensional Filtering of Images

Causal Lowpass
Filtering
of Rowsin
an I[mage

. . Filtering ..
of Columnsin
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Two-Dimensional Filtering of Images

“*Non-Causal”
L owpass
Filtering

of Rowsin
an I[mage
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Two-Dimensional Filtering of Images
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The Power Spectrum
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Noise Removal

A very common use of filtersisto remove noise from asignal. If
the noise bandwidth is much greater than the signal bandwidth a
large improvement in signal fidelity is possible.
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Practical Passive Filters
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Practical Passive Filters
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L og-Magnitude Frequency-
Response Plots

Consider the two (different) transfer functions,

1 30
H.(f)= =
() j2rf +1 30-47Ff*+j62 1ir

and H,(f)
H,(f) H,(f)

m Jlk
10 | 0"/ 1o | e

When plotted on this scale, these magnitude frequency response
plots are indistinguishable.
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L og-Magnitude Frequency-
Response Plots

When the magnitude frequency responses are plotted on
alogarithmic scale the difference isvisible.

In/H( £) In/FL( £)
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Bode Diagrams

A Bode diagram is aplot of afreguency response in decibels
versus frequency on alogarithmic scale.

The Bel (B) isthe common (base 10) logarithm of a power ratio
and a decibel (dB) is one-tenth of a Bel.

The Bel is named in honor of Alexander Graham Bell.
A signal ratio, expressed in decibels, is 20 times the common

logarithm of the signal ratio because signal power is
proportional to the sguare of the signal.
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Bode Diagrams
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Bode Diagrams

Continuous-time LTI systems are described by equations
of the general form,

g‘s‘koltky 2

Fourier transforming, the transfer function is of the general
form,
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Bode Diagrams

A transfer function can be written in the form,

%l w[[l ] wl %l ] el
Ja): z, 1 ZZE ZNE
ou[l:jL j wl %l ] el

o, 0 =

D

wherethe“Z s’ are the values of jw (not w) at which the transfer

function goesto zero and the“p’s’ are the values of jw at

which the transfer function goesto infinity. TheseZsand p’'sare
commonly referred to as the “zeros’ and “poles’ of the system.
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Bode Diagrams

From the factored form of the transfer function a system can

be concelved as the cascade of ssimple systems, each of which
has only one numerator factor or one denominator factor. Since
the Bode diagram is logarithmic, multiplied transfer functions
add when expressed in dB.

H(yw)
X (1))— A -~ _ﬂ—h _ jm . — - ](!)
(JO) Z 1 z 7 W

______________________________________________________________
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Bode Diagrams

1

System Bode diagrams are formed i %)
by adding the Bode diagrams 4 P .
of the simple systems which arein 0'?3.’;}5" LA
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Bode Diagrams
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Bode Diagrams
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Bode Diagrams

| ](,0 | Slope of 6 dB/octave
i or 20 dB/decade

Differentiator
(Zero at zero)
i | - (D
0.1 1 10
[i®
T4
H(jw)=jw z
| | I > (D
0.1 1 10

[ 5/10/04 M. J. Roberts - All Rights Reserved 35 ]




Bode Diagrams
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Bode Diagrams
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Bode Diagrams
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Practical Active Filters
Operational Amplifiers

Theideal operational amplifier has infinite input impedance,
zero output impedance, infinite gain and infinite bandwidth.

Inverting Amplifier Non-Inverting Amplifier
(/)
——Z¢(/)
L) ‘
ro——Z; (/) - .
Vi () + vV,
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Practical Active Filters
Active Integrator

LOR w0~ i
vi(D) + v (1)

z il z

_ 1 V(1)
RC j27t

%r_d
integral
of V; ()
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Practical Active Filters
Active RC Lowpass Filter

V(f) R j2rfCR, +1
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Practical Active Filters

L owpass Filter

An integrator with feedback is alowpassfilter.

x(7) J(?— j - y(2)

y'(t) +y(t) = x(t)

1
jw+1

H(jw) =
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Practical Active Filters

Highpass Filter

t@—»y(r)
pat

X(1)—
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Discrete-Time Filters

DT Lowpass Filter

+ HF)= -
X|[n] —? - y[n] 1- T i
+ ! )
o
IH(F)|
_d
h[n] = 50 un] UU .
bl 1 1
13 Phase ﬁf H(F)
—_.+.—'.—'— 20 1 \/ ) :
[ 5/10/04 M. J. Roberts - All Rights Reserved 44 ]




Discrete-Time Filters

Comparison of aDT lowpass filter impulse response with
an RC passive lowpass filter impul se response

h[#]
F

-5 20

RC
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Discrete-Time Filters

DT Lowpass Filter RC Lowpass Filter
Frequency Response Frequency Response
IH(F)
z | H( j) |
1
1
Nz
» (1
- [ 1Y 1
1 RC RC
Phase of H(F) H( jo)
n &
Q0
/¢ /\ F 45
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Discrete-Time Filters
Moving-Average Filter

H(F)=¢e'™ drcl(F,N +1)

—yl7]

1 N=4 N=9
IH(F)| IH(F)|
1 1
\
2
1 0 i 1 0 T
N+1 N+1
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] In- | .
Always Stable

e
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Discrete-Time Filters
h[An]

ldeal DT Lowpass
Filter Impulse Response
—terggrettiter n
h[n]

! Almost-Ideal DT Lowpass

0.251
‘”h Filter Impulse Response
64 t

IH(F)

1 Almost-Ideal DT Lowpass
Filter Magnitude Frequency
Response
1 — F

—
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Discrete-Time Filters

Almost-ldeal DT Lowpass
Filter Magnitude Frequency
Response in dB

IH(F)l in dB
'

=100 +
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Advantages of Discrete-Time Filters

e They are amost insensitive to environmental
effects

o CT filtersat low frequencies may require very large
components, DT filters do not
o DT filters are often programmable making them

easy to modify

e DT signals can be stored indefinitely on magnetic
media, stored CT signals degrade over time

o DT filters can handle multiple signals by
multiplexing them
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Communication Systems

A naive, absurd communication system
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Communication Systems

A better communication system using electromagnetic waves
to carry information

Transmitter

G:- & nplifier Y .} .- ', ]

Z Amnplifier ~(I

Receiver

<7 g “ ', : Transmitter
l:- Amplifier ‘ Y Amplifier -D
Receiver
Miami Seattle
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Communication Systems

Transmitter < ) ' <
1) (
Receiver
' V%, - Transmitter
1)
Receiver
Seattle

Problems iiami

Antenna inefficiency at audio frequencies
All transmissions from all transmitters are in

the same bandwidth, thereby interfering with
each other

Solution  Frequency multiplexing using modulation
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Communication Systems
Double-Sideband Suppressed-Carrier (DSBSC) Modulation

y(t) = x(t) cos( 27 )
x(0)

Modulator
L VA WAVANAY: o
Multiplier \Y /Y NV
X(7) Y(f)\
X(H)cos(2rf 1)
cos(2mtf 1)
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Communication Systems

Double-Sideband Suppressed-Carrier (DSBSC) Modulation
Y(f)= X(f)D%[cS(f— f)+o(f +1)

X(f)
Lower Sideband Upper Sideband
M odul ator M
Multiplier J L\ - f
x(0 y(0 I
1Y ( f )| Lower Upper
‘ Sideband Sﬁband
cos 21 Il N,

ZEVIN AN
St T ity fofo o Ft
Frequency multiplexing is using a different carrier frequency,
f_, for each transmitter.
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Communication Systems
Double-Sideband Suppressed-Carrier (DSBSC) Modulation
Typical received signal by an antenna

X ()

MHM

02 cl f::l ‘f;:Z c3 c4

Synchronous Demodul atl on

Shifted Dcrw Shlfted Up
¥

‘ﬁ:4ﬁ:3ﬁ;2ﬁ:1 leﬁgﬁgm S

[ 5/10/04 M. J. Roberts - All Rights Reserved 56 ]




Communication Systems

Double-Sideband Transmitted-Carrier (DSBTC) Modulation

= [1+mx(t)| A, cos(27 )

Modulator L\ \ /\'\\//\A /\/\ .1

) m a@@% (0 1+x(z) A S

A cos(2mf1)

[1+X(t)]A L£0s(2mf.0)

AR AR, AinnAtAaaatALAALARAAE .
R
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Communication Systems

Double-Sideband Transmitted-Carrier (DSBTC) Modulation
Modulator

oA D® 0

1 Acos(2mfr)

_.Ifm fm ;f
Carrier — J‘T‘\ lY‘(f)l ﬁi— Carrier
7 N /'/': —~/
'ﬁ:'fm ¢ 'ﬁ:+fm ﬁ:'.fm ¢ fc+fm
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Communication Systems
Double-Sideband Transmitted-Carrier (DSBTC) Modulation

/Modulatin g Signal

MR ttARAR R AR AR
R s

\Modulated Carrier
Envelope Detector
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Communication Systems

Double-Sideband Transmitted-Carrier (DSBTC) Modulation

Overmodulation
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Communication Systems
Single-Sideband Suppressed-Carrier (SSBSC) Modulation

IX(f)
5 o
M odulator YDTm
Multiplier /Jj} N /'}Ih\‘f
lH(f)l _ﬁ_.f;'ﬂ g _.ﬁ_'_.)tl‘l'.l _f;__)ll-'ﬂ ) _)l;+_)l1;1
x(7) vy | YO K
SBS _Jg ff—’
1, AL.s
AN 7ES
cos(2mf 1) Jofw 7 ot fofa T St
Y ()
Al
_ﬁ_fm ¢ T)€+ﬁ11 ﬁ‘ﬁn c .)g"’"fm
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Communication Systems

Single-Sideband Suppressed-Carrier (SSBSC) Modulation

Y (/)
] |
7 ’ /
|YDEMOD(f)|
ﬂ : ﬂ : R -/
2 A Je 2f.
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Communication Systems

Quadrature Carrier Modulation

M odul ator Demodul ator
A
X (1) 4@ XD - L.PF —-xlf(t)
Sin(ZTCjZ 3] (_P_ 0 yr(t)_ Sil’l(2ﬂ:j§ t)
A
Xz(f)@ SYUN LPE [—» x, (1)
cos(2mf.1) i)
COS(21f.
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Phase and Group Delay

* Through the time- shifting property of the Fourier
transform, a linear phase shift as a function of
frequency corregponds to simple delay

 Most real sysem transfer functions have anon-
linear phase shift asafunction of frequency

* Non-linear phase shift delays some frequency
components more than others

* Thisleads to the concepts of phase delay and group
delay
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Phase and Group Delay

To illustrate phase and group delay let a system be excited
by
X(t) = Acodw, t?cos(a)t)

‘I\/Iodulatlon ‘ Carrier ‘

K(jo)= ARl @ @)t do o+ @) O
2 Fo(w+ @ - @)t § o @+ @)L

an amplitude-modulated carrier. To keep the analysis ssmple
suppose that the system has a transfer function whose
magnitude is the constant, 1, over the frequency range,

W, = W, </ W< @+ @
and whose phase is
Aw)
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Phase and Group Delay

The system response is

Y(ja))_AT[@(w Q- @)+ §w o @) H ot
2 Bo(w+@ - @)+ § o 0+ @)

After some considerable algebra, the time-domain response
can be written as

. + - [l w, + — — ]
Acosz Et A %)Zw ¢ @ %cos%umﬁ LA ‘%;wm‘(’ @ %’)%
|

| Carrier I M odulation
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Phase and Group Delay

Aw+q)+ ¢ o @ LA+ @)= ¢ w- @)

— Acoss o (]
W)= Acoseo.fy + 20, %‘303%" mH 20, an
|

| Carrier I M odulation

In this expression it is apparent that the carrier is shifted in time by

Aw+q)+ ¢ o- @)

200,

and the modulation is shifted in time by

Aw+a)- ¢ o- @)

20,
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Phase and Group Delay

If the phase function is alinear function of frequency,

dw)=-Kw

the two delays are the same, -K. If the phase function isthe
non-linear function,

A w)= —tan‘lgzaa)ig

which istypical of asingle-pole lowpass filter, with
w.=10w,

the carrier delay is f)ﬂ and the modulation delay is ——

C
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Phase and Group Delay

%(f) Excitation

A l Hlnr Al y
}HIHH" ”"HHIIHH" ‘”””H
y() Response
(UMM ot ARAINIRR UL A
- ””'HHIHH”” I

On this scale the delays are difficult to see.
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Phase and Group Delay

Excitation
Modulated Carrier

Modulation

4
In this magnified view
the difference between S

AT
carrier delay and \/ \/

modulation delay is

visible. Thedelay of  Fhase Delay— - L Grous Del
.. roup Delay

the carrier is phase | Modulaiion

delay and the delay [

of the modulation is N

group delay. M\/
Modulated Carrier T

Response
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Phase and Group Delay

The expression for modulation delay,

A o+ 6%;- ¢ w- @)

approaches

d (]
o (A ) aw

as the modulation frequency approaches zero. In that same
limit the expression for carrier delay,

Aw+a)+ ¢ w- @)
200,

A @)

0y

C

approaches
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Phase and Group Delay

Carrier time shift is proportional to phase shift at any frequency
and modulation time shift is proportional to the derivative with

respect to frequency o(©) ©
of the phase shift. } )
- (1)
Group delay is defined E“:»lope is the negative
& d e of phase delay
w)=—(d w |
@=-" (o)

When the modul ation
time shift is negative, -
the group delay is x| slopeisithe == ==
positive. 2 negative

of group

delay
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Pulse Amplitude Modulation

Pulse amplitude modulation is like DSBSC modulation
except that the “carrier” isarectangular pulse train,

Modul ator
Multiplier

X()—{ % —y(®
_ o 0t0-1 Ut [
p(t)= rect[WD[P combET m

p(9)

aw i N

— - ﬂ—];
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Pulse Amplitude Modulation

The response of the pulse modulator is

m—lﬁ—‘
e
o
3
O
HN
6_1‘r+
HH

and itsCTFT is

Y(f)=wf, S sinc(wid,)X(f - K,)

kK=-00

where f, = 1
-

S
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Pulse Amplitude Modulation

The CTFT of the

response is basically |X(‘f )

multiple replicas

of the CTFT of the

excitation with ~f

different amplitudes, _f) }

spaced apart by Y(f)

the pulse repetition }

rate. M - Sinc Function
pa P T“’%_M M 1 Mﬁ'ﬁ_;_.:&_m._nr_, f

.)1tw:1 .fl:ﬂ st'
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Discrete-Time Modulation

Discrete-time x[n] Modulation

modulation is }

analogous to - 7
continuous-time
modulation. A _
modulating signal clrl Carrier

multiplies acarrier. | B B

et the carrier be ] T T T n

c[n] = cos(27F,n)

If the modulationis ¢y Modulated Carrier
X[n], the response is

y{rd =] cos{27n) ﬂ
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Discrete-Time Modulation

.

I

I X (F)

I

I

Y(F) = X(F)® O(F) -

:%[x(F—FO)+x(F+FO)] T H H‘

1

IC())

1

2

2

N
~F

dtitt,

1 | E 1 2
| X (FYRCH)
nanpalanann’,
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Spectral Analysis

The heart of a“swept-frequency” type spectrum analyzer
Isamultiplier, like the one introduced in DSBSC modulation,

plus alowpass filter.

Multiplier
X(7) Xa(?) LPF (—y(?)

cos(2m/.1)

Multiplying by the cosine shifts the spectrum of x(t) by

f. and the signal power shifted into the passband of the
lowpass filter ismeasured. Then, asthe frequency, f_, Is
slowly “swept” over arange of frequencies, the spectrum
analyzer measures its signal power versus frequency.
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Spectral Analysis

One benefit of spectral analysisisillustrated below.
X (2

X,(2)

These two signals are different but exactly how they are
different is difficult to see by just looking at them.
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Spectral Analysis

The magnitude spectra of the two signals reveal immediately what the
differenceis. The second signal contains a sinusoid, or something
close to asinusoid, that causes the two large “ spikes”.

X, ()

2,0
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