
Fourier Transform Analysis of
Signals and Systems
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Ideal Filters

• Filters separate what is desired from what is
not desired

• In the signals and systems context a filter
separates signals in one frequency range from
signals in another frequency range

• An ideal filter passes all signal power in its
passband without distortion and completely
blocks signal power outside its passband
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Distortion
• Distortion is construed in signal analysis to mean “changing

the shape” of a signal
• Multiplication of a signal by a constant (even a negative one)

or shifting it in time do not change its shape

No Distortion Distortion
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Distortion

h t A t t( ) = −( )δ 0

Since a system can multiply by a constant or shift in time without 
distortion, a distortionless system would have an impulse response 
of the form,

h n A n n[ ] = −[ ]δ 0

or

The corresponding 
transfer functions are

H f Ae j ft( ) = − 2 0π

H F Ae j Fn( ) = − 2 0π
or
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Filter Classifications
There are four commonly-used classification of filters, lowpass,
highpass, bandpass and bandstop.
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Filter Classifications
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Bandwidth

• Bandwidth generally means “a range of
frequencies”

• This range could be the range of frequencies
a filter passes or the range of frequencies
present in a signal

• Bandwidth is traditionally construed to be
range of frequencies in positive frequency
space
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Bandwidth

Common Bandwidth Definitions
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Impulse Responses of Ideal Filters
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Impulse Responses of Ideal Filters
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Impulse Response and Causality

• All the impulse responses of ideal filters
contain sinc functions, alone or in
combinations, which are infinite in extent

• Therefore all ideal filter impulse responses
begin before time, t = 0

• This makes ideal filters non-causal

• Ideal filters cannot be physically realized, but
they can be closely approximated
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Examples of Impulse Responses
and Frequency Responses of Real

Causal Filters
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Examples of Impulse Responses
and Frequency Responses of Real

Causal Filters
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Examples of Causal Filter Effects
on Signals
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Examples of Causal Filter Effects
on Signals
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Examples of Causal Filter Effects
on Signals
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Examples of Causal Filter Effects
on Signals
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Two-Dimensional Filtering of Images

Causal Lowpass
Filtering

of Rows in 
an Image

Causal Lowpass
Filtering

of Columns in 
an Image
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Two-Dimensional Filtering of Images

“Non-Causal” 
Lowpass
Filtering

of Rows in 
an Image

“Non-Causal” 
Lowpass
Filtering

of Columns in 
an Image
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Two-Dimensional Filtering of Images

Causal 
Lowpass
Filtering

of Rows and
Columns in 

an Image

“Non-Causal” 
Lowpass
Filtering

of Rows and
Columns in 

an Image
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The Power Spectrum
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Noise Removal
A very common use of filters is to remove noise from a signal.  If
the noise bandwidth is much greater than the signal bandwidth a 
large improvement in signal fidelity is possible.
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Practical Passive Filters
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Practical Passive Filters
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Log-Magnitude Frequency-
Response Plots

Consider the two (different) transfer functions,

H H1 2 2 2

1
2 1

30
30 4 62

f
j f

f
f j f

( ) =
+

( ) =
− +π π π

and

When plotted on this scale, these magnitude frequency response 
plots are indistinguishable.
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Log-Magnitude Frequency-
Response Plots

When the magnitude frequency responses are plotted on
a logarithmic scale the difference is visible.



5/10/04 M. J. Roberts - All Rights Reserved 27

Bode Diagrams

A Bode diagram is a plot of a frequency response in decibels
versus frequency on a logarithmic scale.  

The Bel (B) is the common (base 10) logarithm of a power ratio 
and a decibel (dB) is one-tenth of a Bel.

The Bel is named in honor of Alexander Graham Bell.

A signal ratio, expressed in decibels, is 20 times the common
logarithm of the signal ratio because signal power is
proportional to the square of the signal. 
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Bode Diagrams
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Bode Diagrams
Continuous-time LTI systems are described by equations
of the general form,

a
d
dt

t b
d
dt

tk

k

k
k

D

k

k

k
k

N

y x( ) = ( )
= =
∑ ∑

0 0

Fourier transforming, the transfer function is of the general
form,
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Bode Diagrams

A transfer function can be written in the form,

H j A
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where the “z’s” are the values of jω (not ω) at which the transfer

function goes to zero and the “p’s” are the values of jω at

which the transfer function goes to infinity.  These z’s and p’s are 
commonly referred to as the “zeros” and “poles” of the system.
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Bode Diagrams
From the factored form of the transfer function a system can
be conceived as the cascade of simple systems, each of which
has only one numerator factor or one denominator factor.  Since
the Bode diagram is logarithmic, multiplied transfer functions
add when expressed in dB.
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Bode Diagrams

System Bode diagrams are formed 
by adding the Bode diagrams 
of the simple systems which are in 
cascade.  Each simple-system 
diagram is called a component 
diagram.  

             One Real Pole

H j
j
pk

ω ω( ) =
−

1

1
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Bode Diagrams

One real zero

H j
j
zk

ω ω( ) = −1
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Bode Diagrams

Integrator
(Pole at zero)

H j
j

ω
ω

( ) = 1
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Bode Diagrams

Differentiator
(Zero at zero)

H j jω ω( ) =
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Bode Diagrams

Frequency-Independent
Gain

H j Aω( ) =

(This phase plot is for A > 0.  If
A < 0, the phase would be a constant
π or - π radians.)



5/10/04 M. J. Roberts - All Rights Reserved 37

Bode Diagrams
Complex 
Pole Pair
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Bode Diagrams
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Practical Active Filters

The ideal operational amplifier has infinite input impedance, 
zero output impedance,  infinite gain and infinite bandwidth.
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Practical Active Filters
Active Integrator
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Practical Active Filters
Active RC Lowpass Filter
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Practical Active Filters

An integrator with feedback is a lowpass filter.

H j
j

ω
ω

( ) =
+

1
1

′( )+ ( ) = ( )y y xt t t

Lowpass Filter



5/10/04 M. J. Roberts - All Rights Reserved 43

Practical Active Filters

Highpass Filter
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Discrete-Time Filters
DT Lowpass Filter
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Discrete-Time Filters
Comparison of a DT lowpass filter impulse response with
an RC passive lowpass filter impulse response
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Discrete-Time Filters
DT Lowpass Filter 
Frequency Response

RC Lowpass Filter 
Frequency Response
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Discrete-Time Filters
Moving-Average Filter

h n
n n n n N

N
[ ] = [ ] + −[ ] + −[ ] + + −[ ]

+
δ δ δ δ1 2

1
L

H drcl ,F e F Nj NF( ) = +( )− π 1

Always Stable
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Discrete-Time Filters

Ideal DT Lowpass
Filter Impulse Response

Almost-Ideal DT Lowpass
Filter Impulse Response

Almost-Ideal DT Lowpass
Filter Magnitude Frequency 

Response
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Discrete-Time Filters

Almost-Ideal DT Lowpass
Filter Magnitude Frequency 

Response in dB
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Advantages of Discrete-Time Filters

• They are almost insensitive to environmental
effects

• CT filters at low frequencies may require very large
components, DT filters do not

• DT filters are often programmable making them
easy to modify

• DT signals can be stored indefinitely on magnetic
media, stored CT signals degrade over time

• DT filters can handle multiple signals by
multiplexing them
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Communication Systems

A naive, absurd communication system
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Communication Systems
A better communication system using electromagnetic waves
to carry information
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Communication Systems

Problems

Antenna inefficiency at audio frequencies

All transmissions from all transmitters are in 
the same bandwidth, thereby interfering with 
each other

Solution Frequency multiplexing using modulation
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Communication Systems
Double-Sideband Suppressed-Carrier (DSBSC) Modulation

y x cost t f tc( ) = ( ) ( )2π

Modulator
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Communication Systems

Y Xf f f f f fc c( ) = ( )∗ −( ) + +( )[ ]1
2

δ δ

Frequency multiplexing is using a different carrier frequency,
     , for each transmitter.fc

Modulator

Double-Sideband Suppressed-Carrier (DSBSC) Modulation
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Communication Systems

Typical received signal by an antenna

Synchronous Demodulation

Double-Sideband Suppressed-Carrier (DSBSC) Modulation
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Communication Systems
Double-Sideband Transmitted-Carrier (DSBTC) Modulation

y x cost m t A f tc c( ) = + ( )[ ] ( )1 2π

Modulator

m = 1
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Communication Systems

CarrierCarrier

Modulator

Double-Sideband Transmitted-Carrier (DSBTC) Modulation
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Communication Systems

Envelope Detector

Double-Sideband Transmitted-Carrier (DSBTC) Modulation
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Communication Systems

Double-Sideband Transmitted-Carrier (DSBTC) Modulation
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Communication Systems
Single-Sideband Suppressed-Carrier (SSBSC) Modulation

Modulator
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Communication Systems
Single-Sideband Suppressed-Carrier (SSBSC) Modulation
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Communication Systems
Quadrature Carrier Modulation

Modulator Demodulator
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Phase and Group Delay

• Through the time- shifting property of the Fourier
transform, a linear phase shift as a function of
frequency corresponds to simple delay

• Most real system transfer functions have a non-
linear phase shift as a function of frequency

• Non-linear phase shift delays some frequency
components more than others

• This leads to the concepts of phase delay and group
delay
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Phase and Group Delay
To illustrate phase and group delay let a system be excited 
by

x cos cost A t tm c( ) = ( ) ( )ω ω

X j
A c m c m

c m c m

ω π δ ω ω ω δ ω ω ω
δ ω ω ω δ ω ω ω

( ) =
− −( ) + − +( )

+ + −( ) + + +( )








2

an amplitude-modulated carrier.  To keep the analysis simple 
suppose that the system has a transfer function whose 
magnitude is the constant, 1, over the frequency range, 

ω ω ω ω ωc m c m− < < +

and whose phase is 
φ ω( )

Modulation Carrier



5/10/04 M. J. Roberts - All Rights Reserved 66

Phase and Group Delay

The system response is 

Y j
A

e
c m c m

c m c m

jω π δ ω ω ω δ ω ω ω
δ ω ω ω δ ω ω ω

φ ω( ) =
− −( ) + − +( )

+ + −( ) + + +( )








 ( )

2

After some considerable algebra, the time-domain response
can be written as

y cos cost A t tc
c m c m

c
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c m c m
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
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







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ω φ ω ω φ ω ω
ω

ω φ ω ω φ ω ω
ω2 2

Carrier Modulation
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Phase and Group Delay

In this expression it is apparent that the carrier is shifted in time by

φ ω ω φ ω ω
ω

c m c m

c

+( ) + −( )
2

and the modulation is shifted in time by

φ ω ω φ ω ω
ω

c m c m

m

+( ) − −( )
2

y cos cost A t tc
c m c m
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c m c m

m
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+( ) + −( )



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






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ω φ ω ω φ ω ω
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Carrier Modulation



5/10/04 M. J. Roberts - All Rights Reserved 68

Phase and Group Delay
If the phase function is a linear function of frequency, 

the two delays are the same, -K.  If the phase function is the 
non-linear function,

φ ω ω( ) = −K

φ ω ω
ω

( ) = −






−tan 1 2
c

which is typical of a single-pole lowpass filter, with 

ω ωc m=10

the carrier delay is 
1 107.

ωc

and the modulation delay is 
0 4.
ωc
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Phase and Group Delay

On this scale the delays are difficult to see.
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Phase and Group Delay

In this magnified view 
the difference between 
carrier delay and 
modulation delay is 
visible.  The delay of 
the carrier is phase 
delay and the delay 
of the modulation is 
group delay.
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Phase and Group Delay

φ ω ω φ ω ω
ω

c m c m

c

+( ) + −( )
2

φ ω ω φ ω ω
ω

c m c m

m

+( ) − −( )
2

The expression for modulation delay,

approaches
d
df

c

φ ω
ω ω

( )( )



 =

as the modulation frequency approaches zero.  In that same
limit the expression for carrier delay,

approaches 
φ ω

ω
c

c

( )
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Phase and Group Delay

τ ω
ω

φ ω( ) = − ( )( )d
d

When the modulation
time shift is negative, 
the group delay is 
positive.

Carrier time shift is proportional to phase shift at any frequency 
and modulation time shift is proportional to the derivative with 
respect to frequency 
of the phase shift.
   
Group delay is defined 
as
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Pulse Amplitude Modulation
Pulse amplitude modulation is like DSBSC modulation
except that the “carrier” is a rectangular pulse train, 

p rect combt
t
w T

t
Ts s

( ) = 



 ∗







1

Modulator
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Pulse Amplitude Modulation

The response of the pulse modulator is

y x p x rect combt t t t
t
w T

t
Ts s

( ) = ( ) ( ) = ( ) 



 ∗















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1

and its CTFT is

Y sinc Xf wf wkf f kfs s s
k

( ) = ( ) −( )
=−∞

∞

∑

where  f
Ts

s

= 1
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Pulse Amplitude Modulation

The CTFT of the 
response is basically 
multiple replicas
of the CTFT of the 
excitation with 
different amplitudes,
spaced apart by
the pulse repetition 
rate.
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Discrete-Time Modulation
Discrete-time
modulation is
analogous to
continuous-time
modulation.  A
modulating signal
multiplies a carrier.
Let the carrier be

If the modulation is
x[n], the response is

c cosn F n[ ] = ( )2 0π

y x cosn n F n[ ] = [ ] ( )2 0π
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Discrete-Time Modulation

Y X C

X X

F F F

F F F F

( ) = ( ) ( )

= −( ) + +( )[ ]1
2 0 0
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Spectral Analysis
The heart of a “swept-frequency” type spectrum analyzer
is a multiplier, like the one introduced in DSBSC modulation, 
plus a lowpass filter.

Multiplying by the cosine shifts the spectrum of x(t) by     
    and the signal power shifted into the passband of the 
lowpass filter is measured.  Then, as the frequency,     , is 
slowly “swept” over a range of frequencies, the spectrum
analyzer measures its signal power versus frequency.

fc

fc
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Spectral Analysis
One benefit of spectral analysis is illustrated below.

These two signals are different but exactly how they are
different is difficult to see by just looking at them.
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Spectral Analysis
The magnitude spectra of the two signals reveal immediately what the 
difference is.  The second signal contains a sinusoid, or something 
close to a sinusoid, that causes the two large “spikes”. 


