
Sampling and the Discrete
Fourier Transform
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Sampling Methods

• Sampling is most commonly done with two
devices, the sample-and-hold (S/H) and the
analog-to-digital-converter (ADC)

• The S/H acquires a CT signal at a point in
time and holds it for later use

• The ADC converts CT signal values at
discrete points in time into numerical codes
which can be stored in a digital system
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Sampling Methods

During the clock, c(t),
aperture time, the response
of the S/H is the same
as its excitation.  At the
end of that time, the
response holds that value
until the next aperture time.

Sample-and-Hold
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Sampling Methods
An ADC converts its input signal into a code.  The code can be 
output serially or in parallel.
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Sampling Methods
Excitation-Response Relationship for an ADC
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Sampling Methods
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Sampling Methods
Encoded signal samples can be converted back into a CT
signal by a digital-to-analog converter (DAC).
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Pulse Amplitude Modulation

Pulse amplitude modulation was introduced in Chapter 6.

p rect combt
t
w T

t
Ts s

( ) = 



 ∗







1

Modulator
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Pulse Amplitude Modulation

The response of the pulse modulator is
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and its CTFT is

Y sinc Xf wf wkf f kfs s s
k
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Pulse Amplitude Modulation

The CTFT of the 
response is basically 
multiple replicas
of the CTFT of the 
excitation with 
different amplitudes,
spaced apart by
the pulse repetition 
rate.
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Pulse Amplitude Modulation

If the pulse train is modified to make the pulses have a constant
area instead of a constant height, the pulse train becomes

p rect combt
w

t
w T

t
Ts s
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1 1

and the CTFT of the modulated pulse train becomes

Y sinc Xf f wkf f kfs s s
k

( ) = ( ) −( )
=−∞

∞

∑
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Pulse Amplitude Modulation

As the aperture time, w, of 
the pulses approaches zero 
the pulse train approaches 
an impulse train (a comb 
function) and the replicas 
of the original signal’s 
spectrum all approach the 
same size.  This limit is
called impulse sampling.

Modulator
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Sampling

The fundamental
consideration in
sampling theory is
how fast to sample a
signal to be able to
reconstruct the signal
from the samples.

High Sampling Rate

Medium Sampling Rate

Low Sampling Rate

CT Signal
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Claude Elwood Shannon
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Shannon’s Sampling Theorem

As an example,
let the CT signal
to be sampled be

x sinct A
t
w

( ) = 





Its CTFT is

X rectCTFT f Aw wf( ) = ( )
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Shannon’s Sampling Theorem
Sample the signal to form a DT signal,

x x sincn nT A
nT
ws

s[ ] = ( ) = 





and impulse sample the same signal to form the
CT impulse signal,

x sinc comb sincδ δt A
t
w

f f t A
nT
w

t nTs s
s

s
n

( ) = 



 ( ) = 



 −( )

=−∞

∞

∑
The DTFT of the sampled signal is

X rect combDTFT s sF Awf Fwf F( ) = ( ) ∗ ( )
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Shannon’s Sampling Theorem
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Shannon’s Sampling Theorem

X rectCTFT f Aw wf( ) = ( )

X rect combDTFT s sF Awf Fwf F( ) = ( ) ∗ ( )

X rectDTFT s s
k

F Awf F k wf( ) = −( )( )
=−∞

∞

∑

The CTFT of the original signal is

 a rectangle.

The DTFT of the sampled signal is

or

a periodic sequence of rectangles.
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Shannon’s Sampling Theorem
If the “k = 0” rectangle from the DTFT is isolated
and then the transformation,

is made, the transformation is

If this is now multiplied by      the result is

which is the CTFT of the original CT signal.

F
f
fs

→

Awf Fwf Awf wfs s srect rect( ) → ( )

Ts

T Awf Fwf Aw wf fs s s CTFTrect rect X( )[ ] = ( ) = ( )
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Shannon’s Sampling Theorem
In this example (but not for all signals and sampling rates) the
original signal can be recovered from the samples by this
process:

1. Find the DTFT of the DT signal.
2. Isolate the “k = 0” function from step 1.

3. Make the change of variable,               , in the result of step 2.
4. Multiply the result of step 3 by
5. Find the inverse CTFT of the result of step 4.
The recovery process works in this example because the multiple
replicas of the original signal’s CTFT do not overlap in the
DTFT.  They do not overlap because the original signal is
bandlimited and the sampling rate is high enough to separate
them.

F
f
fs

→
Ts
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Shannon’s Sampling Theorem

If the signal were
sampled at a lower rate,
the signal recovery
process would not work
because the replicas
would overlap and the
original CTFT function
shape would not be
clear.
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If a signal is impulse sampled, the CTFT of the impulse-
sampled signal is

For the example signal (the sinc function),

which is the same as

Shannon’s Sampling Theorem

X X comb Xδ f f T f f f kfCTFT s s CTFT s
k

( ) = ( )∗ ( ) = −( )
=−∞

∞

∑

X rectδ f f Aw w f kfs s
k

( ) = −( )( )
=−∞

∞

∑

X rectDTFT F
f

f
s s

k

F Awf f kf w
s

( ) = −( )( )→
=−∞

∞

∑
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Shannon’s Sampling Theorem
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Shannon’s Sampling Theorem
If the sampling rate is high enough, in the frequency range,

the CTFT of the original signal and the CTFT of the impulse-
sampled signal are identical except for a scaling factor of     .
Therefore, if the impulse-sampled signal were filtered by an ideal
lowpass filter with the correct corner frequency, the original signal
could be recovered from the impulse-sampled signal.

− < <f
f

fs s

2 2

fs
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Shannon’s Sampling Theorem

Suppose a signal is
bandlimited with this
CTFT magnitude.

If we impulse sample it at
a rate,

the CTFT of the impulse-
sampled signal will have
this magnitude.

f fs m= 4
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Shannon’s Sampling Theorem
Suppose the same signal
is now impulse sampled at
a rate,

The CTFT of the impulse-
sampled signal will have
this magnitude.

This is the minimum
sampling rate at which the
original signal could be
recovered.

f fs m= 2
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Shannon’s Sampling Theorem
Now the most common form of Shannon’s sampling theorem
can be stated.

If a signal is sampled for all time at a rate more
than twice the highest frequency at which its
CTFT is non-zero it can be exactly
reconstructed from the samples.

The highest frequency present in a signal is called its Nyquist
frequency.  The minimum sampling rate is called the Nyquist rate
which is twice the Nyquist frequency.  A signal sampled above
the Nyquist rate is oversampled and a signal sampled below the
Nyquist rate is undersampled.
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Harry Nyquist

2/7/1889 - 4/4/1976
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Timelimited and Bandlimited
Signals

• The sampling theorem says that it is possible to
sample a bandlimited signal at a rate sufficient to
exactly reconstruct the signal from the samples.

• But it also says that the signal must be sampled for
all time.  This requirement holds even for signals
which are timelimited (non-zero only for a finite
time).
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Timelimited and Bandlimited Signals
A signal that is timelimited
cannot be bandlimited.  Let x(t) be
a timelimited signal.  Then

The CTFT of x(t) is

Since this sinc function of f is not
limited in f, anything convolved
with it will also not be limited in f
and cannot be the CTFT of a
bandlimited signal.

x x rectt t
t t

t
( ) = ( ) −





0

∆

X X sincf f t tf e j ft( ) = ( )∗ ( ) −∆ ∆ 2 0π

rect
t t

t
−





0

∆
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Sampling Bandpass Signals

There are cases in which a sampling rate below the Nyquist rate
can also be sufficient to reconstruct a signal.  This applies to so-
called bandpass signals for which the width of the non-zero part of
the CTFT is small compared with its highest frequency.  In some
cases, sampling below the Nyquist rate will not cause the aliases to
overlap and the original signal could be recovered by using a
bandpass filter instead of a lowpass filter.

f fs < 2 2
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Interpolation
A CT signal can be recovered (theoretically) from an impulse-
sampled version by an ideal lowpass filter.  If the cutoff
frequency of the filter is     thenfc

X rect X ,f T
f
f

f f f f fs
c

m c s m( ) =






( ) < < −( )
2 δ
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Interpolation
The time-domain operation corresponding to the ideal
lowpass filter is convolution with a sinc function, the
inverse CTFT of the filter’s rectangular frequency
response.

Since the impulse-sampled signal is of the form,

the reconstructed original signal is

x sinc xt
f
f

f t tc

s
c( ) = ( ) ∗ ( )2 2 δ

x xδ δt nT t nTs s
n

( ) = ( ) −( )
=−∞

∞

∑

x x sinct
f
f

nT f t nTc

s
s c s

n

( ) = ( ) −( )( )
=−∞

∞

∑2 2
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Interpolation

If the sampling is at exactly the Nyquist rate, then

x x sinct nT
t nT

Ts
s

sn

( ) = ( ) −



=−∞

∞

∑
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Practical Interpolation

Sinc-function interpolation is theoretically perfect but it can
never be done in practice because it requires samples from
the signal for all time.  Therefore real interpolation must
make some compromises.  Probably the simplest realizable
interpolation technique is what a DAC does.
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Practical Interpolation
The operation of a DAC can be mathematically modeled by
a zero-order hold (ZOH), a device whose impulse response
is a rectangular pulse whose width is the same as the time
between samples.

h
,

,
rectt
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T
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1 0
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otherwise
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Practical Interpolation

If the signal is impulse sampled and that signal excites a ZOH,
the response is the same as that produced by a DAC when it is
excited by a stream of encoded sample values.  The transfer
function of the ZOH is a sinc function with linear phase shift.
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Practical Interpolation
The ZOH suppresses aliases but does not entirely eliminate them.



5/10/04 M. J. Roberts - All Rights Reserved 39

Practical Interpolation
A “natural” idea would be to simply draw straight lines between
sample values.  This cannot be done in real time because doing so
requires knowledge of the “next” sample value before it occurs
and that would require a non-causal system.  If the reconstruction
is delayed by one sample time, then it can be done with a causal
system.

Non-Causal First-
Order Hold

Causal First-
Order Hold
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Sampling a Sinusoid
Cosine sampled at twice its
Nyquist rate.  Samples uniquely
determine the signal.

Cosine sampled at exactly its
Nyquist rate.  Samples do not
uniquely determine the signal.

A different sinusoid of the same
frequency with exactly the
same samples as above.



5/10/04 M. J. Roberts - All Rights Reserved 41

Sampling a Sinusoid
Sine sampled at its Nyquist rate.
All the samples are zero.

Adding a sine at the
Nyquist frequency
(half the Nyquist
rate) to any signal
does not change the
samples.
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Sampling a Sinusoid

Sine sampled slightly above
its Nyquist rate

Two different sinusoids
sampled at the same rate
with the same samples

It can be shown (p. 516) that the samples from two sinusoids,

taken at the rate,    , are the same for any integer value of k.

x cos1 02t A f t( ) = +( )π θ x cos2 02t A f kf ts( ) = +( ) +( )π θ

fs
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Sampling DT Signals
One way of representing the
sampling of CT signals is by
impulse sampling, multiplying
the signal by an impulse train (a
comb).  DT signals are sampled
in an analogous way.  If x[n] is
the signal to be sampled, the
sampled signal is

where      is the discrete time
between samples and the DT

sampling rate is              .

x x combs Nn n n
s

[ ] = [ ] [ ]
Ns

F
Ns

s

= 1
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Sampling DT Signals
The DTFT of the sampled DT
signal is

In this example the aliases do not
overlap and it would be possible
to recover the original DT signal
from the samples.  The general
rule is that               where      is
the maximum DT frequency in
the signal.

X X comb

X comb

s s

s

F F N F

F
F
F

( ) = ( ) ( )

= ( ) 





F Fs m> 2 Fm
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Sampling DT Signals
Interpolation is accomplished by passing the impulse-sampled
DT signal through a DT lowpass filter.

The equivalent operation in the discrete-time domain is

X X combF F
F

F
F

Fs
s c

( ) = ( ) 





∗ ( )









1
rect

2

x x sincn n
F

F
F ns

c

s
c[ ] = [ ] ∗ ( )2

2
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Sampling DT Signals
Decimation

It is common practice, after sampling a DT signal, to remove
all the zero values created by the sampling process, leaving
only the non-zero values.  This process is decimation, first
introduced in Chapter 2.  The decimated DT signal is

and its DTFT is (p. 518)

Decimation is sometimes called downsampling.

x x xd s s sn N n N n[ ] = [ ] = [ ]

X Xd s
s

F
F
N

( ) =
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Sampling DT Signals
Decimation
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Sampling DT Signals

The opposite of downsampling is upsampling.  It is
simply the reverse of downsampling.  If the original signal
is x[n], then the upsampled signal is

where            zeros have been inserted between adjacent
values of x[n].  If X(F) is the DTFT of x[n], then

is the DTFT of          .

x
x ,

s s sn

n
N

n
N[ ] =













an integer

0 , otherwise
Ns −1

X Xs sF N F( ) = ( )
xs n[ ]
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Sampling DT Signals
The signal,          , can be lowpass filtered to interpolate
between the non-zero values and form          .

xs n[ ]
xi n[ ]
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Bandlimited Periodic Signals

• If a signal is bandlimited it can be properly
sampled according to the sampling theorem.

• If that signal is also periodic its CTFT
consists only of impulses.

• Since it is bandlimited, there is a finite
number of (non-zero) impulses.

• Therefore the signal can be exactly
represented by a finite set of numbers, the
impulse strengths.
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Bandlimited Periodic Signals
• If a bandlimited periodic signal is sampled

above the Nyquist rate over exactly one
fundamental period, that set of numbers is
sufficient to completely describe it

• If the sampling continued, these same
samples would be repeated in every
fundamental period

• So the number of numbers needed to
completely describe the signal is finite in
both the time and frequency domains
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Bandlimited Periodic Signals
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The Discrete Fourier Transform

The most widely used Fourier method in the world is the
Discrete Fourier Transform (DFT).  It is defined by

  
x X X xn

N
k e k n e

F

j
nk

N

k

N j
nk

N

n

N

F

F

F

F

[ ] = [ ] ← →  [ ] = [ ]
=

− −

=

−

∑ ∑1 2

0

1 2

0

1π πDFT

This should look familiar.  It is almost identical to the DTFS.
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n e
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n
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F

F

F

F

[ ] = [ ] ← → [ ] = [ ]
=

− −

=

−

∑ ∑
2

0

1 2

0

11π πFS

The difference is only a scaling factor.  There really should not
be two so similar Fourier methods with different names but,
for historical reasons, there are.
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The Discrete Fourier Transform

The relation between
the CTFT of a CT
signal and the DFT of
samples taken from it
will be illustrated in
the next few slides.
Let an original CT
signal, x(t), be sampled
times at a rate,     .

NF

fs

Original CT Signal
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The Discrete Fourier Transform

The sampled signal is

and its DTFT is

x xs sn nT[ ] = ( )

X Xs s s
n

F f f F n( ) = −( )( )
=−∞

∞

∑

Samples from Original Signal
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The Discrete Fourier Transform

Only       samples are
taken.  If the first sample
is taken at time, t = 0 (the
usual assumption) that is
equivalent to multiplying
the sampled signal by the
window function,

NF

w
,

,
n

n NF[ ] =
≤ <




1 0

0 otherwise

Sampled and Windowed Signal
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The Discrete Fourier Transform
The last step in the process
is to sample the
frequency-domain signal
which periodically repeats
the time-domain signal.
Then there are two
periodic impulse signals
which are related to each
other through the DTFS.
Multiplication of the
DTFS harmonic function
by the number of samples
in one period yields the
DFT.

Sampled, Windowed and 
Periodically-Repeated Signal
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The Discrete Fourier Transform

The original signal and the final signal are related by

In words, the CTFT of the original signal is transformed by
replacing f with        .  That result is convolved with the
DTFT of the window function.  Then that result is transformed

by replacing F by         .  Then that result is multiplied by        .   

f Fs

k
N

F

f
N

s

F

X drcl , Xsws
s

F

j F N
F F s F

k

N

k
f

N
e N F N f FF

F

[ ] = ( ) ∗ ( )[ ]− −( )
→

π 1

W(F)
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The Discrete Fourier Transform
It can be shown (pp. 530-532) that the DFT can be used to
approximate samples from the CTFT.  If the signal, x(t), is an
energy signal and is causal and if        samples are taken from
it over a finite time beginning at time, t = 0, at a rate,     , then
the relationship between the CTFT of x(t) and the DFT of the
samples taken from it is

where               .  For those harmonic numbers, k, for which

As the sampling rate and number of samples are increased,
this approximation is improved.

X sinc Xkf T e
k

N
kF s

j
k

N

F
DFT

F( ) ≅






[ ]
− π
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fs

f
f

NF
s

F

=
k NF<< X Xkf T kF s DFT( ) ≅ [ ]
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The Discrete Fourier Transform

If a signal, x(t), is bandlimited and periodic and is sampled
above the Nyquist rate over exactly one fundamental
period the relationship between the CTFS of the original
signal and the DFT of the samples is (pp. 532-535)

X X combDFT F CTFS Nk N k k
F

[ ] = [ ] ∗ [ ]

That is, the DFT is a periodically-repeated version of the
CTFS, scaled by the number of samples.  So the set of
impulse strengths in the base period of the DFT, divided by
the number of samples, is the same set of numbers as the
strengths of the CTFS impulses.
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The Fast Fourier Transform
Probably the most used computer algorithm in signal processing
is the fast Fourier transform (fft).  It is an efficient algorithm for
computing the DFT.  Consider a very simple case, a set of four
samples from which to compute a DFT.  The DFT formula is

It is convenient to use the notation,                ,  because then the
DFT formula can be written as
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The Fast Fourier Transform

The matrix multiplication requires       complex multiplications
and N(N - 1) complex additions.  The matrix product can be
re-written in the form,

because                       ,  m an integer.
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The Fast Fourier Transform

It is possible to factor the matrix into the product of two matrices.
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It can be shown (pp. 552-553) that 4 multiplications and 12
additions are required, compared with 16 multiplications and 12 
additions using the original matrix multiplication.



5/10/04 M. J. Roberts - All Rights Reserved 64

The Fast Fourier Transform
It is helpful to view the fft algorithm in signal-flow graph
form.
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The Fast Fourier Transform

16-Point
Signal-Flow

Graph
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The Fast Fourier Transform

The number of multiplications required for an fft algorithm of

length,           , where p is an integer  is        .   The speed

ratio in comparison with the direct DFT algorithm is        .

N p= 2

Np
2

2N
p

 p N Speed Ratio
__       __           FFT/DFT
 2 4         4
 4        16         8
 8       256        64
16    65536      8192


