Sampling and the Discrete
Fourier Transform



Sampling Methods

o Sampling Is most commonly done with two
devices, the sample-and-hold (S/H) and the
anal og-to-digital-converter (ADC)

 The S/H acquiresa CT signal at apoint In
time and holds it for later use

« The ADC converts CT signal values at
discrete points in time into numerical codes
which can be stored in adigital system
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Sampling Methods

Vi(D)

Sample-and-Hold e M\//\ g

During the clock, c(t),

aperture time, the response c(r)

of the S/H is the same — Aperture Time
asits excitation. At the ” ” ” ” ” ” ”

end of that time, the

response holds that value )

until the next aperture time. N
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Sampling Methods

An ADC convertsitsinput signal into acode. The code can be
output serially or in parallél.

Serial
/\/\,\/\ ADC T TH P

/\,\/\/\—- Parallel |~ 5 -
ADC [
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Sampling Methods
Excitation-Response Relationship for an ADC
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Sampling Methods

Original Sinusoid

t 3-Bit Quantized Approximation
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Sampling Methods

Encoded signal samples can be converted back intoaCT
signal by adigital-to-analog converter (DAC).

Response
Voltage
i
+V,
®
®
¢ Excitation
¢ -

Code
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111
000
001
010
011
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Pulse Amplitude Modul

ation

Pulse amplitude modulation was introduced in Chapter 6.

M odulator
Multiplier
X(7) y(®) Nt 1 t [
t)=rect — [Pcomb —
% Pt =reet oy ET ]
p(®)
- - 1_
W—f le—
> [
—f ﬂ—];
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Pulse Amplitude Modulation

The response of the pulse modulator is

m—lﬁ—‘
(@)
@)
=
O
T
ol
H5H

and itsCTFT is

Y(f)=wh, S sinc(wid,)X(f - K,)

k=-00

where f, = 1
-

S
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Pulse Amplitude Modulation

The CTFT of the
response is basically IX(f)
multiple replicas }

of the CTFT of the

excitation with /\ /\
different amplitudes, AR
spaced apart by o Ja
the pulse repetition Y (/)
rate.

-/

Sinc Function

-;_H-M--._.-M'M,P'\/ﬁ | \‘M_M'M~_,-M-H_p___ f
_fs_/—fm fm\];

[ 5/10/04 M. J. Roberts - All Rights Reserved 10 ]




Pulse Amplitude Modulation

If the pulse train is modified to make the pul ses have a constant
area instead of a constant height, the pulse train becomes

p(t) = 1rectD—DDicombE E

Ryl

and the CTFT of the modulated pulse train becomes

Y(£)= 1, S sinc(wid,)X(f - K,)

k=—00
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Pulse Amplitude Modulation

As the aperture time, w, of Modul ator

the pul ses approaches zero

the pulse train approaches

an impulse train (acomb x(1) X (1)
. . 8

function) and the replicas

of the original signal’s

spectrum all approach the ficomb(f;1)
A

samesize. Thislimitis
bttt
- 1

called impulse sampling.
—~ I
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The fundamental
consideration in
sampling theory is
how fast to sample a
signal to be ableto
reconstruct the signal
from the samples.

Sampling
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Claude Elwood Shannon
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Shannon’s Sampling Theorem

X(7)
A
A
As an example,
let the CT signal
to be sampled be ~ A N
AV \V A
X(t) = As nct O v W
- X ()
Its CTFT is <
X erer(f) = Awrect(wf ) i
T /
2w
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Shannon’s Sampling Theorem

Samplethe signal to formaDT signdl,

NT, [
Uw U

x[n] =x(nT,) = Asinc
and impulse sample the same signal to form the

CT impulse signdl,

NT, [

O DcS(t -nT,)

X5(t) = As nc%gfs comb( ft) = A i sinc

The DTFT of the sampled signal is

nN=-—o

X orer(F) = Awf, rect( Fwf, ) Ocomb(F)
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Shannon’s Sampling Theorem

x[#] X|n]

W/ W/

X pgerl )] X prerd)]
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Shannon’s Sampling Theorem

The CTFT of theoriginal signal is

Xerer(f) = Awrect(wf)
arectangle.

The DTFT of the sampled signal is

X orer(F) = Awf, rect( Fwf, ) Ocomb(F)
or .
Xorer(F) = Awf, " rect((F - k)wf,)

k=—00

a periodic sequence of rectangles.
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Shannon’s Sampling Theorem

If the“k = 0" rectangle from the DTFT isisolated
and then the transformation,

E_ .
IS made, the transformation i;
Awf, rect(Fwf,) - Awf, rect(wf)
If thisis now multiplied by T, theresult is
T,| Awf, rect(Fwf, )| = Awrect(wf ) = X orr( )

which isthe CTFT of the original CT signal.
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Shannon’s Sampling Theorem

In this example (but not for all signals and sampling rates) the
original signal can be recovered from the samples by this
Process:

2.

3.
4.

S.

Find the DTFT of the DT signal.
|solate the “k = 0” function from step 1.

f
Make the change of variable, F — —, intheresult of step 2.

Multiply the result of step 3 by T, T

Find theinverse CTFT of the result of step 4.

The recovery process works in this example because the multiple
replicas of the original signal’s CTFT do not overlap in the
DTFT. They do not overlap because the original signal is
bandlimited and the sampling rate is high enough to separate
them.
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Shannon’s Sampling Theorem

X[n]
A
A4
If the signal were il =3,
sampledat alowerrate, — /|t 702
the signal recovery AN
process would not work — “.\1;" }\ l;”n/ ~ N
because the replicas W
would overlap and the
original CTFT function Diif"? «(F)
shape would not be
clear. — J | L
R 3
2 -1 % 1 2
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Shannon’s Sampling Theorem

If asignal isimpulse sampled, the CTFT of the impulse-
sampled signal is

Xs(F) = X erer(F) Beomb(T,f) = £, Xeer (F - Kf)
k=—o0

For the example signal (the sinc function),

X(f)=f, i Awrect(w( f —kf,))

which isthe same as

XDTFT(F)‘FH: = Awf, " rect(( f - Kf,)w)

k=—-00
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Shannon’s Sampling Theorem
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Shannon’s Sampling Theorem

If the sampling rate is high enough, in the frequency range,

_£<f <£

2 2
the CTFT of the original signal and the CTFT of the impulse-

sampled signal are identical except for ascaling factor of f, .
Therefore, if the Impulse-sampled signal were filtered by an ideal
lowpass filter with the correct corner frequency, the original signal
could be recovered from the impulse-sampled signal.

|Xaff)|

|_| |_| ,—H- /Ide|ai| Lowpas|s_|F11ter
A
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Shannon’s Sampling Theorem

X))
Suppose asignal is M 4
bandlimited with this .
CTFT magnitude. 7
B g
If we impulse sample it at Jm Jm
arate
- f =41
_ Xs(/)]
the CTFT of the impulse- A
sampled signal will have Afg-
this magnitude. > M M M
| B | -/
£ Um Jm
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Shannon’s Sampling Theorem
Su the same signal IX(H)I
isr?cl)Jvc\)/S}empulse sampled aNA A ‘

arate, M Pf

f,=2f1, | |
'fm fm
The CTFT of the impulse-
sampled signal will have X))
i

this magnitude.

\Afs
Thisisthe minimum W\/M - f
sampling rate at which the | |

original signal could be JsJm Jnds

recovered.
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Shannon’s Sampling Theorem

Now the most common form of Shannon’ s sampling theorem
can be stated.

If a signal Issampled for all time at a rate more
than twice the highest frequency at which its
CTFT isnon-zero it can be exactly
reconstructed from the samples.

The highest frequency present in asignal is called its Nyquist
frequency. The minimum sampling rate is called the Nyquist rate
which is twice the Nyquist frequency. A signal sampled above
the Nyquist rate is oversampled and a signal sampled below the
Nyquist rate is under sampl ed.
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Harry Nyquist

2/7/1889 - 4/4/1976
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Timelimited and Bandlimited
Signals

e The sampling theorem saysthat it is possible to
sample abandlimited signal at arate sufficient to
exactly reconstruct the signal from the samples.

e But it also saysthat the agnal must be sampled for
all time. This requirement holds evenfor signals
which are timelimited (non-zero only for afinite
time).
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Timelimited and Bandlimited Signals

A signal that istimelimited
cannot be bandlimited. Let x(t) be
atimelimited signal. Then

— I-t,0
X(t) = x(t)rect - 0
The CTFT of x(t) is
j \/
X(f) = X(f)OAtsinc(Atf )e"i2 ; 2

Since this sinc function of f is not
limited in f, anything convolved
with it will also not be limited in f
and cannot bethe CTFT of a
bandlimited signal.
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Sampling Bandpass Signals

There are cases in which a sampling rate below the Nyquist rate
can also be sufficient to reconstruct asignal. This appliesto so-
called bandpass signals for which the width of the non-zero part of
the CTFT issmall compared with its highest frequency. In some
cases, sampling below the Nyquist rate will not cause the aliases to
overlap and the original signal could be recovered by using a
bandpass filter instead of alowpass filter.

|Xj(f)| IXs( /)
AL - fs <21:2 o Afs“ fS
T | -/ [ | l [ | -/
2 -h N1z -fo-f1 fi1/>
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Interpolation

A CT signal can be recovered (theoretically) from an impul se-
sampled version by an ideal lowpass filter. If the cutoff
frequency of thefilter is f_ then

X(f):TSrectD ff EX , fo<fo<(f,—1,)

X ( )l
|_| |_| H_ /Ide|ai| Lowpas|s_|F11ter
I —/
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Interpolation

The time-domain operation corresponding to the ideal
lowpass filter is convolution with asinc function, the
Inverse CTFT of thefilter’ s rectangular frequency

response. ¢
X(t) = 2f—csinc(2 f.t) Ox,(t)

Since the impulse-sampled signal is of the form,

x5 (t) = niox(nTS)cS(t ~nT.)

the reconstructed original signal is

x(t) = zEniox(nTS)sinc(Z f,(t-nT,))
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Interpolation

If the sampling is at exactly the Nyquist rate, then

nT LU

x(t) = Z (nT)smc%—E

n=
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Practical Interpolation

Sinc-function interpolation is theoretically perfect but it can
never be done in practice because it requires samples from
the signal for al time. Therefore real interpolation must
make some compromises. Probably the ssimplest realizable
Interpolation technique iswhat a DAC does.

X(7)

- ﬁ—
b 3 - \
- b
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Practical Interpolation

The operation of a DAC can be mathematically modeled by
a zero-order hold (ZOH), a device whose impulse response

IS arectangular pulse whose width is the same as the time
between samples. T D

A, 0<t<T, D_
h(t)_Ep, otherW|seD rect% %

h(?)
A

>

1
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Practical Interpolation

If the signal is impulse sampled and that signal excites a ZOH,
the response is the same as that produced by a DAC when it is
excited by a stream of encoded sample values. The transfer

function of the ZOH is a sinc function with linear phase shift.
H(f)
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Practical Interpolation

The ZOH suppresses aliases but does not entirely eliminate them.

Original Signal Zero-Order-Hold Transfer Function
X! H(!
-/ i f
Sampled Signal Reconstructed Signal
X () XLHH!

[

Y. |
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Practical Interpolation

A “natural” ideawould be to smply draw straight lines between
sample values. This cannot be donein real time because doing so
requires knowledge of the “next” sample value before it occurs
and that would require a non-causal system. If the reconstruction
IS delayed by one sample time, then it can be done with a causal
system.

Non-Causal First- Causal First-
<0 Order Hold «p  Order Hold
ﬂ\ ¥
~ b - - I'/ ‘\
\ ~~s‘\ ;'- = ‘\\
\/ \ w1 H}&/ “‘\\'; t
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Sampling a Sinusoid

Cosine sampled at twice its
Nyquist rate. Samples uniquely
determine the signal.

Cosine sampled at exactly its
Nyquist rate. Samples do not
uniquely determine the signal.

A different sinusoid of the same
frequency with exactly the

same samples as above.
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Sampling a Sinusoid
X|n
T ,ﬂ\/xff) P Sine sampled at its Nyquist rate.

A A ANE n All the samples are zero.

x[n] = x(nT))

x(t)
i

- . .
d L AN 'T'l AN X! Ifl - ! - L L A e L . n
! - "\.-.‘." \_" 'l; - *_.Hl"" '.J‘ P \\1‘ L '\.*"‘.,.'

Adding asine at the NI

NquI st frequency As-idn%nn)
(half the Nyquist t

1

rate) to any signal A AN AW AN AL AL U
does not change the
ot
Sampl €S x[n]+Asin(mn)
F §
? _ O ¢ g s “ ’Hﬁ
K llb Ik\l r‘r\"tl ‘Ir\ ! \\1 ‘Jf ' j‘r._\.. r‘I 1‘. on
1+ I‘\J{ ‘J\JJ e *"-J? I'x ‘,rx llri\ | l\\ I.IJ MX\.;
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Sampling a Sinusoid

‘ X0
yof I ‘ Sine sampled slightly above

2l *I -~ 1l Its Nyquist rate

AN ER AN A iR Twodifferent sinusoids
RN NG R Y i, .n Sampled at the samerate

— R e ey
RN ERTRNEEY Y T RV IR EIY HR Y :
HIRTAN N TR VIR VAN [ AR EAN [ TR TR TAY S with the same samples
' i A R T JRRTERTIN B
¥ ¥ J S o i ! Jd /-J

It can be shown (p. 516) that the samples from two sinusoids,

x,(t)= Acos(2rft + 6)  x,(t)= Acos(2r( f, +kf,)t + 6)

taken at therate, f_, are the same for any integer value of k.
2 ]
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Sampling DT Signals

One way of representing the XE”]
sampling of CT signalsis by

Impulse sampling, multiplying ] ] ”HH]

thesignal by animpulsetrain (@ [ —tle oy
comb). DT signals are sampled l

in an analogous way. If x[n] is comb,[#]

the signal to be sampled, the }

sampled signal is o I [ [ I
——— 7l

xs[n] = x[n] comb, [}

where N_is the discrete time X |7]
between samplesand the DT

sampling rateisFS:Ni. - l

S
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Sampling DT Signals

The DTFT of the sampled DT | X (F)l
signal is
A
X (F)=X(F)® comb(N,F) A j& A e
. OF O 1 E, 1
=X(F)® CombEF_SE comb( £ )
Inthisexamplethe aliasesdonot T T T TF+ T T T T
overlap and it would be possible | a L . F
to recover the original DT signal -1 : 1
from the samples. The genera X, ()
rulelsthat FS>2mehereFm_|s ---AAA}{E AAAN
the maximum DT freguency in 1 F )
the signal.
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Sampling DT Signals

Interpolation is accomplished by passing the impul se-sampled
DT signal through aDT lowpassfilter.

L1 UF O

X(F)= XS(F)FrectEZF EDcomb(F)E

The equivalent operation in the discrete-time domain is

x[n] = x[n] D%sinc(ZFcn)

S
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Sampling DT Signals

Decimation

It iscommon practice, after sampling aDT signal, to remove
all the zero values created by the sampling process, leaving
only the non-zero values. This process is decimation, first
introduced in Chapter 2. The decimated DT signal is

Xa[N] = X[ Non| = X[ N;n]

and its DTFT is(p. 518)
OF O

Xo(F)=XE B

Decimation is sometimes called downsampling.

[ 5/10/04 M. J. Roberts - All Rights Reserved 46 ]




Sampling DT Signals

Decimation
xEn] I X ()
A
1 mthr o j{ L,
ll l 1 E, 1
XS X (F)I
Xd
4 IXd(F)I
| . ML}:—_AIL,F
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Sampling DT Signals

The opposite of downsampling is upsampling. Itis
simply the reverse of downsampling. If the original signal
IS X[n], then the upsampled signal is

D ndon an integer
xJn =0 HBNH
Eb , otherW|se

where N, —1 zeros have been inserted between adjacent
values of x[n]. If X(F)isthe DTFT of x[n], then

X,(F)=X(N,F)
isthe DTFT of x[n] .
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Sampling DT Signals

Thesignal, x[n|, can be lowpass filtered to interpolate
between the non-zero values and form x;[n] .

<[] X(F)
l' » 71 _:1 1 =F
x 1] X (F)
A A
1 1 1
N,
X;ln] IX.(P)
A
ertrertlltee .0 L p A K A;F
-1 1
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Bandlimited Periodic Signals

o |f asignal I1sbandlimited it can be properly

sampled according to the sampling theorem.

 |If that signal Isalso periodic its CTFT
consists only of impulses.

 Sinceit isbandlimited, thereisafinite
number of (non-zero) Impul ses.

* Therefore the signal can be exactly
represented by afinite set of numbers, the
Impul se strengths.

[ 5/10/04 M. J. Roberts - All Rights Reserved




Bandlimited Periodic Signals

 |f abandlimited periodic signal is sampled
above the Nyquist rate over exactly one
fundamental period, that set of numbersis
sufficient to completely describe it

* |f the sampling continued, these same
samples would be repeated In every
fundamental period

e S0 the number of numbers needed to
completely describe the signal isfinitein
both the time and frequency domains
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Bandlimited Periodic Signals

x(7)

051}
A J\ A J\ il
/

U TAT AT AV th e

-0.5

T, 0
X|[7]
: (')%(F )| DTFT
0.5 '
' 111 [ s 1 4 . §
05 50 oTET
]\{) 20.8
Xs(0)
0.5
H -390 390 f
1* bhell | e
| | -
054 i
[}

[ 5/10/04 M. J. Roberts - All Rights Reserved 52 ]




The Discrete Fourier Transform

The most widely used Fourier method in the world isthe
Discrete Fourier Transform (DFT). It isdefined by

X[ 1] :I\IlNgx[k]ejant P X[K] =

F

Ng -1 .~ _nk

> x[n]e_Jzn'TF

n=0

This should look familiar. It isamost identical to the DTFS.

Ng -1 .~ nk nk

x[n] = ;) X[k]ejanF B - X[K] :NlF FZ(_) x[n]e_jzn'TF

The differenceisonly ascaling factor. Therereally should not
be two so similar Fourier methods with different names but,
for historical reasons, there are.
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The Discrete Fourier Transform

The relation between
the CTFT of aCT
signal and the DFT of
samples taken from it
will beillustrated in
the next few dlides.
Let anoriginal CT

X( )l

0.381
Phase of X( /)

signal, x(t), be sampled N “

timesat arate, f, .

l

=T

| 510004
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The Discrete Fourier Transform

xdn]  Samples from Original Signal

The sampled signal is

x[n] = x(nT,) L))

8.3039
and itsDTFT is \‘v\ M /J%\ M ‘/,.!!
00 ) ' 3 - F
XS(F): fS Z X(fS(F _n)) Phase of X ( F)

—T
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The Discrete Fourier Transform

*«"l " Sampled and Windowed Signal

Only N. samples are 1

taken. If thefirst sample
Istaken at time, t = O (the Xl F)

usual assumption) that is o
equivalent to multiplying
the sampled signal by the .

03 1

1

window function, £ Phase of X( F) :
_[1 , 0<n< N,
W[n]—%), SN |'l|||”||| “I‘lll I ||l|| N lllll”’llm -
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The Discrete Fourier Transform

The last step in the process Sampled, Windowed and

Xsws[ﬂ]
Isto sample the 1 per|od|ca||y Repeated Slgnal

frequency-domain signal
which periodically repeats
the time-domain signal.
Then there aretwo
periodic impulse signals
which are related to each
other through the DTFS.
Multiplication of the
DTFS harmonic function
by the number of samples
In one period yields the
DFT.

[ 5/10/04 M. J. Roberts - All Rights Reserved 57 ]




The Discrete Fourier Transform

The original signal and the final signal are related by

X, [K] = I\fls[e—jm(NF-l)NF drel(F, NF? OX(1F)|
F
W(F)

F

In words, the CTFT of the original signal is transformed by
replacing f with f_F . That result is convolved with the
DTFT of the window function. Then that result is transformed

by replacing F byNL " Then that result is multiplied byl\fl—s |
F F
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The Discrete Fourier Transform

It can be shown (pp. 530-532) that the DFT can be used to
approximate samples from the CTFT. If thesignal, x(t), isan
energy signal and iscausal and if N. samples are taken from
it over afinitetime beginning at time, t = 0, at arate, f,, then
the relationship between the CTFT of x(t) and the DFT of the
samplestaken fromitis

% Ok O
X(kf.) OT.e "rsinc X e[ K
( F) ENFE DFT[ ]

where fo = L . For those harmonic numbers, k, for which

F
k<<N, X(Kf;) O, X orr [
As the sampling rate and number of samples are increased,
this approximation is improved.
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The Discrete Fourier Transform

If asignal, x(t), Is bandlimited and periodic and is sampled
above the Nyquist rate over exactly one fundamental
period the relationship between the CTFS of the original
signal and the DFT of the samplesis (pp. 532-535)

Xoer[ K] = Ng Xpes[ K] Ocomby [K]

That is, the DFT isaperiodically-repeated version of the
CTFS, scaled by the number of samples. So the set of
Impulse strengths in the base period of the DFT, divided by
the number of samples, isthe same set of numbers as the
strengths of the CTFS impul ses.
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The Fast Fourier Transform

Probably the most used computer algorithm in signal processing
Isthe fast Fourier transform (fft). It isan efficient algorithm for
computing the DFT. Consider avery ssimple case, a set of four
samples from which to compute aDFT. The DFT formulais

Ng -1 _j2n kn

X[k|=Y x[ne ™
It is convenient to use the notation, W = e "¢, because then the
DFT formula can be written as

oo w® w® w°® w°lx,

1%:8/\/0 W W2 WS%(O

D W° w? w* WeIx,

;
g4H Bve we owe wer|
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The Fast Fourier Transform

The matrix multiplication requires N* complex multiplications
and N(N - 1) complex additions. The matrix product can be
re-written in the form,

X[ojo @ 1 1 1mx 0o
10 L w2 a3l fa O
%(_-1-_5:% Wt W W [
X[2]l0 @ w? wW° W?x,[2]0
r 1 3 2 1 -1 [
5(_3]5 H. W= W WX, B]D

because W" =W™ ™" ' man integer.
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The Fast Fourier Transform

It is possible to factor the matrix into the product of two matrices.

X[Oj]o o w® 0 om 0 wW° 0 Ox,[00
KALG w0 ofb 1 o wilklC
X[JOo o 1 w'l 0 W? 0 Ox,[2]0
XA 0 0 1 wmp 1 0 wiik[dr

It can be shown (pp. 552-553) that 4 multiplications and 12
additions are required, compared with 16 multiplications and 12
additions using the original matrix multiplication.
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The Fast Fourier Transform

It is helpful to view the fft algorithm in signal-flow graph

form.
< [0} 150 L X Jo]
XoL1] X 2]
XoL2] X 1]
X131 X 3]

W* x,[3] W

[ 5/10/04 M. J. Roberts - All Rights Reserved




The Fast Fourier Transform

16-Point
Signal-Flow
Graph
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The Fast Fourier Transform

The number of multiplications required for an fft algorithm of

length, N = 27 where pisan integer is 2N The speed

P
Np

ratio in comparison with the direct DFT algorithm is P

P N Speed Ratio

L FFT/DF1
2 4 4
4 16 8
8 256 64

16 65536 8192
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