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Introduction

• Relationships between signals can be just as
important as characteristics of individual
signals

• The relationships between excitation and/or
response signals in a system can indicate the
nature of the system
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Flow Velocity Measurement

The relative timing of the two signals, p(t) and T(t),
and the distance, d, between the heater and thermometer 
together determine the flow velocity.

Heater

Thermometer
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Correlograms

Two
Completely
Negatively
Correlated
DT Signals

Correlogram

Signals
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Correlograms

Two
Uncorrelated
CT Signals

Correlogram

Signals
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Correlograms

Two Partially
Correlated
DT Signals

Correlogram

Signals
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Correlograms

These two CT
signals are not

strongly
correlated but

would be if one
were shifted in
time the right

amount

Correlogram

Signals
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Correlograms

DT Sinusoids With
a Time Delay

CT Sinusoids With
a Time Delay

Correlogram Correlogram

Signals Signals
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Correlograms

Two Non-
Linearly Related

DT Signals

Correlogram

Signals
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The Correlation Function
Positively Correlated
DT Sinusoids with

Zero Mean

Uncorrelated DT
Sinusoids with

Zero Mean

Negatively  Correlated
DT Sinusoids with

Zero Mean
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The Correlation Function
Positively Correlated
Random CT Signals

with Zero Mean

Uncorrelated Random
CT Signals with

Zero Mean

Negatively  Correlated
Random CT Signals

with Zero Mean
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The Correlation Function
Positively Correlated

CT Sinusoids with
Non-zero Mean

Uncorrelated CT
Sinusoids with
Non-zero Mean

Negatively  Correlated
CT Sinusoids with

Non-zero Mean
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The Correlation Function
Positively Correlated
Random DT Signals
with Non-zero Mean

Uncorrelated Random
DT Signals with
Non-zero Mean

Negatively  Correlated
Random DT Signals
with Non-zero Mean
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Correlation of Energy Signals
The correlation between two energy signals, x and y, is the
area under (for CT signals) or the sum of (for DT signals)
the product of x and y*.

The correlation function between two energy signals, x and
y, is the area under (CT) or the sum of (DT) that product
as a function of how much y is shifted relative to x.
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Correlation of Energy Signals

The correlation function for two real energy signals is very similar
to the convolution of two real energy signals.

Therefore it is possible to use convolution to find the correlation 
function.

It also follows that
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Correlation of Power Signals
The correlation function between two power signals, x and
y, is the average value of the product of x and y* as a
function of how much y* is shifted relative to x.

If the two signals are both periodic and their fundamental
periods have a finite least common period,

where T or N is any integer multiple of that least common
period.  For real periodic signals these become
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Correlation of Power Signals

Correlation of real periodic signals is very similar to
periodic convolution

where it is understood that the period of the periodic
convolution is any integer multiple of the least common
period of the two fundamental periods of x and y.
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Correlation of Power Signals
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Correlation of Sinusoids

• The correlation function for two sinusoids of
different frequencies is always zero.  (pp.
588-589)
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Autocorrelation
A very important special case of correlation is autocorrelation.
Autocorrelation is the correlation of a function with a shifted
version of itself.  For energy signals,

At a shift, τ or m, of zero,

which is the signal energy of the signal.  For power signals,

which is the average signal power of the signal.
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Properties of Autocorrelation
For real signals, autocorrelation is an even function.

Autocorrelation magnitude can never be larger than it is at
zero shift.

If a signal is time shifted its autocorrelation does not change.

The autocorrelation of a sum of sinusoids of different
frequencies is the sum of the autocorrelations of the
individual sinusoids.

R Rxx xxτ τ( ) = −( ) R Rxx xxm m[ ] = −[ ]or

R Rxx xx0( ) ≥ ( )τ R Rxx xx0[ ] ≥ [ ]mor
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Autocorrelation Examples

Three different
random DT
signals and their
autocorrelations.
Notice that, even
though the signals
are different, their
autocorrelations
are quite similar,
all peaking
sharply at a shift
of zero.
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Autocorrelation Examples
Autocorrelations for a cosine “burst” and a sine “burst”.
Notice that they are almost (but not quite) identical.
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Autocorrelation Examples
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Matched Filters

• A very useful technique for detecting the
presence of a signal of a certain shape in the
presence of noise is the matched filter.

• The matched filter uses correlation to detect
the signal so this filter is sometimes called a
correlation filter

• It is often used to detect 1’s and 0’s in a
binary data stream
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Matched Filters
It has been shown
that the optimal
filter to detect a
noisy signal is one
whose impulse
response is
proportional to the
time inverse of the
signal.  Here are
some examples of
waveshapes
encoding 1’s and 0’s
and the impulse
responses of
matched filters.
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Matched Filters
Noiseless Bits Noisy Bits

Even in the presence of a
large additive noise
signal this matched filter
indicates with a high
response level the
presence of a 1 and with
a low response level the
presence of a 0.  Since
the 1 and 0 are encoded
as the negatives of each
other, one matched filter
optimally detects both.
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Autocorrelation Examples

Two familiar DT
signal shapes and
their autocorrelations.
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Autocorrelation Examples

Three random power signals with different frequency content
and their autocorrelations.
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Autocorrelation Examples
Autocorrelation functions for a cosine and a sine.  Notice 
that the autocorrelation functions are identical even though
the signals are different.
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Autocorrelation Examples

• One way to simulate a random signal is with
a summation of sinusoids of different
frequencies and random phases

• Since all the sinusoids have different
frequencies the autocorrelation of the sum is
simply the sum of the autocorrelations

• Also, since a time shift (phase shift) does not
affect the autocorrelation, when the phases
are randomized the signals change, but not
their autocorrelations
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Autocorrelation Examples

Let a random signal be described by

Since all the sinusoids are at different frequencies,

where           is the autocorrelation of                               .

x cost A f tk k k
k

N
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1
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Autocorrelation Examples

Four Different
Random Signals

with Identical
Autocorrelations
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Autocorrelation Examples

Four Different
Random Signals

with Identical
Autocorrelations
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Autocorrelation Examples

Four Different
Random Signals

with Identical
Autocorrelations
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Autocorrelation Examples

Four Different
Random Signals

with Identical
Autocorrelations
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Cross Correlation
Cross correlation is really just “correlation” in the cases in
which the two signals being compared are different.  The
name is commonly used to distinguish it from autocorrelation.
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Cross Correlation

A comparison of x and y with y shifted for maximum
correlation.
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Cross Correlation
Below, x and z are highly positively correlated and x and y are
uncorrelated.  All three signals have the same average signal
power.  The signal power of x+z is greater than the signal power
of x+y.
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Correlation and the Fourier Series

Calculating Fourier series harmonic functions can be thought of
as a process of correlation.  Let

Then the trigonometric CTFS harmonic functions are

Also, let

then the complex CTFS harmonic function is

c cos and s sint kf t t kf t( ) = ( )( ) ( ) = ( )( )2 20 0π π

X R , X Rxsc sk k[ ] = ( ) [ ] = ( )2 0 2 0xc

z t e j kf t( ) = + ( )2 0π

X Rxzk[ ] = ( )0
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Energy Spectral Density
The total signal energy in an energy signal is

The quantity,           , or             , is called the energy spectral
density (ESD)  of the signal, x, and is conventionally given the
symbol, Ψ.  That is,

It can be shown that if x is a real-valued signal that the ESD is
even, non-negative and real.
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Energy Spectral Density
Probably the most important fact about ESD is the relationship
between the ESD of the excitation of an LTI system and the
ESD of the response of the system.  It can be shown (pp. 606-
607) that they are related by

Ψ Ψ Ψy x
*

xH H Hf f f f f f( ) = ( ) ( ) = ( ) ( ) ( )2

Ψ Ψ Ψy x
*

xH H HF F F F F F( ) = ( ) ( ) = ( ) ( ) ( )2

or
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Energy Spectral Density
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Energy Spectral Density

It can be shown (pp. 607-608) that, for an energy signal,
ESD and autocorrelation form a Fourier transform pair.

  Rx xt f( )← → ( )F Ψ   Rx xn F[ ]← → ( )F Ψor
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Power Spectral Density
Power spectral density (PSD) applies to power signals in
the same way that energy spectral density applies to energy
signals.  The PSD of a signal x is conventionally indicated
by the notation,            or            .  In an LTI system,

Also, for a power signal, PSD and autocorrelation form a
Fourier transform pair.

Gx f( ) Gx F( )

G H G H H Gy x
*

xf f f f f f( ) = ( ) ( ) = ( ) ( ) ( )2

G H G H H Gy x
*

xF F F F F F( ) = ( ) ( ) = ( ) ( ) ( )2

or

  R Gt f( )← → ( )[ ]F or   R Gn F[ ]← → ( )F
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PSD Concept
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Typical
Signals in

PSD
Concept


