ThelLaplace Transform



| ntroduction

e There are two common approaches to the
developing and understanding the Laplace
transform

|t can be viewed as ageneralization of the
CTFT to include some signals with infinite
energy

* |t can be seen as anatural consequence of the
fact that an LTI system excited by a complex
exponential responds with another complex
exponential
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Generalization of the CTFT

The CTFT expresses atime-domain signal as alinear combination
of complex sinusoids of the form, € . In the generalization of the
CTFT to the Laplace transform the complex sinusoids become
complex exponentials of the form, €* ,where s can have any
complex value . Replacing the complex sinusoids with complex
exponentials |eads to this definition of the Laplace transform,

£(x(1)) = X(s) = I X(t)e dt

A function and its Laplace transform form a transform pair which
IS conveniently indicated by the notation,

X(t) TF = X(s)
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Generalization of the CTFT

Thevariable, s, Isviewed as a generalization of the variable, w, of

theform, S=0 + W Then, when the real part of s, 0, is zero, the
Laplace transform reduces to the CTFT. UsingS~= 9 T1® the

Laplace transform is
X(s)= } x(t)e i@kt
- Fx(t)e
and can be viewed as the

CTFT of, not x(t), but
rather fo)e )
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Generalization of the CTFT

The extrafactor, e ©, is sometimes called a convergence
factor because, when chosen properly, it makes the integral
converge for some signals when it would not otherwise
converge. For example, strictly speaking, the signal, Au(t),
does not have a CTFT because the integral does not
converge. But if it ismultiplied by the convergence factor,

and thereal part of s, g, is chosen appropriately, the CTFT
integral will converge.
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Generalization
of the CTFT

The CTFT usesonly

complex sinusoids. Iy

The Laplace transform

uses the more general W

complex exponentials. S
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Complex Exponential Excitation

If acontinuous-time LTI system is excited by a complex
exponentia, x(t) = Ae’, the response is also a complex
exponential of the same functional form except multiplied by a
complex constant. The response is the convolution of the
excitation with the impulse response and, as first shown in
Chapter 3, that turns out to be

y(t) = Ae® | h(t)e™>'dr
X(t) :00

Laplace Erfansform
of h(t)

So for any particular value of s the complex constant isthe
L aplace transform of the impul se response.
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Region of Convergence

g
The causal function,
g,(t)=Ae™u(t),a>0
does not have aCTFT, eveninthe M
generalized sense. But it does have a l
Laplace transform which is -1

Gy(s)= [ Ae™ u(t)e"dt = Af g s igt = Al g7 )tg gy
I 0 0

Thisintegral convergesif o > a and thisinequality

defines what is known as the region of convergence (ROC)
of this Laplace transform.
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Region of Convergence

The ROC of the integral

Gy(s)=A[ glomo)tg it g o [5]
0
IS the region of the s plane for
which o > a and theintegral is ROC
- O
A S =F Ot
G,(S)=
(="

This function has apole at
s=a and the ROC istheregion to

the right of that point.
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Region of Convergence

By similar reasoning, the
ROC of Laplace transform of
the anti-causal function,

~ 8y
gz(t) = Ae’” U(—t) A s
=g,(-t),a>0
istheregion, o < —q, inthe s ROC
plane and the integral is 1 -G
A
G =
9=

Thisfunction has apole at
s=-a and the ROC isthe

region to the left of that point.
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Region of Convergence

The following two Laplace transform pairs illustrate the
Importance of the region of convergence.

1

e_at U(t)ﬁ—) y o>-qa
s+a
—e " u(-t) L - 1 , o<-qa
s+a

The two time-domain functions are different but the
algebraic expressions for their Laplace transforms are
the same. Only the ROC'’ s are different.
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Unilateral Laplace Transform

Definition — G(s):Ig(t)e'Stdt

J
Only the lower limit of the integral has changed

A function and its Laplace transform are uniquely related
only if the function is causal.

The ROC is aways the region of the s plane to the right of
the pole in the transform with the most positive real part.

Any function which grows no faster than an exponential in
positive time has a unilateral Laplace transform.
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Unilateral Laplace Transform

The unilateral Laplace transform will be
referred to smply as the Laplace transform
and the bilateral Laplace transform will be
Identified specifically. Thereisan inversion
Integral which isthe same for both forms,

0'+joo

£Y(G(8)) = gft) = J;ﬂ U fj G(s)e"%ds
Theinversion integral israrely used in practice.
|nstead tables and properties are used.
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The poles
and zeros of
any Laplace-
transform
expression
characterize
the time-
domain
function
completely,
except for a
scale factor.
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Properties

Let g(t) and h(t) both be causal functions and let them form
the following transform pairs,

gt) H - G(s) h(t) & - H(s)
Linearity
ag(t)+Bh(t) & - aG(s)+BH(s)
Time Shifting
gt-t,) - G(s)e™ , t,>0
Complex-Frequency Shifting
e g(t) - G(s )
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Properties

Time Scaling
1 DSD
g(at) £ - R EbD , a>0
Frequency Scaling
[rt []
[bDﬁ - G(as) , a>0
Time Differentiation Once

£ (0lt) -F - s6(s)-9(0")

Time Differentiation Twice
d2 ~d

—(g(t)),.,
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Properties

Complex-Frequency Differentiation

d
-tgt) & - d_S(G(S))
Multiplication-Convolution Duality
0'+Joo
g(t) Th(t) £F — G()H(s) g(t)h(t) LF - _— | Gw)H(s~w)dw
a joo
|ntegration
t
[o(r)dr - - ~G(s)
J S
Initial Value Theorem
g(O*) =limsG(s)
[ 5/10/04 M. J. Roberts - All Rights Reserved 18 ]




Properties
Final Value Theorem
lim g(t) =limsG(s)

s-0

Thistheorem only appliesif the limit actually exists. Itis
possible for the limit, lim sG(s), to exist even though the

limit, limg(t) does not exist. For example,

X(t) = cog(w,t) £F - X(s) = >

S+

=0

2

IiImsX(s)=Iim
s-0 ( ) s—»052+a)§

but limcos(w;t) does not exist.

- o0
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Partial-Fraction Expansion

The inverse Laplace transform can always be found (in principle
at least) by using the inversion integral. But that israrein
engineering practice. The most common type of Laplace-
transform expression isaratio of polynomiasins,

N N-1
_Dbys +by_s" " +---+hs +h,
s°+a,,8° " +---aS+a,

G(s)

The denominator can be factored, putting it into the form,

— bNSN + bN—lsN_l +--- +hs +h,

&) (s= p)(s=p,)+(s= po)
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Partial-Fraction Expansion

For now, assume that there are no repeated poles and that
D > N, making the fraction proper ins. Then it ispossible
to write the expression in the form,

where

bNSN +bN_1SN_1 +bls+b _ Kl + Kz +... +

(S_ pl)(S— pz)---(S— pD) S™Ph ST, S— Pp

The K’s can be found be any convenient method.
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Partial-Fraction Expansion

Multiply both sides of the previous expression by s— p.

(S_ )bNSN +bN_1SN_1 +... +bIS +b _ 0 S— pl S— p2
' (S_ pl)(s_ p2)°°°(S— pD) [] +(S— p) Ko
E Vs Po

Then, since the expression must be valid for any value of s,
let s=p,. All the termson the right except one are then
zero and

bN plN +b|\| plN_l t-- +b1p1 +bo
(pl_ pz)"'(pl_ pD)

All the K’ s can be found by the same method and the
Inverse Laplace transform is then found by table |ook-up.

K, =
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Partial-Fraction Expansion

If the expression has a repeated pole of the form,

— bNSN + bN—lsN_l +---+hs +h,

G(s) (s—p,)(s- ps)---(5— o)

the partial fraction expansion is of the form,

G(S): Ko + Ky + Ks .o+

(S_ pl)2 S=P ST P; S~ Pp

and K, can be found using the same method as before.
But K,, cannot be found using the same method.
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Partial-Fraction Expansion

Instead K,, can be found by using the more general formula

1 d™ g \mLan
qu—(m_k)! ds™ gs pq) H(S)Equ , K

12, ,m

where misthe order of the gth pole, which appliesto
repeated poles of any order (pp. 647-649).

If the expression is not a proper fraction in sthe partial-
fraction method will not work. But it isaways possible to
synthetically divide the numerator by the denominator until
the remainder is a proper fraction and then apply partial-
fraction expansion (p. 649).
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Partial-Fraction Expansion

10s K K
H = — 1 4 2
(s (s+4)(s+9) s+4 s+9

@ /_%0 10s _ [M0s O _—40__8
(s+4 s+95 “B+9H_,

_ [M10s O —90

B 10s
KZ_@WS+4/9)H " B+4H, -5 =18

-8 18 -8s-72+18s+72  10s
+ — =
s+4 s+9 (s+4)(s+9) (s+4)(s+9)
J L
h(t) = (—8e‘4t +18e‘9t) u(t)

H(s) = Check.
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Partial-Fraction Expansion

105 . :
H(s) = (s+ 2)s+9) Improper ins

10s°
H =
(s) s°+13s+36

Synthetic Division s’ +13s+36)10s°

10s? +130s + 360
~130s - 360
130s+360 _. (=32 162

H(8) =10~ a)s+9) 0 Eora s+ oE

=1

h(t) =105(t) - [162e™ - 32¢*] u(t)

10
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Partial-Fraction Expansion

_ 10s _ Kp Ky K

H(s) (s+4)2(S+9) (5+4)2+s+4+s+9

!
Repeated Pole
10s L] -40
K = i 2 =—=-8
12 %S/*/) MZ(S+ 9) H:_4 5
Using
~ 1 dm—k m _
Kok = (m— k)! ds™ K [(S_ pD) H(S)La Po =Laonm

1 d2t , _d M10s 7

eyl )~
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Partial-Fraction Expansion
_{s+9)10-10s0 _18

K
11 - (s+9)2 E:_4 5
18 18
18 -8 5 5
K,==—— C—> H(s)= + +
* 5 (5 (s+4) s+4 s+9

85— 72+ (s? +135 +36) - (< + 85 +16)
5 5

H(s)= (s+4f(s+9)
10s
= Check
)= (srap(srg)
=
n(t) = Fete ™ +%e“” —%ﬁ i)
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L aplace-Transform Fourier-
Transform Equivalence

 |f theregion of convergence of the Laplace
transform contains the w axis (where o Is

zero) then the Laplace transform, along that
axis, 1s the same as the Fourier transform

e |n such a case the Fourier transform can be
found from the Laplace transform by

substituting jw for s
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Solution of Differential Equations

The unilateral Laplace transform is particularly well suited for the
solution of differential equations with initial conditions because
the time differentiation properties of the unilateral Laplace
transform call for the initial conditions in a systematic way. For
example, the Laplace transform of the differential eguation,

2

x(t)] + 7%[x(t)] +12x(t)=0

. dt?
s X(s) - sx(07) - %(x(t))tzo_ +7[sX(s)-x(07)| +12X(s) =0

an algebraic equation in swhich can be solved by algebraic
methods. Then, when X(s) isfound, itsinverse Laplace transform,
X(t), isthe solution of the original differential equation.
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The Bilateral Laplace Transform

* Appliesto non-causal signals and sysems

e Can be found uang tables of the unilateral Laplace
transform

Any signal can be expressed as the sum of three parts, the part
before time, t = O (the anticausal part), the part at time, t =0
and the part after time, t = O (the causal part).

X(t) = Xeo(t) +Xo(t) + X (t)
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The Bilateral Lanlace Transform

X(1)
7~ N\ /\ /. f
/S NV Y
Xpe(2) X.?(Z) X(1)
N\ f f AN
/N N\ /NS
x(?)
\\ﬂ*/\\//”
~ .. L h
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The Bilateral Laplace Transform

 Tofind abilateral Laplace transform (pp. 657-660)

« 1. Findtheunilateral Laplace transform of the causal part
along with its ROC

e 2. Findtheunilateral Laplace transform of the time inverse
of the anti-causal part along with its ROC

« 3. Changesto-sintheresult of step 2 and in its ROC

« 4. Ifthereisanimpulseattime, t =0, find its Laplace
transform and its ROC, the entire s plane

« 5 Addtheresultsof steps 1, 3 and 4 and form the ROC
from the region in the s plane common to all the ROC's.
If such aregion does not exist, the bilateral transform
does not exist either
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