## Answers to Exercises in Chapter 3 - Multiple Random Variables

## Mean, Standard Deviation and Expectation

3-1. Four independent random variables $X_{1}, X_{2}, X_{3}$ and $X_{4}$ each Gaussian distributed with a mean of 0 and a standard deviation of 4 are combined to form a new random variable

$$
Y=X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+X_{4}^{2} .
$$

(a) What is the expected value of $Y$ ? 64
(b) What is the variance of $Y$ ? 2048
(c) What is the probability of the event $50<Y<80$ ? 0.24

3-2. Random variable $X$ has a variance of 20 and $Y$ has a variance of 5 . Their correlation coefficient is 0.7 .
(a) Find the variance of their sum 39
(b) Find the variance of their difference.
11

3-3. Two independent random variables $X$ and $Y$ have variances $\sigma_{X}^{2}=12$ and $\sigma_{Y}^{2}=18$.

If $W$ and $Z$ are $W=-4 X+2 Y$ and $Z=3 X-6 Y$,
(a) Find the variances of $W$ and $Z . \quad 264$ and 756
(b) Find the correlation coefficient of $W$ and Z. -0.672

3-4. A rural electric cooperative has a base load which is constant at $25 \%$ of its nominal power capability and three large industrial customers who operate independently and whose power demand and probability of demanding that power are listed below.

| Industrial <br> Customer | Power <br> Demand | Probability <br> of Demanding <br> Power |
| :---: | :---: | :---: |
| 1 | $30 \%$ | 0.3 |
| 2 | $25 \%$ | 0.4 |
| 3 | $35 \%$ | 0.25 |

(a) What are the average power demanded by the system and the standard deviation of the average power demanded by the system? $52.75 \% \quad 23.84 \%$
(b) What is the probability that the power demand on the system will exceed its nominal power capability? 0.03

## Joint Probability Density

3-5. Two CV random variables $X$ and $Y$ have a joint distribution function given by

$$
\mathrm{F}_{X Y}(x, y)=\left\{\begin{array}{ll}
0 & , x<0 \text { or } y<0 \\
x y & , \quad 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1 \\
x & , y \geq 1 \text { and } 0 \leq x \leq 1 \\
y & , x \geq 1 \text { and } 0 \leq y \leq 1 \\
1 & , x>1 \text { and } y>1
\end{array} .\right.
$$

(a) Graph this distribution function. (See (b)).
(b) Graph the joint PDF.


(c) Find the probability of the event $\{X \leq 1 / 2 \cap Y>1 / 2\}$. 1/
(d) Find $\mathrm{E}(X Y) .1 / 4$

3-6. Two CV random variables $X$ and $Y$ have a joint PDF given by

$$
\mathrm{f}_{X Y}(x, y)=K(x+1)(y+1 / 2) \operatorname{rect}(x / 2) \operatorname{rect}(y)
$$

(a) Find K. 1
(b) Find the joint distribution function $\mathrm{F}_{X Y}(x, y)$.

$$
\mathrm{F}_{X Y}(x, y)=\left\{\begin{array}{l}
0, x<-1 \text { or } y<-1 / 2 \\
\left(\frac{x^{2}}{2}+x+1 / 2\right)\left(\frac{y^{2}+y}{2}+1 / 8\right),-1<x<1 \text { and }-1 / 2<y<1 / 2 \\
\frac{1}{2}\left(\frac{x^{2}}{2}+x+1 / 2\right),-1<x<1 \text { and } y>1 / 2 \\
2\left(\frac{y^{2}+y}{2}+1 / 8\right),-1 / 2<y<1 / 2 \text { and } x>1 \\
1, x>1 \text { and } y>1 / 2
\end{array}\right.
$$

(c) Find the probability of the event $\{X \leq 1 / 2 \cap Y>0\}$. 27/64
(d) Find the marginal PDF $\mathrm{f}_{X}(x) \quad \mathrm{f}_{X}(x)=\frac{1}{2}(x+1) \operatorname{rect}(x / 2)$
(e) Find $\mathrm{E}(X Y) \cdot 1 / 18$
(f) Find $\mathrm{f}_{X \mid Y}(x)$ and $\mathrm{f}_{Y \mid X}(y)$.

$$
\mathrm{f}_{X \mid Y}(x)=(1 / 2)(x+1) \operatorname{rect}(x / 2) \text { and } \mathrm{f}_{Y \mid X}(y)=2(y+1 / 2) \operatorname{rect}(y)
$$

3-7. Two CV random variables $X$ and $Y$ have a joint PDF

$$
\mathrm{f}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})= \begin{cases}2 / 3, & -2<\mathrm{x}<0 \text { and }-1 / 2<\mathrm{y}<0 \\ 1 / 3, & 0<\mathrm{x}<1 / 2 \text { and } 0<\mathrm{y}<2 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Find $\mathrm{E}(X Y) .1 / 4$
(b) Find and graph versus $x$ the marginal $\operatorname{PDF~}_{\mathrm{f}}(x)$.

(c) What is the probability of the event which is the intersection of the events $X<1 / 4$ and $Y>1 ? 1 / 12$

3-8. For each joint PDF determine whether $X$ and $Y$ are uncorrelated and find their correlation $\mathrm{E}(X Y)$.
(a) $\quad \mathrm{f}_{X Y}(x, y)=K\left(x^{2}+y^{2}\right) \operatorname{rect}(x) \operatorname{rect}(y / 2) \quad \mathrm{E}(X Y)=0$
(b) $\quad \mathrm{f}_{X Y}(x, y)=K(x+x y+y) \operatorname{rect}(x-1 / 2) \operatorname{rect}(y-1 / 2) \quad \mathrm{E}(X Y)=0.3556$

$$
\text { (c) } \quad \mathrm{f}_{X Y}(x, y)=K \frac{x}{y} \operatorname{rect}(x-1) \text { rect }(y-1) \quad \mathrm{E}(X Y)=0.986
$$

3-9. The joint PDF of the random variables $X$ and $Y$ is given by

$$
\mathrm{f}_{X Y}(x, y)=\left\{\begin{array}{l}
1, \text { in shaded area } \\
0, \text { otherwise }
\end{array}\right.
$$


(a) Find the marginal PDF's of $X$ and $Y$. Are $X$ and $Y$ independent?

$$
\mathrm{f}_{X}(x)=\left\{\begin{array}{ll}
0, & x<-1 \\
x+1 & ,-1 \leq x<0 \\
1-x, & 0 \leq x<1 \\
0 & , x \geq 1
\end{array}\right\} \quad, \quad \mathrm{f}_{Y}(y)=\left\{\begin{array}{ll}
0, & y<-1 \\
y+1, & -1 \leq y<0 \\
1-y, & 0 \leq y<1 \\
0 & , y \geq 1
\end{array}\right\}
$$

$X$ and $Y$ are not independent.
(b) Let $Z=X+Y$. Find $\mathrm{F}_{Z}(z)$ and $\mathrm{f}_{Z}(z)$.

$$
\begin{gathered}
\mathrm{F}_{\mathrm{Z}}(z)=\frac{1}{2}\left\{\left(1-z^{2}\right)[\mathrm{u}(z+1)-\mathrm{u}(z)]\left(z^{2}+1\right)[\mathrm{u}(z)-\mathrm{u}(z-1)]\right\}+\mathrm{u}(z-1) \\
\mathrm{f}_{\mathrm{z}}(z)=|z|(\mathrm{u}(z+1)-\mathrm{u}(z-1))
\end{gathered}
$$

## Linear Combinations of Random Variables and the Gaussian Distribution

3-10. A CV random variable $X$ has a PDF

$$
\mathrm{f}_{X}(x)=(1 / 5) e^{-x / 5} \mathrm{u}(x)
$$

and an independent CV random variable $Y$ has a PDF

$$
\mathrm{f}_{Y}(y)=(1 / 3) e^{-y / 3} \mathbf{u}(y)
$$

(a) Find the probability density function of the random variable $Z=X-Y$, graph it and verify that its area is one.

$$
\mathrm{f}_{z}(z)=\frac{1}{8} \begin{cases}e^{-z / 5} & , z \geq 0 \\ e^{z / 3} & , \quad z<0\end{cases}
$$

(b) Find the probability that $-1<Z \leq 1.0 .2195$

3-11. $\quad X$ and $Y$ are independent, identically distributed (i.i.d.) random variables with common PDF

$$
\mathrm{f}_{X}(x)=e^{-x} \mathrm{u}(x) \quad \mathrm{f}_{Y}(x)=e^{-y} \mathrm{u}(y)
$$

Find the PDF of the following random variables (a) $\min (X, Y)$, (b) $\max (X, Y)$, (c) $\min (X, Y) / \max (X, Y)$.


(a) $\mathrm{F}_{Z}(z)=\mathrm{P}[\min (X, Y) \leq z]$

$$
\mathrm{f}_{\mathrm{z}}(z)=2 e^{-2 z} \mathbf{u}(z)
$$

(b) $\quad \mathrm{F}_{Z}(z)=\mathrm{P}[\max (X, Y) \leq z]$

$$
\mathrm{f}_{z}(z)=2 e^{-z}\left(1-e^{-z}\right) \mathrm{u}(z)
$$

(c) $\quad Z=\min (X, Y) / \max (X, Y)$ and $X$ and $Y$ are never negative.

$$
\mathrm{f}_{z}(z)=\frac{2 \operatorname{rect}(z-1 / 2)}{(1+z)^{2}}
$$

3-12. $X$ and $Y$ are independent and uniform in the interval $(0, a)$. Find the PDF of (a) $X / Y$, (b) $Y /(X+Y)$, (c) $|X-Y|$.

$$
\begin{gathered}
\text { (a) } \mathrm{f}_{Z}(z)=\frac{1}{2}[\mathrm{u}(z)-\mathrm{u}(z-1)]+\frac{1}{2 z^{2}} \mathrm{u}(z-1) \\
\text { (b) } \mathrm{f}_{\mathrm{z}}(z)=\frac{1}{2(1-z)^{2}}\left[\mathrm{u}(z)-\mathrm{u}\left(z-\frac{1}{2}\right)\right]+\frac{1}{2 z^{2}}\left[\mathrm{u}\left(z-\frac{1}{2}\right)-\mathrm{u}(z-1)\right]
\end{gathered}
$$

(c) $\mathrm{f}_{\mathrm{Z}}(z)=\frac{2}{a}\left(1-\frac{z}{a}\right)[\mathrm{u}(z)-\mathrm{u}(z-a)]$

3-13. The joint PDF of $X$ and $Y$ is given by

$$
\mathrm{f}_{X Y}(x, y)=\left\{\begin{array}{ll}
2(1-x) & , 0<x \leq 1,0<y \leq 1 \\
0 & , \text { otherwise }
\end{array} .\right.
$$

Determine the PDF of $Z=X Y$.

$$
\mathrm{f}_{\mathrm{z}}(z)=2[z-1-\ln (z)]
$$

3-14. $X$ and $Y$ are independent uniformly distributed random variables on $(0,1)$. Find the joint PDF of $X+Y$ and $X-Y$.

$$
\mathrm{f}_{U V}(u, v)=\frac{1}{2} \mathrm{f}_{X Y}\left(\frac{u+v}{2}, \frac{u-v}{2}\right)=\frac{1}{2} \begin{cases}1, & 0 \leq u+v \leq 2,0 \leq u-v \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

## Central Limit Theorem and Gaussian Distributions

3-15. A resistor in a circuit has a Gaussian noise voltage across it with zero mean and a mean-squared value of $10^{-12} \mathrm{~V}^{2}$. What percentage of the time is the voltage across the resistor greater than $1 \mu \mathrm{~V}$ ? About $16 \%$

3-16. A random variable $X$ is Gaussian distributed and $\mathrm{P}[X>2]=0.3$ and $\mathrm{P}[X>5]=0.1$. What are the expected value $\mathrm{E}(X)$ and the variance $\sigma_{X}^{2}$ of $X ? \quad \sigma_{X}^{2}=15.6, \mathrm{E}(X)=-0.1$.

3-17. A Gaussian random variable $X$ has a mean of 3 and a variance of 16. If $Y=|X|$ find the mean and variance of $Y$ and graph its PDF.

$$
\mathrm{E}(Y)=4.0531 \sigma_{Y}^{2}=8.572
$$



3-18. A Gaussian random variable $X$ has a mean of -10 and a variance of 64 . If $Y=X \operatorname{rect}(X / 30)$, find the expected value of $Y$ and graph its PDF. $\mathrm{E}(Y)=\frac{1}{\sqrt{2 \pi}}[-8 \times(-0.815)]-7.331=2.6-7.331=-4.731$


3-19. $X$ and $Y$ are independent identically-distributed Gaussian random variables with zero mean and common variance $\sigma^{2}$. Find the PDF of (a) $Z=\sqrt{X^{2}+Y^{2}}$, (b) $W=X^{2}+Y^{2}$ and (c) $U=X-Y$.
(a) $\mathrm{f}_{\mathrm{Z}}(z)=\frac{z}{\sigma^{2}} e^{-z^{2} / 2 \sigma^{2}} \mathrm{u}(z)$
(b) $\mathrm{f}_{W}(w)=\frac{e^{-w / 2 \sigma^{2}}}{2 \sigma^{2}} \mathrm{u}(w)$
(c) $\quad \mathrm{f}_{U}(u)=\frac{1}{(\sqrt{2} \sigma) \sqrt{2 \pi}} e^{-u^{2} / 2(\sqrt{2} \sigma)^{2}}$

3-20. A system consists of two cascaded subsystems 1 and 2 cascaded with another subsystem which consists of two parallel-connected systems 3 and 4. The subsystems have constant failure rates with MTTF's of

$$
\tau_{1}=5000 \text { hours }, \tau_{2}=3000 \text { hours }, \tau_{3}=10000 \text { hours }, \tau_{4}=1000 \text { hours }
$$

Assuming that the system only fails if both parallel-connected subsystems fail what is the MTTF of the overall system?

The overall system MTTF is 1620 hours.

## General

3-21. A CV random signal $X$ has a Rayleigh PDF and a mean value of 10 and is added to noise $N$ that is uniformly distributed with a mean value of zero and a variance of $12 . X$ and $N$ are statistically independent and can be observed only as $Y=X+N$.
(a) Find, sketch and label the conditional $\operatorname{PDF~}_{\mathrm{f}_{X \mid Y}}(x)$ as a function of $x$ for $Y=0,6$ and 12.
(b) If an observation yields a value of $Y=12$, what is the best estimate of the true value of $X$ ?




