Linear Systems

For any linear, time-invariant (LTI) system, the response y is the convolution of the excitation x with the impulse response h.

$$y(t) = x(t) * h(t) \text{ or } y[n] = x[n] * h[n]$$

In the case of non-deterministic random processes this operation cannot be done because the signals are random and cannot, therefore, be described mathematically. If X(t) excites a system and Y(t) is the response then the convolution integral is

$$Y(t) = \int_{-\infty}^{\infty} X(t-\tau)h(\tau)d\tau$$

We cannot directly evaluate

$$Y(t) = \int_{-\infty}^{\infty} X(t - \tau) h(\tau) d\tau$$

but we can find the expected value.

$$E(Y(t)) = E\left(\int_{-\infty}^{\infty} X(t-\tau)h(\tau)d\tau\right)$$

If the stochastic process is bounded and the system is stable

$$E(Y(t)) = \int_{-\infty}^{\infty} E(X(t-\tau))h(\tau)d\tau$$

If the random process X is stationary

$$E(Y(t)) = \int_{-\infty}^{\infty} E(X(t-\tau))h(\tau)d\tau \Rightarrow E(Y) = E(X)\int_{-\infty}^{\infty} h(\tau)d\tau$$

Using

$$\int_{-\infty}^{\infty} h(t)dt = H(0) \Longrightarrow E(Y) = E(X)H(0)$$

where H is the Fourier transform of h, we see that the expected value of the response is the expected value of the excitation multiplied by the zero-frequency response of the system. If the system is DT the corresponding result is

$$E(Y) = E(X) \sum_{n=-\infty}^{\infty} h[n]$$

It can be shown (and is in the text) that the autocorrelation of the excitation and the autocorrelation of the response are related by

$$R_{Y}(\tau) = R_{X}(\tau) * h(\tau) * h(-\tau) \text{ or } R_{Y}[m] = R_{X}[m] * h[m] * h[-m]$$

This result leads to a way of thinking about the analysis of LTI systems with random excitation.

$$x(t)$$
 $h(t)$ $y(t) = x(t) * h(t)$

$$R_{x}(\tau) \qquad R_{y}(\tau) = R_{x}(\tau) * h(\tau) * h(-\tau)$$

It can be shown (and is in the text) that the cross correlation between the excitation and the response is

$$R_{XY}(\tau) = R_X(\tau) * h(\tau) \text{ or } R_{XY}[m] = R_X[m] * h[m]$$

and

$$R_{YX}(\tau) = R_X(\tau) * h(-\tau) \text{ or } R_{YX}[m] = R_X[m] * h[-m]$$

Frequency-Domain Analysis

The frequency-domain relationship between excitation and response of an LTI system is the Fourier transform of the time-domain relationship.

$$R_{Y}(\tau) = R_{X}(\tau) * h(\tau) * h(-\tau) \longleftrightarrow G_{Y}(f) = G_{X}(f) H(f) H^{*}(f) = G_{X}(f) |H(f)|^{2}$$

$$R_{Y}[m] = R_{X}[m] * h[m] * h[-m] \longleftrightarrow G_{Y}(F) = G_{X}(F) H(F) H^{*}(F) = G_{X}(F) |H(F)|^{2}$$

The mean-squared value of the response is

$$E(Y^{2}) = \int_{-\infty}^{\infty} G_{Y}(f) df = \int_{-\infty}^{\infty} G_{X}(f) |H(f)|^{2} df$$

$$E(Y^{2}) = \int_{-\infty}^{\infty} G_{Y}(F) dF = \int_{-\infty}^{\infty} G_{X}(F) |H(F)|^{2} dF$$

Frequency-Domain Analysis

$$X(f) \longrightarrow H(f) \longrightarrow Y(f)$$
 $G_X(f) \longrightarrow G_Y(f) = G_X(f)|H(f)|^2$

Frequency-Domain Analysis

Equivalent Noise Bandwidth

