
Linear Systems 



Time-Domain Analysis 

  

For any linear, time-invariant (LTI) system, the response
y is the convolution of the excitation x with the 
impulse response h.
         y t( ) = x t( )∗ h t( )  or y n⎡⎣ ⎤⎦ = x n⎡⎣ ⎤⎦ ∗ h n⎡⎣ ⎤⎦
In the case of non-deterministic random processes this
operation cannot be done because the signals are random
and cannot, therefore, be described mathematically.
If X t( )  excites a system and Y t( )  is the response then the

convolution integral is

                       Y t( ) = X t − τ( )h τ( )dτ
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We cannot directly evaluate

                        Y t( ) = X t − τ( )h τ( )dτ
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but we can find the expected value.

              E Y t( )( ) = E X t − τ( )h τ( )dτ
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If the stochastic process is bounded and the system is stable

               E Y t( )( ) = E X t − τ( )( )h τ( )dτ
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If the random process X is stationary

E Y t( )( ) = E X t − τ( )( )h τ( )dτ
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∫ ⇒ E Y( ) = E X( ) h τ( )dτ
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Using

             h t( )dt
−∞

∞

∫ = H 0( )⇒ E Y( ) = E X( )H 0( )
where H is the Fourier transform of h, we see that the expected 
value of the response is the expected value of the excitation 
multiplied by the zero-frequency response of the system.  If the 
system is DT the corresponding result is

                         E Y( ) = E X( ) h n⎡⎣ ⎤⎦
n=−∞
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It can be shown (and is in the text) that the autocorrelation of the 
excitation and the autocorrelation of the response are related by
RY τ( ) = R X τ( )∗ h τ( )∗ h −τ( )  or RY m⎡⎣ ⎤⎦ = R X m⎡⎣ ⎤⎦ ∗ h m⎡⎣ ⎤⎦ ∗ h −m⎡⎣ ⎤⎦
This result leads to a way of thinking about the analysis of
LTI systems with random excitation.
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It can be shown (and is in the text) that the cross correlation 
between the excitation and the response is
R XY τ( ) = R X τ( )∗ h τ( )  or R XY m⎡⎣ ⎤⎦ = R X m⎡⎣ ⎤⎦ ∗ h m⎡⎣ ⎤⎦
and
RYX τ( ) = R X τ( )∗ h −τ( )  or RYX m⎡⎣ ⎤⎦ = R X m⎡⎣ ⎤⎦ ∗ h −m⎡⎣ ⎤⎦
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The frequency-domain relationship between excitation and response of an LTI system 
is the Fourier transform of the time-domain relationship.

RY τ( ) = R X τ( )∗ h τ( )∗ h −τ( ) F← →⎯ GY f( ) = G X f( )H f( )H* f( ) = G X f( ) H f( ) 2

RY m⎡⎣ ⎤⎦ = R X m⎡⎣ ⎤⎦ ∗ h m⎡⎣ ⎤⎦ ∗ h −m⎡⎣ ⎤⎦
F← →⎯ GY F( ) = G X F( )H F( )H* F( ) = G X F( ) H F( ) 2

The mean-squared value of the response is

                           E Y 2( ) = GY f( )df
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∫ = G X f( ) H f( ) 2
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                            E Y 2( ) = GY F( )dF
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∫ = G X F( ) H F( ) 2
dF
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