
Multiple Random Variables 



Joint Probability Density 

   

Let X  and Y  be two random variables.  Their joint distribution
function is FXY x, y( ) ≡ P X ≤ x∩Y ≤ y⎡⎣ ⎤⎦.

           0 ≤ FXY x, y( ) ≤1 , − ∞ < x < ∞ , − ∞ < y < ∞

             FXY −∞,−∞( ) = FXY x,−∞( ) = FXY −∞, y( ) = 0

                                   FXY ∞,∞( ) = 1

FXY x, y( )  does not decrease if either x or y increases or both increase

               FXY ∞, y( ) = FY y( )  and FXY x,∞( ) = FX x( )



Joint Probability Density 
Joint distribution function for tossing two dice 



Joint Probability Density 

  

                           fXY x, y( ) = ∂ 2

∂x∂ y
FXY x, y( )( )

             fXY x, y( ) ≥ 0 , − ∞ < x < ∞ , − ∞ < y < ∞

   fXY x, y( )dx
−∞

∞

∫ dy
−∞

∞

∫ = 1        FXY x, y( ) = fXY α ,β( )dα
−∞

x

∫ dβ
−∞

y

∫

        fX x( ) = fXY x, y( )dy
−∞

∞

∫   and  fY y( ) = fXY x, y( )dx
−∞

∞

∫

         P x1 < X ≤ x2 , y1 < Y ≤ y2⎡⎣ ⎤⎦ = fXY x, y( )dx
x1

x2

∫ dy
y1

y2

∫

               E g X ,Y( )( ) = g x, y( )fXY x, y( )dx
−∞

∞

∫ dy
−∞

∞

∫



Combinations of Two Random 
Variables 

  

Example
X  and Y  are independent, identically distributed (i.i.d.) random 
variables with common PDF 
    
                    fX x( ) = e− x u x( )   fY y( ) = e− y u y( )

Find the PDF of Z = X / Y .
  
Since X  and Y  are never negative, Z  is never negative.
FZ z( ) = P X / Y ≤ z⎡⎣ ⎤⎦⇒ FZ z( ) = P X ≤ zY ∩Y > 0⎡⎣ ⎤⎦ + P X ≥ zY ∩Y < 0⎡⎣ ⎤⎦
Since Y  is never negative FZ z( ) = P X ≤ zY ∩Y > 0⎡⎣ ⎤⎦



  

FZ z( ) = fXY x, y( )dxdy
−∞

zy

∫
−∞

∞

∫ = e− xe− ydxdy
0

zy

∫
0

∞

∫
Using Leibnitz’s formula for differentiating an integral,

d
dz

g x, z( )dx
a z( )

b z( )

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

db z( )
dz

g b z( ), z( )− da z( )
dz

g a z( ), z( ) + ∂g x, z( )
∂z

dx
a z( )

b z( )

∫

fZ z( ) = ∂
∂z

FZ z( ) = ye− zye− ydy
0

∞

∫   ,  z > 0

fZ z( ) = u z( )
z +1( )2

Combinations of Two Random 
Variables 



Combinations of Two Random 
Variables 



  

Example

The joint PDF of X  and Y  is defined as

                fXY x, y( ) = 6x  ,  x ≥ 0, y ≥ 0,x + y ≤1
0    ,  otherwise
⎧
⎨
⎩

Define Z = X −Y .  Find the PDF of Z.  

Combinations of Two Random 
Variables 



Combinations of Two Random 
Variables 

  

Given the constraints on X  and Y , −1≤ Z ≤1.

Z = X −Y  intersects X +Y = 1 at X = 1+ Z
2

  ,  Y = 1− Z
2

For 0 ≤ z ≤1, FZ z( ) = 1− 6xdx
y+ z

1− y

∫ dy
0

1− z( )/2

∫ = 1− 3x2⎡⎣ ⎤⎦ y+ z

1− y
dy

0

1− z( )/2

∫

FZ z( ) = 1− 3
4

1− z( ) 1− z2( )⇒ fZ z( ) = 3
4

1− z( ) 1+ 3z( )



  

For −1≤ z ≤ 0

FZ z( ) = 2 6xdx
0

y+ z

∫ dy
− z

1− z( )/2

∫ = 6 x2⎡⎣ ⎤⎦0

y+ z
dy

− z

1− z( )/2

∫ = 6 y + z( )2
dy

− z

1− z( )/2

∫

FZ z( ) = 1+ z( )3

4
⇒ fZ z( ) = 3 1+ z( )2

4

Combinations of Two Random 
Variables 



Joint Probability Density 

  

Let fXY x, y( ) = 1
wX wY

rect
x − X0

wX

⎛

⎝⎜
⎞

⎠⎟
rect

y −Y0

wY

⎛

⎝⎜
⎞

⎠⎟

E X( ) = x fXY x, y( )dx
−∞

∞

∫ dy
−∞

∞

∫ = X0

E Y( ) = Y0

E XY( ) = xy fXY x, y( )dx
−∞

∞

∫ dy
−∞

∞

∫ = X0Y0

fX x( ) = fXY x, y( )dy
−∞

∞

∫ = 1
wX

rect
x − X0

wX

⎛

⎝⎜
⎞

⎠⎟



Joint Probability Density 

  

Conditional Probability    FX |A x( ) = P X ≤ x( )∩ A⎡⎣ ⎤⎦
P A⎡⎣ ⎤⎦

Let A = Y ≤ y{ }
                FX | Y≤ y x( ) = P X ≤ x∩Y ≤ y⎡⎣ ⎤⎦

P Y ≤ y⎡⎣ ⎤⎦
=

FXY x, y( )
FY y( )

Let A = y1 < Y ≤ y2{ }
                    FX | y1<Y≤ y2

x( ) = FXY x, y2( )− FXY x, y1( )
FY y2( )− FY y1( )



Joint Probability Density 

  

Let  A = Y = y{ }

FX | Y= y x( ) = lim
Δy→0

FXY x, y + Δy( )− FXY x, y( )
FY y + Δy( )− FY y( ) =

∂
∂ y

FXY x, y( )( )
d
dy

FY y( )( )

FX | Y= y x( ) =
∂
∂ y

FXY x, y( )( )
fY y( )  , fX |Y= y x( ) = ∂

∂x
FX | Y= y x( )( ) = fXY x, y( )

fY y( )
Similarly fY |X =x y( ) = fXY x, y( )

fX x( )



Joint Probability Density 

  

In a simplified notation fX |Y x( ) = fXY x, y( )
fY y( ) and fY |X y( ) = fXY x, y( )

fX x( )
Bayes’ Theorem     fX |Y x( )fY y( ) = fY |X y( )fX x( )

Marginal PDF’s from joint or conditional PDF’s

                fX x( ) = fXY x, y( )dy
−∞

∞

∫ = fX |Y x( )fY y( )dy
−∞

∞

∫

                fY y( ) = fXY x, y( )dx
−∞

∞

∫ = fY |X y( )fX x( )dx
−∞

∞

∫



Joint Probability Density 

  

Example:

Let a message X  with a known PDF be corrupted by additive 
noise N  also with known pdf and received as Y = X + N .
Then the best estimate that can be made of the message X  is
the value at the peak of the conditional PDF,

                             fX |Y x( ) = fY |X y( )fX x( )
fY y( )



Joint Probability Density 
Let N have the PDF, Then, for any known value of X,  

the PDF of Y would be 

  

Therefore if the PDF of N  is fN n( )  , the conditional PDF of Y  given 

X  is fN y − X( )



Joint Probability Density 

  

Using Bayes’ theorem,

fX |Y x( ) = fY |X y( )fX x( )
fY y( ) =

fN y − x( )fX x( )
fY y( )

=
fN y − x( )fX x( )
fY |X y( )fX x( )dx

−∞

∞

∫
=

fN y − x( )fX x( )
fN y − x( )fX x( )dx

−∞

∞

∫
Now the conditional PDF of X  given Y  can be computed.



Joint Probability Density 

   

To make the example concrete let

fX x( ) = e− x /E X( )

E X( ) u x( )         fN n( ) = 1
σ N 2π

e−n2 /2σ N
2

Then the conditional pdf of X  given Y  is found to be

fY y( ) =
exp

σ N
2

2E2 X( ) −
y

E X( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2E X( ) 1+ erf
y −

σ N
2

E X( )
2σ N

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

where erf  is the error function.



Joint Probability Density 



Independent Random Variables 

  

If two random variables X  and Y  are independent then

   fX |Y x( ) = fX x( ) = fXY x, y( )
fY y( ) and fY |X y( ) = fY y( ) = fXY x, y( )

fX x( )
Therefore fXY x, y( ) = fX x( )fY y( )  and their correlation is the product 

of their expected values.

E XY( ) = xy fXY x, y( )dx
−∞

∞

∫ dy
−∞

∞

∫ = y fY y( )dy x fX x( )dx
−∞

∞

∫
−∞

∞

∫ = E X( )E Y( )



  

Covariance

σ XY ≡ E X − E X( )⎡⎣ ⎤⎦ Y − E Y( )⎡⎣ ⎤⎦
*⎛

⎝
⎞
⎠

σ XY = x − E X( )( ) y* − E Y *( )( )fXY x, y( )dx
−∞

∞

∫ dy
−∞

∞

∫
σ XY = E XY *( )− E X( )E Y *( )

If X  and Y  are independent, σ XY = E X( )E Y *( )− E X( )E Y *( ) = 0

Independent Random Variables 



  

Correlation Coefficient

ρXY = E
X − E X( )

σ X

×
Y * − E Y *( )

σY

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ρXY =
x − E X( )

σ X

⎛

⎝
⎜

⎞

⎠
⎟

y* − E Y *( )
σY

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

fXY x, y( )dx
−∞

∞

∫ dy
−∞

∞

∫

ρXY =
E XY *( )− E X( )E Y *( )

σ XσY

=
σ XY

σ XσY

If X  and Y  are independent ρ = 0.  If they are perfectly positively
correlated ρ = +1 and if they are perfectly negatively correlated 
ρ = −1.

Independent Random Variables 



 

If two random variables are independent, their covariance is
zero.  However, if two random variables have a zero covariance
that does not mean they are necessarily independent.

                     Independence ⇒ Zero Covariance

                    Zero Covariance ⇒ Independence

Independent Random Variables 



   

In the traditional jargon of random variable analysis, two 
“uncorrelated” random variables have a covariance of zero.

Unfortunately, this does not also imply that their correlation is zero.  
If their correlation is zero they are said to be orthogonal.

                 X  and Y  are "Uncorrelated"⇒σ XY = 0

             X  and Y  are "Uncorrelated"⇒ E XY( ) = 0

Independent Random Variables 



  

The variance of a sum of random variables X  and Y  is

σ X +Y
2 = σ X

2 +σY
2 + 2σ XY = σ X

2 +σY
2 + 2ρXYσ XσY

If Z  is a linear combination of random variables Xi

                               Z = a0 + ai Xi
i=1

N

∑

then  E Z( ) = a0 + ai E Xi( )
i=1

N

∑

           σ Z
2 = aia jσ Xi X j

j=1

N

∑
i=1

N

∑ = ai
2σ Xi

2

i=1

N

∑ + aia jσ Xi X j
j=1

N

∑
i=1
i≠ j

N

∑

Independent Random Variables 



  

If the X’s are all independent of each other, the variance of
the linear combination is a linear combination of the variances.

                                      σ Z
2 = ai

2σ Xi

2

i=1

N

∑
If Z  is simply the sum of the X’s, and the X’s are all independent
of each other, then the variance of the sum is the sum of the
variances.

                                       σ Z
2 = σ Xi

2

i=1

N

∑

Independent Random Variables 



One Function of Two Random 
Variables 

  

Let Z = g X ,Y( ).  Find the pdf of Z.

FZ z( ) = P Z ≤ z⎡⎣ ⎤⎦ = P g X ,Y( ) ≤ z⎡⎣ ⎤⎦ = P X ,Y( )∈RZ
⎡⎣ ⎤⎦

where RZ  is the region in the XY  plane where g X ,Y( ) ≤ z                     

For example, let Z = X +Y  



Probability Density of a Sum of 
Random Variables 

  

Let Z = X +Y .  Then for Z  to be less than z, X  must be less
than z −Y .  Therefore, the distribution function for Z  is

                        FZ z( ) = fXY x, y( )dx
−∞

z− y

∫ dy
−∞

∞

∫

If X  and Y  are independent, FZ z( ) = fY y( ) fX x( )dx
−∞

z− y

∫
⎛

⎝
⎜

⎞

⎠
⎟

−∞

∞

∫ dy

and it can be shown that fZ z( ) = fY y( )fX z − y( )dy
−∞

∞

∫ = fY z( )∗ fX z( )  



Moment Generating Functions 

   

The moment-generating function ΦX s( )  of a CV random variable 

X  is defined by ΦX s( ) = E esX( ) = fX x( )esxdx
−∞

∞

∫ .

Relation to the Laplace transform →  ΦX s( ) = L fX x( )⎡⎣ ⎤⎦s→−s

                          d
ds

ΦX s( )( ) = fX x( )xesxdx
−∞

∞

∫

                 d
ds

ΦX s( )( )⎡

⎣
⎢

⎤

⎦
⎥

s→0

= x fX x( )dx
−∞

∞

∫ = E X( )

Relation to moments →  E X n( ) = d n

dsn ΦX s( )( )⎡

⎣
⎢

⎤

⎦
⎥

s→0



Moment Generating Functions 

   

The moment-generating function ΦX z( )  of a DV random variable 

X  is defined by ΦX z( ) = E z X( ) = P X = n⎡⎣ ⎤⎦ zn

n=−∞

∞

∑ = pnzn

n=−∞

∞

∑ .

Relation to the z  transform →  ΦX z( ) = Z PX n( )( )
z→z−1

d
dz

ΦX z( ) = E Xz X −1( )     d 2

dz2 ΦX z( ) = E X X −1( ) z X −2( )

Relation to moments →  

d
dz

ΦX z( )⎡

⎣
⎢

⎤

⎦
⎥

z=1

= E X( )
d 2

dz2 ΦX z( )⎡

⎣
⎢

⎤

⎦
⎥

z=1

= E X 2( )− E X( )

⎧

⎨
⎪
⎪

⎩
⎪
⎪



The Chebyshev Inequality 

  

For any random variable X  and any  ε > 0,

P X − µX ≥ ε⎡⎣ ⎤⎦ = fX x( )dx
−∞

− µX +ε( )

∫ + fX x( )dx
µX +ε

∞

∫ = fX x( )dx
X −µX ≥ε∫

Also

σ X
2 = x − µX( )2

fX x( )dx
−∞

∞

∫ ≥ x − µX( )2
fX x( )dx

X −µX ≥ε∫ ≥ ε 2 fX x( )dx
X −µX ≥ε∫

It then follows that P X − µX ≥ ε⎡⎣ ⎤⎦ ≤ σ X
2 / ε 2

This is known as the Chebyshev inequality.  Using this we can put a bound
on the probability of an event with knowledge only of the variance and no
knowledge of the PMF or PDF.



The Markov Inequality 

  

For any random variable X  let fX x( ) = 0 for all X < 0 and let ε  be a postive 

constant. Then

E X⎡⎣ ⎤⎦ = x fX x( )dx
−∞

∞

∫ = x fX x( )dx
0

∞

∫ ≥ x fX x( )dx
ε

∞

∫ ≥ ε fX x( )dx
ε

∞

∫ = ε P X ≥ ε⎡⎣ ⎤⎦

Therefore  P X ≥ ε⎡⎣ ⎤⎦ ≤
E X( )
ε

.  This is known as the Markov inequality.

It allows us to bound the probability of certain events with knowledge 
only of the expected value of the random variable and no knowledge of the 
PMF or PDF except that it is zero for negative values.



The Weak Law of Large 
Numbers 

    

Consider taking N  independent values X1, X2 ,, X N{ }  from a random 

variable X  in order to develop an understanding of the nature of X .  They 

constitute a sampling of X .  The sample mean is X N = 1
N

Xn
n=1

N

∑ .  The sample

size is finite, so different sets of N  values will yield different sample means.
Thus X N  is itself a random variable and it is an estimator of the expected

value of X ,  E X( ).  A good estimator has two important qualities.  It is 

unbiased and consistent.  Unbiased means E X N( ) = E X( ).  Consistent means

that as N  is increased the variance of the estimator is decreased.



The Weak Law of Large 
Numbers 

  

Using the Chebyshev inequality we can put a bound on the probable 
deviation of  X N  from its expected value.

                        P X − E X N( ) ≥ ε⎡
⎣

⎤
⎦ ≤

σ X N

2

ε 2 =
σ X

2

Nε 2   ,   ε > 0

This implies that 

                         P X N − E X( ) < ε⎡
⎣

⎤
⎦ ≥1−

σ X
2

Nε 2   ,   ε > 0

The probability that X N  is within some small deviation from E X( )  can be

made as close to one as desired by making N  large enough.



The Weak Law of Large 
Numbers 

    

Now, in

                      P X N − E X( ) < ε⎡
⎣

⎤
⎦ ≥1−

σ X
2

Nε 2   ,   ε > 0

let N  approach infinity.

                      lim
N→∞

P X N − E X( ) < ε⎡
⎣

⎤
⎦ = 1  ,   ε > 0

The Weak Law of Large Numbers states that if X1, X2 ,, X N{ }  is a 

sequence of iid random variable values and E X( )  is finite, then

                         lim
N→∞

P X N − E X( ) < ε⎡
⎣

⎤
⎦ = 1  ,   ε > 0

This kind of convergence is called convergence in probability.



The Strong Law of Large 
Numbers 

    

Now consider a sequence X1, X2 ,{ }  of independent values of X  and let

X  have an expected value E X( )  and a finite variance σ X
2 .  Also consider

a sequence of sample means X1, X2 ,{ }  defined by X N = 1
N

Xn
n=1

N

∑ .  The

Strong Law of Large Numbers says

                                      P lim
N→∞

X N = E X( )⎡
⎣

⎤
⎦ = 1

This kind of convergence is called almost sure convergence.
 



The Laws of Large Numbers 

  

The Weak Law of Large Numbers

                         lim
N→∞

P X N − E X( ) < ε⎡
⎣

⎤
⎦ = 1  ,   ε > 0

and the Strong Law of Large Numbers

                                      P lim
N→∞

X N = E X( )⎡
⎣

⎤
⎦ = 1

seem to be saying about the same thing.  There is a subtle difference.
It can be illustrated by the following example in which a sequence 
converges in probability but not almost surely. 



The Laws of Large Numbers 

   

Let Xnk =
1  ,   k / n ≤ζ < k +1( ) / n  ,   0 ≤ k < n  ,   n = 1,2,3,

0  ,  otherwise

⎧
⎨
⎪

⎩⎪
and let ζ  be uniformly distributed between 0 and 1.  As n increases from
one we get this "triangular" sequence of X 's.

                                        

X10

X20 X21

X30 X31 X32



Now let Yn n−1( )/2+k+1
= Xnk  meaning that Y = X10 , X20 , X21, X30 , X31, X32 ,{ }.

X10  is one with probability one.  X20  and X21  are each one with probability
1/2 and zero with probability 1/2.  Generalizing we can say that Xnk  is one
with probability 1/n and zero with probability 1−1/ n.  



The Laws of Large Numbers 

  

Yn n−1( )/2+k+1
 is therefore one with probability 1 / n and zero with probability

1−1/ n.  For each n the probability that at least one of the n numbers in
each length-n sequence is one is 

                P at least one 1⎡⎣ ⎤⎦ = 1− P no ones⎡⎣ ⎤⎦ = 1− 1−1/ n( )n
.

In the limit as n approaches infinity this probability approaches 1−1/ e ≅ 0.632.
So no matter how large n gets there is a non-zero probability that at least one 
1 will occur in any length-n sequence.  This proves that the sequence Y  does 
not converge almost surely because there is always a non-zero probability that 
a length-n sequence will contain a 1 for any n.



The Laws of Large Numbers 

  

The expected value E Xnk( )  is

              E Xnk( ) = P Xnk = 1⎡⎣ ⎤⎦ ×1+ P Xnk = 0⎡⎣ ⎤⎦ × 0 = 1/ n

and is therefore independent of k  and approaches zero as n approaches
infinity.  The expected value of Xnk

2  is

        E Xnk
2( ) = P Xnk = 1⎡⎣ ⎤⎦ ×12 + P Xnk = 0⎡⎣ ⎤⎦ × 02 = E Xnk( ) = 1/ n

and the variance is Xnk  is n −1
n2 .  So the variance of Y  approaches zero

as n approaches infinity.  Then according to the Chebyshev inequality

                            P Y − µY ≥ ε⎡⎣ ⎤⎦ ≤ σY
2 / ε 2 = n −1

n2ε 2

implying that as n approaches infinity the variation of Y  gets steadily 
smaller and that says that Y  converges in probability to zero.



The Laws of Large Numbers 



The Laws of Large Numbers 

  

Consider an experiment in which we toss a fair coin and assign the value
1 to a head and the value 0 to a tail.  Let N H  be the number of heads, let
N  be the number of coin tosses, let rH  be N H / N  and let X  be the random 

variable indicating a head or tail.  Then N H = Xn
n=1

N

∑ ,  E N H( ) = N / 2 and

E rH( ) = 1/ 2.



The Laws of Large Numbers 

  

σ rH

2 = σ X
2 / N ⇒σ rH

= σX / N   Therefore rH −1/ 2 generally approaches 

zero but not smoothly or monotonically.

σ NH

2 = Nσ X
2 ⇒σ NH

= Nσ X .  Therefore N H − E N H( )  does not approach 

zero.  So the variation of N H  increases with N .



Convergence of Sequences of 
Random Variables 

 

We have already seen two types of convergence of sequences of random 
variables, almost sure convergence (in the Strong Law of Large Numbers)
and convergence in probability (in the Weak Law of Large Numbers).  Now
we will explore other types of convergence.  



Convergence of Sequences of 
Random Variables 

   

                                       Sure Convergence
A sequence of random variables Xn ζ( ){ }  converges surely to the random 

variable X ζ( )  if the sequence of functions Xn ζ( )  converges to the function 

X ζ( )  as n→∞ for all ζ  in S.  Sure convergence requires that every possible

sequence converges.  Different sequences may converge to different limits but
all must converge.
                                 Xn ζ( )→ X ζ( )  as n→∞ for all ζ ∈S



Convergence of Sequences of 
Random Variables 

   

                               Almost Sure Convergence
A sequence of random variables Xn ζ( ){ }  converges almost  surely to the 

random variable X ζ( )  if the sequence of functions Xn ζ( )  converges to the 

function X ζ( )  as n→∞ for all ζ  in S ,  except possible on a set of probability 

zero.  

                                 P ζ : Xn ζ( )→ X ζ( )  as n→∞⎡⎣ ⎤⎦ = 1

This is the convergence in the Strong Law of Large Numbers.



Convergence of Sequences of 
Random Variables 

   

                         Mean Square Convergence
The sequence of random variables Xn ζ( ){ }  converges in the mean - square

sense  to the random variable X ζ( )  if 
                                 E Xn ζ( )− X ζ( )( )2⎡

⎣⎢
⎤
⎦⎥
→ 0 as n→∞

If the limiting random variable X ζ( )  is not known we can use the Cauchy 

Criterion:  The sequence of random variables Xn ζ( ){ }  converges in the 

mean - square sense  to the random variable X ζ( )  if and only if

                         E Xn ζ( )− Xm ζ( )( )2⎡
⎣⎢

⎤
⎦⎥
→ 0 as n→∞ and m→∞



Convergence of Sequences of 
Random Variables 

   

                         Convergence in Probability
The sequence of random variables Xn ζ( ){ }  converges in probability

to the random variable X ζ( )  if, for any ε > 0

                                 P Xn ζ( )− X ζ( ) > ε⎡
⎣

⎤
⎦→ 0 as n→∞

This is the convergence in the Weak Law of Large Numbers.



Convergence of Sequences of 
Random Variables 

   

                         Convergence in Distribution
The sequence of random variables Xn{ }  with cumulative distribution

functions Fn x( ){ }  converges in distribution to the random variable X  

with cumulative distribution function F x( )  if
                                 Fn x( )→ F x( )  as n→∞

for all x at which F x( )  is continuous.  The Central Limit Theorem (coming

soon) is an example of convergence in distribution.



Long-Term Arrival Rates 

    

Suppose a system has a component that fails at time X1, it is replaced and

that component fails at time X2 , and so on.  Let N t( )  be the number of

components that have failed at time t.  N t( )  is called a renewal counting

process.  Let X j  denote the lifetime of the jth component.  Then the time

when the nth component fails is Sn = X1 + X2 ++ Xn  where we assume
that the X j  are iid non-negative random 

variables with 0 ≤ E X( ) = E X j( ) < ∞.

We call the X j 's the interarrival or cycle 

times.



Long-Term Arrival Rates 
Since the average interarrival time is E X( )  seconds per event one would 
expect intuitively that the average rate of arrivals is 1/E X( )  events per
second.  
                  SN t( ) ≤ t ≤ SN t( )+1

Dividing through by N t( ),

            
SN t( )

N t( ) ≤
t

N t( ) ≤
SN t( )+1

N t( )
SN t( )

N t( )  is the average interarrival

time for the first N t( )  arrivals.



Long-Term Arrival Rates 
SN t( )

N t( ) =
1

N t( ) Xj
j=1

N t( )

∑     As t→∞,  N t( )→∞ and 
SN t( )

N t( )→  E X( ). 

Similarly, 
SN t( )+1

N t( ) +1
→  E X( ). So from 

SN t( )

N t( ) ≤
t

N t( ) ≤
SN t( )+1

N t( )

we can say lim
t→∞

t
N t( ) = E X( )  and

lim
t→∞

N t( )
t

= 1
E X( ) .



Long-Term Time Averages 

Suppose that events occur at random with iid interarrival times Xj  and 

that a cost Cj  is associated with each event.  Let C j t( )  be the cost 

accumulated up to time t.  Then C j t( ) = Cj
j=1

N t( )

∑ .  The average cost up to 

time t  is C t( )
t

= 1
t

C j
j=1

N t( )

∑ =
N t( )
t

1
N t( ) Cj

j=1

N t( )

∑ .  In the limit t→∞,  

N t( )
t

→ 1
E X( )  and 1

N t( ) Cj
j=1

N t( )

∑ → E C( ).  Therefore lim
t→∞

C t( )
t

=
E C( )
E X( ) .



The Central Limit Theorem 

 

Let YN = Xn
n=1

N

∑  where the Xn's are an iid sequence of random variable

values.

Let ZN =
YN − N E X( )

σ X N
=

Xn − E X( )( )
n=1

N

∑
σ X N

.

E ZN( ) = E
Xn − E X( )( )

n=1

N

∑
σ X N

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=
E Xn − E X( )( )

=0  

n=1

N

∑
σ X N

= 0



The Central Limit Theorem 

  

σ ZN

2 = 1
σ X N

⎛

⎝
⎜

⎞

⎠
⎟

2

σ X
2

n=1

N

∑ = 1

The MGF of ZN  is ΦZN
s( ) = E esZN( ) = E exp s

Xn − E X( )( )
n=1

N

∑
σ X N

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.

ΦZN
s( ) = E exp s

Xn − E X( )( )
σ X N

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟n−1

N

∏
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= E exp s

Xn − E X( )( )
σ X N

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟n−1

N

∏

ΦZN
s( ) = EN exp s

X − E X( )( )
σ X N

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟



The Central Limit Theorem 

   

We can expand the exponential function in an infinite series.

ΦZN
s( ) = EN 1+ s

X − E X( )( )
σ X N

+ s2
X − E X( )( )2

2!σ X
2 N

+ s3
X − E X( )( )3

3!σ X
3 N N

+
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

ΦZN
s( ) = 1+ s

E X − E X( )( )
=0  

σ X N
+ s2

E X − E X( )( )2⎛
⎝

⎞
⎠

=σ X
2

  

2!σ X
2 N

+ s3
E X − E X( )( )3⎛
⎝

⎞
⎠

3!σ X
3 N N

+

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

N

ΦZN
s( ) = 1+ s2

2N
+ s3

E X − E X( )( )3⎛
⎝

⎞
⎠

3!σ X
3 N N

+

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

N



The Central Limit Theorem 

  

For large N  we can neglect the higher-order terms. Then using 

lim
m→∞

1+ z
m

⎛
⎝⎜

⎞
⎠⎟

m

= ez  we get 

ΦZN
s( ) = lim

N→∞
1+ s2

2N
⎛

⎝⎜
⎞

⎠⎟

N

= es2 /2 ⇒ fZN
z( ) = e− z2 /2

2π
Thus the PDF approaches a Gaussian shape, with no assumptions about

the shapes of the PDF's of the Xn's.  This is convergence in distribution.



The Central Limit Theorem 
Comparison of the distribution functions of two different Binomial 
random variables and Gaussian random variables with the same expected 
value and variance



The Central Limit Theorem 
Comparison of the distribution functions of two different Poisson 
random variables and Gaussian random variables with the same 
expected value and variance



The Central Limit Theorem 
Comparison of the distribution functions of two different Erlang random 
variables and Gaussian random variables with the same expected value 
and variance



The Central Limit Theorem 
Comparison of the distribution functions of a sum of five independent 
random variables from each of four distributions and a Gaussian random 
variable with the same expected value and variance as that sum



The Central Limit Theorem 

 

The PDF of a sum of independent random variables is the convolution
of their PDF's.  This concept can be extended to any number of random

variables.  If Z = Xn
n=1

N

∑  then fZ z( ) = fX1
z( )∗ fX2

z( )∗ fX2
z( )∗∗ fXN z( ).

As the number of convolutions increases, the shape of the PDF of Z
approaches the Gaussian shape.



The Central Limit Theorem 



The Central Limit Theorem 

  

The Gaussian pdf

                              fX x( ) = 1
σ X 2π

e− x−µX( )2 /2σ X
2

                    µX = E X( )  and σX = E X − E X( )⎡⎣ ⎤⎦
2⎛

⎝
⎞
⎠



The Central Limit Theorem 

  

The Gaussian PDF
Its maximum value occurs at the mean value of its argument.
It is symmetrical about the mean value.
The points of maximum absolute slope occur at one standard deviation 
       above and below the mean.
Its maximum value is inversely proportional to its standard deviation.
The limit as the standard deviation approaches zero is a unit impulse.

                     δ x − µx( ) = lim
σ X →0

1
σ X 2π

e− x−µX( )2 /2σ X
2



The Central Limit Theorem 

    

The normal PDF is a Gaussian PDF with a mean of zero and
a variance of one.

                                    fX x( ) = 1
2π

e− x2 /2

The central moments of the Gaussian PDF are

          E X − E X( )⎡⎣ ⎤⎦
n⎛

⎝
⎞
⎠ =

0 , n  odd
1⋅3⋅5… n −1( )σ X

n , n  even

⎧
⎨
⎪

⎩⎪



The Central Limit Theorem 

  

In computing probabilities from a Gaussian PDF it is necessary to 

evaluate integrals of the form, dx
σ X 2π

e− x−µX( )2 /2σ X
2

x1

x2

∫ .  Define a function

G x( ) = 1
2π

e−λ2 /2 dλ
−∞

x

∫ .  Then, using the change of variable λ =
x − µX

σ X

we can convert the integral to dλ
2π

e−λ2 /2

x1−µX
σ X

x2−µX
σ X

∫  or G
x2 − µX

σ X

⎛

⎝⎜
⎞

⎠⎟
−G

x1 − µX

σ X

⎛

⎝⎜
⎞

⎠⎟
.

The G function is closely related to some other standard functions.  For example

the "error" function erf x( ) = 2
π

e−λ2

dλ
0

x

∫  and G x( ) = 1
2

erf 2x( ) +1( ).



The Central Limit Theorem 
Jointly Normal Random Variables 

  
fXY x, y( ) =

exp −

x − µX

σ X

⎛

⎝⎜
⎞

⎠⎟

2

−
2ρXY x − µX( ) y − µY( )

σ XσY

+
y − µY

σY

⎛

⎝⎜
⎞

⎠⎟

2

2 1− ρXY
2( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

2πσ XσY 1− ρXY
2



The Central Limit Theorem 
Jointly Normal Random Variables 



The Central Limit Theorem 
Jointly Normal Random Variables 



The Central Limit Theorem 
Jointly Normal Random Variables 



The Central Limit Theorem 
Jointly Normal Random Variables 

  

Any cross section of a bivariate Gaussian PDF at any value of x or y
is a Gaussian.  The marginal PDF’s of X  and Y  can be found using

                               fX x( ) = fXY x, y( )dy
−∞

∞

∫
which turns out to be

                                 fX x( ) = e− x−µX( )2 /2σ X
2

σ X 2π
Similarly

                                 fY y( ) = e− y−µY( )2 /2σY
2

σY 2π



The Central Limit Theorem 
Jointly Normal Random Variables 

  

The conditional PDF of X  given Y  is

fX |Y x( ) =
exp −

x − µX( )− ρXY σ X /σY( ) y − µY( )( )⎡
⎣

⎤
⎦

2

2σ X
2 1− ρXY

2( )
⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

2πσ X 1− ρXY
2

The conditional PDF of Y  given X  is

fY |X y( ) =
exp −

y − µY( )− ρXY σY /σ X( ) x − µX( )( )⎡
⎣

⎤
⎦

2

2σY
2 1− ρXY

2( )
⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

2πσY 1− ρXY
2



Transformations of Joint 
Probability Density Functions 

  

If  W = g X ,Y( )     and    Z = h X ,Y( )  and both functions are 

invertible then it is possible to write X = G W ,Z( )     and    Y = H W ,Z( )
and
P x < X ≤ x + Δx, y < Y ≤ y + Δy⎡⎣ ⎤⎦ = P w <W ≤ w+ Δw, z < Z ≤ z + Δz⎡⎣ ⎤⎦
                               fXY x, y( )ΔxΔy ≅ fWZ w, z( )ΔwΔz



Transformations of Joint 
Probability Density Functions 

  

    ΔxΔy = J ΔwΔz  where J =

∂G
∂w

∂G
∂z

∂ H
∂w

∂ H
∂z

fWZ w, z( ) = J fXY x, y( ) = J fXY G w, z( ),H w, z( )( )



Transformations of Joint 
Probability Density Functions 

  

Let R = X 2 +Y 2     and    Θ = tan-1 Y
X

⎛
⎝⎜

⎞
⎠⎟

, −π <Θ ≤ π

where X  and Y  are independent and Gaussian, with zero mean
and equal variances.  Then
                  X = Rcos Θ( )     and    Y = Rsin Θ( )

              J =

∂x
∂r

∂x
∂θ

∂ y
∂r

∂ y
∂θ

=
cos θ( ) −r sin θ( )
sin θ( ) r cos θ( ) = r



Transformations of Joint 
Probability Density Functions 

  

    fX x( ) = 1
σ X 2π

e− x2 /2σ X
2

and fY y( ) = 1
σY 2π

e− y2 /2σY
2

Since X  and Y  are independent

           fXY x, y( ) = 1
2πσ 2 e

− x2+ y2( )/2σ 2

    σ 2 = σ X
2 = σY

2

Applying the transformation formula

            fRΘ r,θ( ) = r
2πσ 2 e−r2 /2σ 2

u r( ) , −π <θ ≤ π

            fRΘ r,θ( ) = r
2πσ 2 e−r2 /2σ 2

u r( )rect θ / 2π( )



Transformations of Joint 
Probability Density Functions 

  

The radius R is distributed according to the Rayleigh PDF

         fR r( ) = r
2πσ 2 e−r2 /2σ 2

u r( )dθ =
−π

π

∫
r
σ 2 e−r2 /2σ 2

u r( )

                      E R( ) = π
2
σ   and  σ R

2 = 0.429σ 2

The angle is uniformly distributed

fΘ θ( ) = r
2πσ 2 e−r2 /2σ 2

u r( )dr
−∞

∞

∫ =
rect θ / 2π( )

2π
=

1/ 2π , −π <θ ≤ π
0 , otherwise
⎧
⎨
⎩



Multivariate Probability Density 

   

FX1 , X2 ,, X N
x1,x2 ,,xN( ) ≡ P X1 ≤ x1 ∩ X2 ≤ x2 ∩∩ X N ≤ xN⎡⎣ ⎤⎦

0 ≤ FX1 , X2 ,, X N
x1,x2 ,,xN( ) ≤1 , − ∞ < x1 < ∞ ,    ,  − ∞ < xN < ∞

FX1 , X2 ,, X N
−∞,,−∞( ) = FX1 , X2 ,, X N

−∞,,xk ,,−∞( )
                                   = FX1 , X2 ,, X N

x1,,−∞,,xN( ) = 0

FX1 , X2 ,, X N
+∞,,+∞( ) = 1

FX1 , X2 ,, X N
x1,x2 ,,xN( )  does not decrease if any number of x 's increase

FX1 , X2 ,, X N
+∞,,xk ,,+∞( ) = FXk

xk( )



Multivariate Probability Density 

   

fX1 , X2 ,, X N
x1,x2 ,,xN( ) = ∂ N

∂x1∂x2∂xN

FX1 , X2 ,, X N
x1, x2 ,,xN( )

fX1 , X2 ,, X N
x1,x2 ,,xN( ) ≥ 0 , − ∞ < x1 < ∞ ,    ,  − ∞ < xN < ∞

 fX1 , X2 ,, X N
x1,x2 ,,xN( )dx1dx2dxN

−∞

∞

∫
−∞

∞

∫
−∞

∞

∫ = 1

FX1 , X2 ,, X N
x1,x2 ,,xN( ) =  fX1 , X2 ,, X N

λ1,λ2 ,,λN( )dλ1dλ2dλN
−∞

x1

∫
−∞

x2

∫
−∞

xN

∫

fXk
xk( ) =  fX1 , X2 ,, X N

x1,x2 ,,xk−1,xk+1,,xN( )dx1dx2dxk−1dxk+1dxN
−∞

∞

∫
−∞

∞

∫
−∞

∞

∫
P X1 , X2 ,, X N( )∈R⎡⎣ ⎤⎦ = 

R

fX1 , X2 ,, X N
x1,x2 ,,xN( )dx1dx2dxN∫∫∫

E g X1 , X2 ,, X N( )( ) = g x1,x2 ,,xN( )fX1 , X2 ,, X N
x1,x2 ,,xN( )dx1dx2dxN

−∞

∞

∫
−∞

∞

∫



Other Important Probability 
Density Functions 

   

In an ideal gas the three components of molecular velocity are
all Gaussian with zero mean and equal variances of
                        σV

2 = σVX

2 = σVY

2 = σVZ

2 = kT / m

The speed of a molecule is

                             V = VX
2 +VY

2 +VZ
2

and the PDF of the speed is called Maxwellian and is given by

                        fV v( ) = 2 / π v2

σV
3 e−v2 /2σV

2

u v( )



Other Important Probability 
Density Functions 



Other Important Probability 
Density Functions 

    

If  χ 2 = Y1
2 +Y2

2 +Y3
2 ++YN

2 = Yn
2

n=1

N

∑  and the random variables 

Yn  are all mutually independent and normally distributed then

                       f
χ2 x( ) = xN /2−1

2N /2Γ N / 2( ) e− x /2 u x( )
This is the chi - squared PDF.

                            E χ 2( ) = N         σ
χ2
2 = 2N



Other Important Probability 
Density Functions 



Reliability 

  

Reliability is defined by R t( ) = P T > t⎡⎣ ⎤⎦  where T  is the random 

variable representing the length of time after a system first begins 
operation that it fails.
 
                            FT t( ) = P T ≤ t⎡⎣ ⎤⎦ = 1− R t( )

                                    d
dt

R t( )( ) = − fT t( )



Reliability 

   

Probably the most commonly-used term in reliability analysis 
is mean time to failure (MTTF).  MTTF is the expected value 

of T  which is E T( ) = t fT t( )dt
−∞

∞

∫ .  The conditional distribution 

function and PDF for the time to failure T  given the condition 
T > t0  are

 FT |T >t0
t( ) =

0                      ,  t < t0

FT t( )− FT t0( )
1− FT t0( )   ,  t ≥ t0

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
=

FT t( )− FT t0( )
R t0( ) u t − t0( )

                            fT |T >t0
t( ) = fT t( )

R t0( ) u t − t0( )



Reliability 

  

A very common term in reliability analysis is failure rate which 
is defined by λ t( )dt = P t < T ≤ t + dt⎡⎣ ⎤⎦ = fT |T >t t( )dt.  Failure rate 

is the probability per unit time that a system which has been 
operating properly up until time t  will fail, as a function of t. 

                        λ t( ) = fT t( )
R t( ) = −

′R t( )
R t( )   ,  t ≥ 0

                         ′R t( ) + λ t( )R t( ) = 0  ,  t ≥ 0



Reliability 

  

The solution of ′R t( ) + λ t( )R t( ) = 0  ,  t ≥ 0  is R t( ) = e
− λ x( )dx

0

t

∫   ,  t ≥ 0.

One of the simplest models for system failure used in reliability 
analysis is that the failure rate is a constant.  Let that constant be 
K .  Then 

R t( ) = e
− Kdx

0

t

∫ = e−Kt  and  fT t( ) = − ′R t( ) = Ke−Kt   ←   Exponential PDF

MTTF is 1/K .



Reliability 

   

In some systems if any of the subsystems fails the overall system 
fails.  If subsystem failure mechanisms are independent, the 
probability that the overall system is operating properly is the 
product of the probabilities that the subsystems are all operating 
properly.  Let Ak  be the event “subsystem k  is operating 
properly” and let As  be the event “the overall system is operating 
properly”.  Then, if there are N  subsystems
 P As⎡⎣ ⎤⎦ = P A1⎡⎣ ⎤⎦P A2⎡⎣ ⎤⎦P AN⎡⎣ ⎤⎦  and R s t( ) = R1 t( )R2 t( )R N t( )
If the subsystems all have failure times with exponential PDF’s then

     R s t( ) = e− t /τ1e− t /τ2e− t /τN = e− t 1/τ1+1/τ2++1/τN( ) = e− t /τ

                      1 / τ = 1/ τ1 +1/ τ 2 ++1/ τ N



Reliability 

   

In some systems the overall system fails only if all of the subsystems 
fail .  If subsystem failure mechanisms are independent, the 
probability that the overall system is not operating properly is the 
product of the probabilities that the subsystems are all not operating 
properly.  As before let Ak  be the event “subsystem k  is operating 
properly” and let As  be the event “the overall system is operating 
properly”.  Then, if there are N  subsystems
                     P As⎡⎣ ⎤⎦ = P A1⎡⎣ ⎤⎦P A2⎡⎣ ⎤⎦P AN⎡⎣ ⎤⎦
and   1− R s t( ) = 1− R1 t( )( ) 1− R2 t( )( ) 1− R N t( )( )
If the subsystems all have failure times with exponential PDF’s then

             R s t( ) = 1− 1− e− t /τ1( ) 1− e− t /τ2( ) 1− e− t /τN( )



Reliability 

   

An exponential failure rate implies that whether a system has just 
begun operation or has been operating properly for a long time, 
the probability that it will fail in the next unit of time is the same.  
The expected value of the additional time to failure at any arbitrary 
time is a constant independent of past history,
                            E T |T > t0( ) = t0 + E T( )
This model is fairly reasonable for a wide range of times but not 
for all times in all systems.  Many real systems experience two 
additional types of failure that are not indicated by an exponential 
PDF of failure times, infant mortality and wear - out. 



Reliability 
The “Bathtub” Curve 



Reliability 

   

The two higher-failure-rate portions of the bathtub curve are 
often modeled by the log - normal distribution of failure times.  
If a random variable X  is Gaussian distributed its PDF is 

                                  fX x( ) = e− x−µX( )2 /2σ X
2

σ X 2π

If  Y = eX  then dY / dX = eX = Y , X = ln Y( )  and the PDF of Y  is 

                   fY y( ) = fX ln y( )( )
dy / dx

= e− ln y( )−µX( )2 /2σ X
2

yσ X 2π

Y  is log-normal distributed E Y( ) = eµX +σ X
2 /2  and σY

2 = e2µX +σ X
2

eσ X
2

−1( ).



The Log-Normal Distribution 

 Y = eX



The Log-Normal Distribution 

  

Another common application of the log-normal distribution is to 
model the pdf of a random variable X  that is formed from the 
product of a large number N  of independent random variables Xn.

                                       X = Xn
n=1

N

∏  

The logarithm of X  is then

                                log X( ) = log Xn( )
n=1

N

∑
Since log X( )  is the sum of a large number of independent random 

variables its PDF tends to be Gaussian which implies that the PDF of 
X  is log-normal in shape.


