
Probability 



Mathematical Preliminaries 

  

The Unit Step Function

u x( ) = 1    , x ≥ 0
0     , x < 0
⎧
⎨
⎩



Mathematical Preliminaries 
                                  The Unit Impulse

                              g 0( ) = δ x( )g x( )dx
−∞

∞

∫

         δ x( ) = 0  ,  x ≠ 0    and    δ x( )dx
α

β

∫ =
1  ,  α < 0 < β
0  ,  otherwise

⎧
⎨
⎩

        The Sampling Property    g x( )δ x − x0( )dt
−∞

∞

∫ = g x0( )

        The Scaling Property    δ a x − x0( )( ) = 1
a
δ x − x0( )



Mathematical Preliminaries 

  

   The Unit Rectangle Function

rect x( ) = u x +1/ 2( )− u x −1/ 2( )



Mathematical Preliminaries 

  

The Unit Triangle Function

 tri x( ) = 1− x , x <1

0  , x ≥1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪



Mathematical Preliminaries 

  

The Unit Sinc Function

  sinc x( ) = sin π x( )
π x



Mathematical Preliminaries 

  

The Discrete-Time Unit Impulse Function

                δ n⎡⎣ ⎤⎦ =
1 , n = 0
0 , n ≠ 0
⎧
⎨
⎩



Mathematical Preliminaries 

  

The Discrete-Time Unit Sequence Function

                  u n⎡⎣ ⎤⎦ =
1 , n ≥ 0
0 , n < 0
⎧
⎨
⎩



Definitions 

•   An experiment is any operation performed 
 according to a procedure with a specified set    

  of observations.   
•   A trial is any single performance of an 

 experiment. 
•   An outcome is the result of performing a 

 single experiment. 
•   A probability space is the set of all possible 

 outcomes. 
•   An event is a subset of the probability space. 



Set Theory and Probability 

If S  is a probability space
                                         P S[ ] = 1
The null set ∅ is associated with the impossible event.
                                          P ∅[ ] = 0
A subset A of S  is any set whose elements are also elements
of S.  If S  has n elements there are 2ndistinct subsets of S,
each of which is an event.
For example if S  is the set {H ,T} the four events are 
                                ∅{ } , H{ } , T{ } , H ,T{ }



Set Theory and Probability 
{∅}     1 subset 

{1},{2},{3},{4},{5},{6}    6 subsets 

{1,2},{1,3},{1,4},{1,5},{1,6}   15 subsets 
 {2,3},{2,4},{2,5},{2,6} 
 {3,4},{3,5},{3,6} 
 {4,5},{4,6} 
 {5,6}  

{1,2,3},{1,2,4},{1,2,5},{1,2,6},{1,3,4},{1,3,5},  20 subsets 
 {1,3,6},{1,4,5},{1,4,6},{1,5,6},{2,3,4}, 
 {2,3,5},{2,3,6},{2,4,5},{2,4,6},{2,5,6} 
 {3,4,5},{3,4,6},{3,5,6},{4,5,6} 

{1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,4,5},{1,2,4,6},  15 subsets 
 {1,2,5,6},{1,3,4,5},{1,3,4,6},{1,3,5,6}, 
 {1,4,5,6},{2,3,4,5},{2,3,4,6},{2,3,5,6}, 
 {2,4,5,6},{3,4,5,6} 

{1,2,3,4,5},{1,2,3,4,6},{1,2,3,5,6},{1,2,4,5,6},  6 subsets 
 {1,3,4,5,6},{2,3,4,5,6} 

{1,2,3,4,5,6}    1 subset 

If a die is tossed 
there are 6 outcomes
{1,2,3,4,5,6}.    
There are 64 events. 



Set Theory and Probability 

  

The notation   A = ex | x = −2,0,3,4{ }  means the set of powers of e 

                                    e−2  , e0  , e3  , e4

Some sets have infinitely many elements.  They are normally
specified by their properties rather than by enumeration (since
enumeration is impossible).  The set of real numbers between 0 
and 1 is described by 0 < x <1{ }.    



Set Theory and Probability 

  

If A is the subset

                   A = A,2,3,4,5,6,7,8,9,10,J,Q,K{ }

of spades in the set of playing cards S  (A⊂ S )  we can say 
that the probability of choosing a spade from S  is

                       P a spade is chosen⎡⎣ ⎤⎦ = P A⎡⎣ ⎤⎦



Set Theory and Probability 
Venn Diagrams 

The statement “A is a subset of S” can be represented  
geometrically by this Venn diagram  



Set Theory and Probability 

The union of two sets A∪ B or A + B is the set consisting of 
all the members which are in A or B or both.
The intersection of two sets A∩ B or AB is the set consisting 
of all the members which are in both A and B
The complement of a set A is the set consisting of all the 
members that are not in A.
The difference A − B is the set consisting of all the members 
that are in A and not in B.



Set Theory and Probability 

  

              DeMorgan’s Laws

A∪ B = A∩ B    ,    A∩ B = A∪ B

    A+ B = AB    ,    AB = A+ B



Set Theory and Probability 

   If AB =∅  then A and B are mutually exclusive or disjoint.

The Three Postulates of Probability Theory
    If A and B are subsets of S,  P A[ ] ≥ 0  ,  P S[ ] = 1
   If AB =∅, then P A + B[ ] = P A[ ]+ P B[ ]
    Using these postulates it can be shown that
            P A + B[ ] = P A[ ]+ P B[ ]− P AB[ ]



Set Theory and Probability 

A partition of a set S is a collection of mutually exclusive 
subsets of S whose union is the set S. 



Set Theory and Probability 

   

If the outcomes of an experiment are  ζ1,ζ2 ,,ζN{ }
and the probability of the ith outcome is P ζ i⎡⎣ ⎤⎦ = pi   then

pi
i=1

N

∑ = 1.  The sum of the probabilities of all the possible 

outcomes of an experiment must be one.  



Relative Frequency and 
Probability 

  

The relative frequency of occurrence of an event A is 

defined as  r A( ) = N A

N
  where N A  is the number of times 

the event A occurred in N  trials of an experiment.  The 
probability of the event A is the limit of the relative 
frequency of occurrence as the number of trials N  approaches 
infinity.

                          P A⎡⎣ ⎤⎦ = lim
N→∞

r A( ) = lim
N→∞

N A

N



Conditional Probability 

  

Conditional probability is the probability that an event  
occurs, given that another event also occurs.  The

conditional probability of event A given that event B also 
occurs is defined by

               P A | B⎡⎣ ⎤⎦ ≡
P A ∩ B⎡⎣ ⎤⎦

P B⎡⎣ ⎤⎦
, P B⎡⎣ ⎤⎦ > 0

If A and B are mutually exclusive (disjoint) their intersection
is the null set and

                             P A | B⎡⎣ ⎤⎦ =
P ∅⎡⎣ ⎤⎦
P B⎡⎣ ⎤⎦

= 0



Conditional Probability 

  

If A is a subset of B,

P A | B⎡⎣ ⎤⎦ =
P AB⎡⎣ ⎤⎦
P B⎡⎣ ⎤⎦

              =
P A⎡⎣ ⎤⎦
P B⎡⎣ ⎤⎦

≥ P A⎡⎣ ⎤⎦

  

If B is a subset of A,

P A | B⎡⎣ ⎤⎦ =
P AB⎡⎣ ⎤⎦
P B⎡⎣ ⎤⎦

=
P B⎡⎣ ⎤⎦
P B⎡⎣ ⎤⎦

= 1



Conditional Probability 

   

Suppose a probability space is divided into N  mutually
exclusive events A1, A2 ,, AN{ }  and that the event B 

intersects some or all of those events.  Then
 
                          A1 + A2 ++ AN = S



Conditional Probability 

   

The probability of B is
          B = B A1 + A2 ++ AN( ) = BA1 + BA2 ++ BAN

                    P B⎡⎣ ⎤⎦ = P BA1 + BA2 ++ BAN⎡⎣ ⎤⎦
               P B⎡⎣ ⎤⎦ = P BA1⎡⎣ ⎤⎦ + P BA2⎡⎣ ⎤⎦ ++ P BAN⎡⎣ ⎤⎦
Then using

                      P A | B⎡⎣ ⎤⎦ ≡
P AB⎡⎣ ⎤⎦
P B⎡⎣ ⎤⎦

, P B⎡⎣ ⎤⎦ > 0

P B⎡⎣ ⎤⎦ = P B | A1⎡⎣ ⎤⎦P A1⎡⎣ ⎤⎦ + P B | A2⎡⎣ ⎤⎦P A2⎡⎣ ⎤⎦ ++ P B | AN⎡⎣ ⎤⎦P AN⎡⎣ ⎤⎦



Conditional Probability 

   

Bayes’ Theorem
From the definition of conditional probability

P A | B⎡⎣ ⎤⎦ ≡
P AB⎡⎣ ⎤⎦
P B⎡⎣ ⎤⎦

, P B⎡⎣ ⎤⎦ > 0

Exchanging the roles of A and B,

P B | A⎡⎣ ⎤⎦ =
P BA⎡⎣ ⎤⎦
P A⎡⎣ ⎤⎦

=
P AB⎡⎣ ⎤⎦
P A⎡⎣ ⎤⎦

, P A⎡⎣ ⎤⎦ > 0

Then  P AB⎡⎣ ⎤⎦ = P A | B⎡⎣ ⎤⎦P B⎡⎣ ⎤⎦ = P B | A⎡⎣ ⎤⎦P A⎡⎣ ⎤⎦
and 

P A | B⎡⎣ ⎤⎦ =
P B | A⎡⎣ ⎤⎦P A⎡⎣ ⎤⎦

P B⎡⎣ ⎤⎦
, P B⎡⎣ ⎤⎦ > 0  ← Bayes’ Theorem



Conditional Probability 

 

Example:  Suppose in a thrift store there are 3 boxes labeled "Small",
                 "Medium" and "Large"containing shoes.

                    

Shoe Size Small Medium Large Totals

6 15 5 1 21
7 10 8 3 21
8 9 10 4 23
9 6 12 3 21

10 6 9 7 22
11 3 6 10 19
12 2 4 14 20

Totals 51 54 42

If a box is first chosen at random and then a shoe is chosen at random 
from that box, what is the probability of choosing a size-9 shoe?



Conditional Probability 

  

Example
The probability of choosing the ith box is Ai  and P Ai⎡⎣ ⎤⎦ = 1/ 3,

for any i.  Let the event “a size-9 shoe is chosen” be B.

P B | A1⎡⎣ ⎤⎦ =
6
51

, P B | A2⎡⎣ ⎤⎦ =
12
54

= 2
9

, P B | A3⎡⎣ ⎤⎦ =
3

42
= 1

14
The probability of choosing a size-9 shoe is then

                 P B⎡⎣ ⎤⎦ =
1
3
× 6

51
+ 1

3
× 2

9
+ 1

3
× 1

14
= 0.1371



Conditional Probability 

  

Example
What is the probability that, if a size-9 shoe is chosen, that it
came from box 3?  Using Bayes’ Theorem

      P A3 | B⎡⎣ ⎤⎦ =
P B | A3⎡⎣ ⎤⎦P A3⎡⎣ ⎤⎦

P B⎡⎣ ⎤⎦
= 1/ 14 ×1/ 3

0.1371
= 0.1737



Conditional Probability 
Example 

The army has an image analysis system that recognizes the  
two types of enemy tanks and classifies them as type A or type B.   
Its identification is right 90% of the time but wrong 10% of the time.   
That means that, on average, 10% of type A tanks are classified as  
type B and 10% of type B tanks are classified as type A.  In a battle  
the enemy’s tanks are 80% type A and 20% type B.  At random an  
enemy tank appears and is identified as type B.  What is the  
probability that the tank really is type B? 



Conditional Probability 

  

Example

                     P B | B ID⎡⎣ ⎤⎦ =
P B ID|B⎡⎣ ⎤⎦P B⎡⎣ ⎤⎦

P B ID⎡⎣ ⎤⎦
  Bayes’ Theorem

Conditional probability of identifying a type B tank as type B
                                   P B ID|B⎡⎣ ⎤⎦ = 0.9

Probability of a type B tank appearing P B⎡⎣ ⎤⎦ = 0.2

Total probability of identifying a tank as type B
           P B ID⎡⎣ ⎤⎦ = P B ID|B⎡⎣ ⎤⎦P B⎡⎣ ⎤⎦ + P B ID|A⎡⎣ ⎤⎦P A⎡⎣ ⎤⎦
                   P B ID⎡⎣ ⎤⎦ = 0.9 × 0.2 + 0.1× 0.8 = 0.26

Probability that the identification as type B is correct

                       P B | B ID⎡⎣ ⎤⎦ =
0.9 × 0.2

0.26
= 0.692



Independent Events 

  

If A and B are independent

P A | B⎡⎣ ⎤⎦ = P A⎡⎣ ⎤⎦ =
P AB⎡⎣ ⎤⎦
P B⎡⎣ ⎤⎦

and therefore P AB⎡⎣ ⎤⎦ = P A⎡⎣ ⎤⎦P B⎡⎣ ⎤⎦

If two events are mutually exclusive they cannot be independent
(unless at least one of them has zero probability).  For example, 
when tossing a coin once, if a head occurs a tail cannot.  Therefore 
                                     P T | H⎡⎣ ⎤⎦ = 0

If a head and a tail were independent then we should have
                              P T | H⎡⎣ ⎤⎦ = P T⎡⎣ ⎤⎦ = 1/ 2

                      



Tree Diagrams 

• A graphical technique 
known as a tree 
diagram can 
sometimes be very 
helpful in 
complicated problems 
in conditional 
probability 

Thrift Store Tree Diagram 



Tree Diagrams 
On a game show a contestant is allowed to choose any of three doors  
and will win what is behind the door.  Behind one of the doors is a  
car.  Behind each of the other two doors are nothing. The contestant  
chooses a door.  But before the door is opened the host (knowing where  
the car is) opens one of the  
other doors to reveal that  
there is nothing behind it.   
Then the contestant is given  
the opportunity to keep that  
door or to switch to the  
other unopened door.   
Should he switch?   



Tree Diagrams 
Now imagine that the scenario is the same except that the host 
forgets which door the car is behind. 



Combined Experiments 

   

Let one experiment have a probability space S1  and let another

experiment have a probability space S2.  S1 = α1,α2 ,,αN{ }
and S2 = β1,β2 ,,βM{ }.  A combined experiment is one which 

consists of performing both of these experiments.  The probability 
space of the combined experiment is the cartesian product of the two 
individual probability spaces.

             S = S1 × S2 =

α1,β1( ), α1β2( ),, α1,βM( ),
α2 ,β1( ), α2 ,β2( ),, α2 ,βM( ),
   

αN ,β1( ), αN ,β2( ),, αN ,βM( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

If A1  is an event in S1  and A2  is an event in S2  and A = A1 × A2  then A is
an event in S.



Permutations and Combinations 
Most of the really interesting problems in probability involve  
selecting objects from one group to form a second group. 

As objects are taken from the first group they may be replaced,  
leaving the first group unchanged, or they may not be replaced,  
thereby changing the first group.   

The sequence in which the second group of objects is chosen  
may be significant or insignificant. 



Permutations and Combinations 

   

How many distinct sequences of k  objects can be formed
by taking them from n distinct objects with replacement?  

There are n ways of choosing the first object.  

There are n ways of choosing the second object and all succeeding
objects because the object is always replaced.  

So there are n × n ×× n
k  of these

   = nk  ways of choosing k  objects from

n distinct objects with replacement. 



Permutations and Combinations 

  

There are 42 = 16 ways of choosing two objects from the set
{a,b,c,d} with replacement.

                             

aa ab ac ad
ba bb bc bd
ca cb cc cd
da db dc dd



Permutations and Combinations 

   

How many distinct sequences of k  objects can be formed
by taking them from n distinct objects without replacement?  
There are n ways of choosing the first object.  
There are n −1 ways of choosing the second object, n − 2 ways of 
choosing the third object, etc...
So there are                              

                n × n −1( )× n − 2( )× n − k +1( )
k  of these

  
= n!

n − k( )!
distinct sequences of k  objects taken from n distinct objects 
without replacement. 



Permutations and Combinations 

  

The 5!
5− 2( )! =

120
6

= 20 distinct sequences of 2 objects chosen from 

the set {a,b,c,d ,e} without replacement are

                              

ab ac ad ae
ba bc bd be
ca cb cd ce
da db dc de
ea eb ec ed



Permutations and Combinations 

   

Given a sequence of k  distinct objects, if they are rearranged into a 
different sequence of the same k  objects, that new sequence is 
called a permutation of the original sequence.  The process of 
permuting a sequence of k  distinct objects is the same as choosing 
k  objects from a group of k  distinct objects without replacement.
The number of distinct permutations of k  distinct objects is 

k!
k − k( )!k!= k!

0!
= k! (where it is understood that 0!= 1) . 

The 24 distinct permutations of the letters a,  b,  c and d  are

                

abcd abdc acbd acdb adbc adcb
bacd badc bcad bcda bdac bdca
cabd cadb cbad cbda cdab cdba
dabc dacb dbac dbca dcab dcba



Permutations and Combinations 

   

A combination of objects is a grouping without regard to order.  
Two permutations containing the same objects in different sequences 
are a single combination of those objects.  The number of distinct 
sequences of n distinct objects taken k  at a time without replacement is

n!
n − k( )!.  For each distinct sequence of k  objects there are k! distinct 

permutations of those k  objects.  So the number of combinations of 
k  objects taken from n distinct objects is the number of distinct 
sequences of k  objects divided by the number of distinct permutations 
of those k  objects or

                                 n
k

⎛

⎝⎜
⎞

⎠⎟
= n!

k! n − k( )!   ← Binomial Coefficient



Permutations and Combinations 

  

The 5
2

⎛

⎝⎜
⎞

⎠⎟
= 5!

2!3!
= 120

2 × 6
= 10 distinct combinations of 2 objects taken 

from the set {a,b,c,d ,e} without replacement are

                            ab ac ad ae bc
bd be cd ce de



Permutations and Combinations 
There is one more case to analyze, the number of combinations of k  
objects selected from n objects with replacement.  

Imagine n slots in a linear array divided by  inner walls, which can 
be moved, and with two fixed walls, one at each end. 

Let the slots be labeled 1 through n left-to-right.
  
Now suppose we randomly place a ball in a slot and the slot happens 
to be slot m.  Then we randomly place another ball into a slot which 
could be any slot, including slot m, and continue until we have put 
k  balls into the n-slot array.



Permutations and Combinations 
Exchange any two balls and let a ball’s identification still be 
determined by its slot location. 

This is not a new arrangement.  We have the same number of 
balls in the same slots and the slot location determines the 
identity of a ball. 



Permutations and Combinations 

Exchange any two inner walls.

Again, nothing changes because the balls are still in slots with 
the same identification.  



Permutations and Combinations 
Now imagine that we select any ball and any inner wall 
and exchange their positions. 

Now we have made a change because the ball is now in a 
different slot and is therefore identified differently. 



Permutations and Combinations 

  

If we permute all balls and inner walls as a group through all their 
possible permutations we will make k + n −1( )! permutations (k  balls

and n −1 inner walls).  But permuting an inner wall with another inner 
wall or permuting a ball with another ball does not make a new 
combination.  So if we divide the k + n −1( )! permutations of all entities 

by the k!  permutations of the balls and the n −1( )! permutations of the 

inner walls we have the number of distinct combinations of k  objects 
with n possible identities with replacement which is 

                   
k + n −1( )!
k! n −1( )! = k + n −1

k
⎛

⎝⎜
⎞

⎠⎟
= k + n −1

n −1

⎛

⎝⎜
⎞

⎠⎟



Permutations and Combinations 

  

There are 3+ 3−1
3

⎛

⎝⎜
⎞

⎠⎟
= 5!

3!2!
= 120

6 × 2
= 10 distinct combinations of 

3 objects taken from the set {a,b,c} with replacement.

                         aaa bbb ccc abb acc
aab bcc aac bbc abc



Permutations and Combinations 

   

If n objects are divided into c classes and members of a class
are indistinguishable from each other the number of distinct

permutations of the n objects is n!
n1!n2 !nc !

 where ni  is the 

number of members in the ith class.  The 4!
2!1!1!

= 24
2 ×1×1

= 12 

distinct permutations of the set {a,a,b,c} are

                aabc aacb abac abca acab acba
baac baca bcaa caab caba cbaa



Bernoulli Trials 

   

In performing an experiment multiple times let there be an event
A with a probability of p and the complementary event A with
a probability of 1− p .  If the experiment is repeated n times, 
what is the probability that the event A occurs exactly k  times?
The probability of the event A occurring k  times in the first k
trials is

     P A⎡⎣ ⎤⎦P A⎡⎣ ⎤⎦P A⎡⎣ ⎤⎦
k occurrences

  
P A⎡⎣ ⎤⎦P A⎡⎣ ⎤⎦P A⎡⎣ ⎤⎦

n-k occurrences
  

= pk 1− p( )n−k

But this is only one way that the event could occur k  times in n
trials.  This is an example of permutations with two classes of
indistinguishable members A and A and the total number of

distinguishable permutations is 
n
k

⎛
⎝⎜

⎞
⎠⎟
= n!

k! n − k( )!.



Bernoulli Trials 

  

The probability of exactly k  occurrences of the event A in n 
trials is

        P k A 's in any order  in n trials⎡⎣ ⎤⎦ =
n
k

⎛
⎝⎜

⎞
⎠⎟

pk 1− p( )n−k

Let the probability of the A event be 0.2 and let k  be 3 and let n
be 5.  Then

   P 3 A 's in any order  in 5 trials⎡⎣ ⎤⎦ =
5
3

⎛
⎝⎜
⎞
⎠⎟

p2 1− p( )4−2
= 0.0512



The DeMoivre-Laplace 
Approximation 

  

If np 1− p( ) >>1 and  k − np < np 1− p( )  then

    
n
k

⎛
⎝⎜

⎞
⎠⎟

pk 1− p( )n−k
≅ 1

2πnp 1− p( )
e
−

k−np( )2
2np 1− p( )



Generalization of Bernoulli Trials 

  

We can extend Bernoulli-trial theory to the probability of a certain 
number of occurrences of each of more than two events in n trials 
for experiments in which there are more than two events.
  
Suppose there are three events.  The number of ways event 1 can 

occur k1  times is 
n
k1

⎛

⎝⎜
⎞

⎠⎟
= n!

k1! n − k1( )!. 



Generalization of Bernoulli Trials 

  

For each permutation there are n − k1  events of the other two types.  
We can permute each of those by letting events 2 and 3 take on all 
possible positions where event 1 does not occur.  For each 

permutation of event 1 there are 
n − k1( )!

k2 ! n − k1 − k2( )! =
n − k1( )!
k2 !k3!

permutations on event 2 which occurs k2  times.  This accounts 
for all possible permutations because when we permute event 2 we 
are also permuting event 3 since it is the only event left.  Multiplying 
the two numbers of permutations yields the overall number of 
permutations of three events with three numbers of occurrences

                       n!
k1! n − k1( )!

n − k1( )!
k2 !k3!

= n!
k1!k2 !k3!



Generalization of Bernoulli Trials 

    

By induction, the number of ways events 1 through m can occur 
with their numbers of occurrences being k1,,km  is 

                              
n

k1,k2 ,,km

⎛

⎝⎜
⎞

⎠⎟
= n!

k1!k2 !km !
 

which is called the multinomial coefficient.  The probability in n 
trials that event 1 will occur k1  times, event 2 will occur k2  times, ... 
event m will occur km  times is

          P 1− k1,2 − k2 ,,m− km⎡⎣ ⎤⎦ =
n

k1,k2 ,,km

⎛

⎝⎜
⎞

⎠⎟
p1

k1 p2
k2 pm

km


