
Statistics 



Statistics Defined 

•  Statistics is the study of the analysis and 
interpretation of empirical data 



Statistical Sampling 

•  In cases in which the amount of data available for 
analysis is very large a sample is taken from the 
total population of data which is usually much 
larger than the sample and is often infinite or so 
large as to be practically infinite 

•  If the sample is properly taken its characteristics 
are representative of the characteristics of the 
population 



Sample Mean and Variance 

• A descriptor is a number that generally 
characterizes a random variable 

•  The mean is the most important descriptor 
•  The population mean is the mean of all the 

available data 
•  The sample mean is the mean of the data in 

a sample and is an estimator of the 
population mean 



Sample  
Mean  
and  

Variance Sample Mean 
as a Constant 

Sample Mean 
as a Random 
Variable 

  

The population mean

is the limit of the                                                                 X = 1
N

Xi
i=1

N

∑

sample mean as the                        x = 1
N

xi
i=1

N

∑            

sample size approaches 
infinity                                                                 

µX = lim
N→∞

1
N

xi
i=1

N

∑



Sample Mean and Variance 
The sample mean is the number that minimizes the sum 
of the squared differences between it and the sample values 



Sample Mean and Variance 
In this illustration the four signals all have the same mean 
value.   

After the mean, the next most important descriptor 
is the standard deviation.  The standard deviation indicates 
generally how much a signal deviates from its mean value. 



Sample Mean and Variance 

   

The standard deviation is 
defined by

σ X = E X − E X( ) 2⎛
⎝

⎞
⎠

= lim
N→∞

1
N

xi − µX

2

i=1

N

∑
It is the square root of the 
expected value of the squared 
deviation of the signal from its 
expected value.  The square of 
the standard deviation is the 
variance.

Variance 



Sample Mean and Variance 

  

Variance is defined by

           σ X
2 = E X − E X( ) 2⎛

⎝
⎞
⎠ = lim

N→∞

1
N

xn − µX

2

n=1

N

∑
Covariance is a generalization of variance to apply to two
different random variables and is defined by

                σ XY = E X − E X( )⎡⎣ ⎤⎦ Y − E Y( )⎡⎣ ⎤⎦
*⎛

⎝
⎞
⎠

which can be expressed as

                    σ XY = E XY *( )− E X( )E Y *( )
If X  and Y  are uncorrelated,

              E XY *( ) = E X( )E Y *( ) and σ XY = 0



Sample Mean and Variance 

    

If variance or mean-squared value or covariance are to be 
estimated from a finite set of data for two random variables 
X  and Y , they can also be formulated as vector operations.  Let 
the vector of X  values be x  and the vector of Y  values be y

                              x =

x1

x2


xN

⎡

⎣

⎢
⎢
⎢
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⎢

⎤

⎦
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  ,  y =

y1

y2


yN

⎡

⎣

⎢
⎢
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⎢

⎤
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Then the mean-squared value of X  can be estimated by 

                                    E X 2( ) ≅ x H x
N

where the notation x H  means the complex conjugate of the 
transpose of x. 



Sample Mean and Variance 

   

The variance of X can be estimated by 

                        σ X
2 ≅

x − µX⎡⎣ ⎤⎦
H

x − µX⎡⎣ ⎤⎦
N

The covariance of X  and Y  can be estimated by 

                        σ XY ≅
x − µX⎡⎣ ⎤⎦

H
y − µY⎡⎣ ⎤⎦

N



Sample Mean and Variance 
The second sense of “sample mean” X  is itself a random
variable and, as such, has a mean and a standard deviation.
Its expected value is

                 E X( ) = E 1
N

Xn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟
= 1
N

E Xn
n=1

N

∑⎛⎝⎜
⎞
⎠⎟

                          = 1
N

E Xn( )
n=1

N

∑ = 1
N
N E X( ) = E X( )

Since the expected value of the sample mean of X  is the
same as the expected value of X  itself, it is an unbiased
estimator of the expected value of X.



Sample Mean and Variance 

  

The variance of the sample mean is

                σ X
2 = E X − E X( )⎡⎣ ⎤⎦ X − E X( )⎡⎣ ⎤⎦

*⎛
⎝

⎞
⎠

                     = E XX * − E X( ) X * − X E X( )*
+ E X( )E X( )*( )

                     = E 1
N

Xn
n=1

N

∑⎛
⎝⎜

⎞
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1
N

Xm
*

m=1

N

∑⎛
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⎞
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⎛

⎝⎜
⎞

⎠⎟
− E X( ) 2

                     = E 1
N 2 Xn Xm

*

m=1

N

∑
n=1

N

∑⎛
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⎞
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− E X( ) 2



Sample Mean and Variance 

  

If Xn  and Xm  are independently chosen at random from the 
population they are statistically independent (when n ≠ m ) and

                  σ X
2 = 1

N 2 E Xn Xm
*( )

m=1

N

∑
n=1

N

∑ − E X( ) 2

                   E Xn Xm( ) = E X 2( ) , n = m

E2 X( )    , n ≠ m

⎧
⎨
⎪

⎩⎪



Sample Mean and Variance 

  

In E Xn Xm
*( )

m=1

N

∑
n=1

N

∑  there are exactly N 2  terms, N  terms in

which n = m and in all the rest n ≠ m.  Therefore

        σ X
2 = 1

N 2 E X
2( ) + E Xn( )E Xm

*( )
m=1

N

∑
n=1
n≠m

N

∑
n=1

N

∑
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
− E X( ) 2

      σ X
2 = 1

N 2 N E X
2( ) + N N −1( )E Xn( )E Xm( )*⎡

⎣⎢
⎤
⎦⎥
− E X( ) 2

Simplifying, we find that the variance of the sample mean of a 
random variable is the variance of the random variable itself, 
divided by the sample size.
                                     σ X

2 = σ X
2 / N



Sample Mean and Variance 

  

The symbol commonly used for the sample variance is SX
2  to

distinguish it from the population variance σX
2  .  A natural

definition for it would be

                SX
2 = 1

N
Xn − E X( )⎡⎣ ⎤⎦ Xn − E X( )⎡⎣ ⎤⎦

*

n=1

N

∑
The expected value of this sample variance is the population
variance and it is, therefore, unbiased.  The problem with this
definition of sample variance is that in a typical data-analysis
situation the population’s expected value E X( )  is probably 

unknown.



Sample Mean and Variance 

   

Since the sample mean is known and it is an unbiased estimator
of the population mean we could re-define the sample variance as

                       SX
2 = 1

N
Xn − X( ) Xn − X( )*

n=1

N

∑
The expected value of this sample variance is

                               E SX
2( ) = N −1

N
σ X

2

Therefore this is a biased estimator.



Sample Mean and Variance 

  

The sample variance can be defined in such a way as to make
it unbiased.  That definition is

       SX
2 = 1

N −1
Xn − X( ) Xn − X( )*

n=1

N

∑ = 1
N −1

Xn − X
2

n=1

N

∑
This will be the definition used from here on.  The variance of 
this sample variance can be shown to be

            Var SX
2( ) =

N E X − E X( ) 4⎛
⎝

⎞
⎠ − σ X

2( )2⎡
⎣⎢

⎤
⎦⎥

N −1( )2



Median and Mode 

   

There are two other commonly-used descriptors of random data, 
the mode and the median.  The mode of a set of data is the data 
value that occurs most often.  If there are multiple data values 
that all occur the same number of times and all other values occur 
less often, the set of data is said to be multimodal. 
                                    P xmode⎡⎣ ⎤⎦ ≥ P X⎡⎣ ⎤⎦
The median of a set of data is the value for which an equal number 
of the data values fall above and below it. 
                           P X > xmedian⎡⎣ ⎤⎦ = P X < xmedian⎡⎣ ⎤⎦



Histograms and Probability 
Density 

The four signals illustrated all have the same mean and variance. 
Another descriptor that distinguishes them from each other is 
a histogram.  A 
histogram is a plot 
of the number of 
times each data  
value occurs in a 
sample versus  
those values. 



Histograms and Probability 
Density 

Suppose the data collected from  
40 trials of an experiment are 

One way to better understand 
the data is to tabulate them 

  

10, 14, 10, 12, 13, 11, 8, 9, 7, 3,
10, 11, 10, 9, 8, 13, 11, 14, 12, 14,
5, 9, 12, 15, 4, 10, 15, 10, 8, 5,
9, 11, 10, 9, 10, 11, 12, 5, 11, 8

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

        

xi ni r xi( ) xi r xi( )
3 1 0.025 0.075
4 1 0.025 0.1
5 3 0.075 0.375
6 0 0 0
7 1 0.025 0.175
8 4 0.1 0.8
9 5 0.125 1.125

10 8 0.2 2
11 6 0.15 1.65
12 4 0.1 1.2
13 2 0.05 0.65
14 3 0.075 1.05
15 2 0.05 0.75

Totals 1 9.95



Histograms and Probability 
Density 

To aid understanding of the general nature of the random 
variable, the data can be plotted as a histogram. 

It is now obvious that there is a central tendency in the data. 



Histograms and Probability 
Density 

As larger samples of data are taken the accuracy of the  
histogram in representing the general distribution of the  
data values improves.  In the limit as the sample size 
approaches infinity the histogram becomes perfect but 
it cannot be plotted because all  
the numbers of occurrences 
are infinite.  It is often better  
to plot a relative-frequency 
histogram. 



Histograms and Probability 
Density 

An analogy in classical mechanics is useful in conceiving mean  
value.  The values are the moment-arm lengths and the relative  
frequencies of occurrence are the weights.  The same moment  
occurs with the mean as the moment-arm length and a weight of  
one. 



Histograms and Probability 
Density 

Suppose the data from multiple  
trials of another experiment are 

Histogram 

In this case, the histogram is not quite as useful 
 

4.8852 5.2726 5.2297 4.9242
4.9119 4.6955 5.3325 4.9488
4.8681 5.0771 4.9625 4.6803
5.1521 4.8168 5.2981 5.4297
4.8972 4.9827 4.8663 5.0428
4.5239 4.9837 4.7553 4.7832
4.8385 4.9845 4.6809 5.2333
4.8079 5.0261 5.1787 5.0697
5.2260 4.7131 5.0856 5.0715
5.0200 5.1443 5.0183 4.9995



Histograms and Probability 
Density 

An alternate form of histogram is better for data in which  
there are few, if any, repetitions. 

One “bin” 
Fraction of data falling 
within that bin 



  

One way of conceiving the probability density function is as
the limit of a relative frequency histogram normalized to the
bin width as the number of bins approaches infinity 

                          fX x( ) = lim
N→∞
Δx→0

n
NΔx

= lim
N→∞
Δx→0

r x( )
Δx

Histograms and Probability 
Density 



Histograms and Probability 
Density 



Histograms and Probability 
Density 



Maximum Likelihood Estimation 

 

Let xn = x1, x2 ,, xn{ }  be the observed values of a random sampling
of the random variable X  and let θ  be the parameter we want to 
estimate.  The likelihood function is 

 xn;θ( ) =  x1, x2 ,, xn;θ( ) =
pX x1, x2 ,, xn |θ( )  if X  is a DV random variable

fX x1, x2 ,, xn |θ( )  if X  is a CV random variable

⎧
⎨
⎪

⎩⎪
Since the samples are iid 

       pX x1, x2 ,, xn |θ( ) = pX x1 |θ( )pX x2 |θ( )pX xn |θ( ) = pX x j |θ( )
j=1

n

∏
and

       fX x1, x2 ,, xn |θ( ) = fX x1 |θ( )fX x2 |θ( )fX xn |θ( ) = fX x j |θ( )
j=1

n

∏



Maximum Likelihood Estimation 

 

The maximum likelihood method selects the estimator value Θ̂ = θ*

where θ*  is the parameter value that maximizes the likelihood function.

                        x1, x2 ,, xn;θ
*( ) = max

θ
 x1, x2 ,, xn;θ( )

It is often more convenient to work with the log likelihood function 

L xn |θ( ) = ln  xn;θ( )( )  because then the iterated product becomes an 
iterated sum

       L xn |θ( ) = ln pX x j |θ( )( )
j=1

n

∑     or       L xn |θ( ) = ln fX x j |θ( )( )
j=1

n

∑
Maximizing the log likelihood function is typically done by finding the 

value θ*  for which ∂
∂θ

L xn |θ( ) = 0.



Maximum Likelihood Estimation 

 

Example:
Let xn = x1, x2 ,, xn{ }  be iid samples from a gamma random variable X

with unknown parameters α  and λ  and PDF fX x( ) = λ λx( )α−1 e−λx

Γ α( )  , x > 0 , α > 0 , λ > 0.  

Then  x1, x2 ,, xn;α,λ( ) = λ λx( )α−1 e−λxm

Γ α( ) xm
α−1

m=1

n

∏ = λnα

Γn α( ) e
−λ xkk=1

n∑ xm
α−1

m=1

n

∏ .

Then L x1, x2 ,, xn;α,λ( ) = nα ln λ( )− n ln Γ α( )( )− λ xk
k=1

n

∑ + α −1( ) ln xm( )
m=1

n

∑
Differentiating w.r.t. α  and λ, and setting the derivatives equal to zero,

               n ln λ̂( )− n ′Γ α̂( )
Γ α̂( )
=Ψ α( )


+ ln xm( )
m=1

n

∑ = 0 and nα̂
λ̂

− xk
k=1

n

∑ = 0



Maximum Likelihood Estimation 

Solving, λ̂ = α̂
1
n

xk
k=1

n

∑
 and, substituting this into the first equation above

n ln α̂
1
n

xk
k=1

n

∑

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

− nΨ α( ) + ln xk( )
k=1

n

∑ = 0

ln α̂( )−Ψ α( ) = ln 1
n

xk
k=1

n

∑⎛
⎝⎜

⎞
⎠⎟
− 1
n

ln xk( )
k=1

n

∑
This equation is nonlinear so solving for α̂  can only be done numerically.



Sampling Distributions 

  

The sample mean is  X = 1
N

Xi
i=1

N

∑ .  If the samples are independent 

and come from a Gaussian population then the random variable

                                   Z =
X − E X( )
σ X / N

is normally distributed.  For large N  the population variance
may be replaced by the sample variance with negligible error.



Sampling Distributions 

  

For small N  the sample variance is not as good an estimate of
the population variance.  Define a new random variable,

                                  T =
X − E X( )
SX / N

Since the sample variance SX
2  is not a constant but rather a

random variable, the variance of T  is larger than the variance
of Z.  The PDF of T  was found by William Gosset and is called 
the “Student’s t  distribution” PDF.

                   pT t( ) = Γ ν +1( ) / 2( )
νπΓ ν / 2( )

1+ t2 / ν( )− ν+1( )/2



Sampling Distributions 



Sampling Distributions 
Statistical results are often reported in terms of confidence 
intervals and confidence levels.  A confidence interval is a 
range in which a random variable can be expected to lie, with 
a corresponding confidence level indicating the probability that 
the random variable lies in that interval.  For any given random 
variable, as the confidence interval is increased, the confidence  
level increases. 

A Gaussian distributed random variable may be expected to lie 
within some multiple of its standard deviation from the mean,  
with a level of confidence determined by the Gaussian PDF. 



Sampling Distributions 
For a Gaussian-distributed random variable, 

  

Confidence Interval Confidence Level
±σ X 68.3%

±1.64σ X 90%
±1.96σ X 95%
±2σ X 95.45%

±2.58σ X 99%
±3σ X 99.73%

±3.29σ X 99.9%
±3.89σ X 99.99%



Hypothesis Testing 
Hypothesis testing is a process of deciding between two alternatives 
for a parameter of a population based on a sample estimate of that 
parameter from that population.  There are two alternatives, the null 
hypothesis H0  and the alternative hypothesis H1.  The null hypothesis 
is usually that a population parameter has a certain value.    The 
alternative hypothesis may be that the parameter does not have that 
value or that the parameter has a value less than that value or a value 
more than that value.  For example he null hypothesis might be that 
the mean of a population is 20 and the alternative hypothesis might 
be that the mean of the population is not 20, usually written as
                              H0 :   µ = 20  ,  H1 :   µ ≠ 20 



Hypothesis Testing 
                         H0 :   µ = 20  ,  H1 :   µ ≠ 20
This type of alternative hypothesis is called two - sided because 
it can be satisfied by a value either greater than or less than the 
null hypothesis value.  The hypotheses might instead be one -
sided.
H0 :   µ = 20  ,  H1 :   µ < 20  or  H0 :   µ = 20  ,  H1 :   µ > 20
The actual process of making the decision between two 
alternatives is called a test of the hypothesis.  The null hypothesis
is accepted if the estimate of the parameter based on a sample is 
consistent with the null hypothesis.  Being consistent means that 
the sample parameter is within the acceptance region. All other
values of the sample parameter are within the critical region.



Hypothesis Testing 

If the sample parameter falls within the acceptance region we
accept the null hypothesis.  Otherwise we reject the null
hypothesis.  Rejecting the null hypothesis when it should be
accepted is called a Type I Error.  Accepting the null hypothesis
when it should be rejected is called a Type II Error.  The 
probability of making a Type I Error is conventionally designated
by α  and the probability of making a Type II Error is designated
by β.  α  is also sometimes called the significance level of the
test of the hypothesis.



Hypothesis Testing 

Example 

Suppose the actual population mean LED optical power of 
LED’s made in a certain manufacturing process is 5 mW and  
the population standard deviation of LED optical power is  
0.5 mW and that the population has a Gaussian pdf.  Further, 
let the null hypothesis be that the population mean is 5 mW and 
let the acceptance region be the range 4.9 mW to 5.1 mW. 
Let the alternative hypothesis be that the population mean is 
not 5 mW, making it two-sided.  Suppose the sample size is 80. 
What is the probability of rejecting the null hypothesis? 



Hypothesis Testing 
Example

The standard deviation of the sample mean is

                       σ X =
σ X

80
= 0.5 mW

8.944
= 0.0559 mW

The probability of rejecting the null hypothesis is

     α = G 4.9 − 5
0.0559

⎛
⎝⎜

⎞
⎠⎟ +1−G 5.1− 5

0.0559
⎛
⎝⎜

⎞
⎠⎟ = 0.0368 + 0.0368 = 0.0736



Curve Fitting 
A calibration of a platinum resistance thermometer might look 
like this where R is resistance and T is temperature. 

Since we know platinum’s resistance does not actually vary 
exactly this way what is the best interpretation of the data? 



Curve Fitting 
A repeated calibration might look like the second graph below 

1st Calibration 2nd Calibration 

The general trend is the same but the details are different.  The 
differences are caused by measurement error. 



Curve Fitting 

  

The best interpretation of the calibration data is that the relation
between R and T  should be “smooth” and “slowly-varying”
and it should ignore the small fluctuations caused by
measurement errors.  At the same time the mean-squared error
between the R - T  relation and the data should be minimized.

The simplest way to satisfy these criteria is to find a straight
line relation between R and T  with these qualities.  That is, we
want to find a function of the form, R T( ) = a0 + a1T  where the 

two a coefficients are chosen to minimize the mean-squared error.



Curve Fitting 

   

The relation between the calibration data and the best-fit line
can be expressed as

                                 

R1 = a0 + a1T1 + ε1

R2 = a0 + a1T2 + ε2


RN = a0 + a1TN + εN

where N  is the number of measurements and the ε’s represent
the random measurement error.  Then the sum-squared error
SSE  is

                        SSE = ε i
2

i=1

N

∑ = Ri − a0 − a1Ti( )2

i=1

N

∑



Curve Fitting 

   

Setting the derivatives with respect to the two a’s to zero we get

                    
∂ SSE( )

a0

= −2 Ri − â0 − â1Ti( )
i=1

N

∑ = 0

                    
∂ SSE( )

a1

= −2 Ti Ri − â0 − â1Ti( )
i=1

N

∑ = 0

where the little “hats” on the a’s indicate that we will find estimates 
of the “actual” a’s because we are basing the estimates on a finite set 
of data.  The normal equations can then be written as

                                 Nâ0 + â1 Ti
i=1

N

∑ = Ri
i=1

N

∑

                             â0 Ti
i=1

N

∑ + â1 Ti
2

i=1

N

∑ = Ti Ri
i=1

N

∑



Curve Fitting 

  

The solutions of the normal equations are

               â0 =
Ri

i=1

N

∑⎛⎝⎜
⎞
⎠⎟

Ti
2

i=1

N

∑⎛⎝⎜
⎞
⎠⎟
− Ti Ri

i=1

N

∑⎛⎝⎜
⎞
⎠⎟

Ti
i=1

N

∑⎛⎝⎜
⎞
⎠⎟

N Ti
2

i=1

N

∑ − Ti
i=1

N

∑⎛⎝⎜
⎞
⎠⎟

2

                    â1 =
N Ti Ri

i=1

N

∑ − Ti
i=1

N

∑⎛⎝⎜
⎞
⎠⎟

Ri
i=1

N

∑⎛⎝⎜
⎞
⎠⎟

N Ti
2

i=1

N

∑ − Ti
i=1

N

∑⎛⎝⎜
⎞
⎠⎟

2



Curve Fitting 
The best-fit straight line might look like this 

In observing this straight-line fit, it may seem that the 
actual relationship might be curved rather than a straight 
line.  The fitting function could be a second order (or 
higher order) polynomial instead. 



Curve Fitting 



Curve Fitting 



Multiple Linear Regression 

    

The most general form of curve fitting is multiple linear
regression.  This technique assumes that a variable Y  is a
function of multiple other variables X .
        Y X1, X2 ,…, Xk( ) = β0 + β1X1 + β2 X2 ++ βk Xk + ε

The measurements on the measured variable Y  are then

               

y1 = β0 + β1x11 + β2x12 ++ βk x1k + ε1

y2 = β0 + β1x21 + β2x22 ++ βk x2k + ε2

  
yN = β0 + β1xN1 + β2xN 2 ++ βk xNk + εN



Multiple Linear Regression 

   

To minimize the sum-squared error,

            SSE β0 ,β1,β2 ,βk( ) = yi − β0 − βxi
=1

k

∑⎛
⎝⎜

⎞
⎠⎟

2

i=1

N

∑
differentiate with respect to the β’s and set the derivatives
equal to zero.

        ∂SSE
∂β j

= −2xij yi − β0 − βxi
=1

k

∑⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

i=1

N

∑ , xi0 ≡ 1( )



Multiple Linear Regression 

    

The mathematics of multiple linear regression can be compactly
written in terms of vectors and matrices.

y =

y1

y2


yN

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

    x i = 1 xi1 xi2  xik⎡⎣ ⎤⎦     β =

β0

β1


βk

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

, ε =

ε1

ε2


εN

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

                X =

x1

x2


x N

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

1 x11 x12  x1k

1 x21 x22  x2k

    
1 xN1 xN 2  xNk

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
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Then, in matrix form,
                                     y = Xβ + ε
The solution for the estimates of the β’s is

                                β̂ = XT X( )−1
XT y

and the best estimate of Y  for a new x is

                              ŷ = xβ̂ = β̂0 + β̂x
=1

k

∑


