
Design of Digital Filters



Paley-Wiener Theorem

[ ] ( )If h  is a causal energy signal, then ln H where  is a

finite upper bound.

One implication of the Paley-Wiener theorem is that a transfer function can 
be zero at isolated points but it cannot
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Implications of Causality
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If a system's impulse response h  is causal, then it is possible

to determine h  from its even part h  where
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Implications of Causality
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Implications of Causality

( ) ( )

The Fourier transform of any even function is purely real and the 
Fourier transform of any odd function is purely imaginary.  Therefore

the real part H  of H  for a causal system is completely

dete
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[ ] ( )rmined by h ,  so is the imaginary part H  and therefore

the real and imaginary parts are interrelated and cannot be specified
separately.  It also follows that the magnitude and phase cannot
be speci
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Implications of Causality
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Implications of Causality
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Implications of Causality
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Implications of Causality

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )

From the previous slide,

H / 2 H cot H   ,  -
2

Subtract the real part from both sides.

H / 2 H cot / 2   ,  -

1           H H cot
2 2

j j j
R R

j j
I R

j j
I R

e j e d e

j e j e d

e e d

π
λ

π

π
λ

π

π
λ

π

λπ λ π π

π λ λ π π

λ λ
π

Ω Ω

−

Ω

−

Ω

−

Ω −⎛ ⎞= − + < Ω <⎜ ⎟
⎝ ⎠

= − Ω− < Ω <

Ω−⎛ ⎞= − ⎜ ⎟
⎝ ⎠

∫

∫

  ,  -

This integral is called the discrete Hilbert transform.  It shows how
the real part and imaginary part of the transfer function of a causal
system are interrelated.
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Filter Specifications
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For discrete-time systems described by difference equations the
transfer function is a ratio of polynomials in .
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al and cannot be 
ideal.  Ideal filters 
are specifed by their 
passbands and stopbands.



Filter Specifications
A typical practical-filter specification usually includes several elements,

1. one or more pass bands,
2. one or more stop bands,
3. transition bands between pass and stop bands,
4. allowable ripple in the pass band(s),

and 5. minimum required attenuation in the stop band(s).



Filter Specifications

The actual filter must have a magnitude response that lies
totally within the  white area of the specification.



Filter Specifications

“Ripple” refers to the variation
of a filter’s transfer function
magnitude in its passband.

“Stopband Attenuation” refers to
the number of dB by which the
filter’s transfer function magnitude
in the stopband is reduced compared
with the passband.



FIR Filter Design
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If an FIR filter has a symmetric impulse response
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 or an antisymmetric impulse response
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it has a linear phase.
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FIR Filter Design
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Therefore, its frequency response at zero frequency is zero and it could
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FIR Filter Design
A straightforward design process is to first find the impulse response 
of an ideal filter (which is non-causal), then truncate the impulse 
response so that all its values for times 0 and 1 are zn n M< > −

( )
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2

ero.
Then modify the shape of the impulse response by multiplying it by 
a window chosen to reduce passband ripple and increase stopband 
attenuation.  Consider a lowpass filter

              H
j

j F e
e Aπ

−

=

( )

0

0

  ,  0

0           ,  1/ 2

or

  ,  0
                  H

0         ,  

Fn
c

c

j n
cj

c

F F

F F

e
e A

π

π

− Ω
Ω

⎧ ⎫< <⎪ ⎪
⎨ ⎬

< <⎪ ⎪⎩ ⎭

⎧ ⎫< Ω < Ω⎪ ⎪= ⎨ ⎬
Ω < Ω <⎪ ⎪⎩ ⎭



FIR Filter Design
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FIR Filter Design
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FIR Filter Design

[ ]

We can reduce passband
ripple and increase stopband
attenuation by multiplying 
the truncated impulse 
response by a von Hann 
window
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FIR Filter Design
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Some common windows are
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Approximating Standard Analog 
Filters

There are multiple methods for approximating analog filters with
digital filters. We will consider six,  approximation of derivatives, 
impulse invariance, step invariance, direct substitution, the matched 
z-transform and the bilinear z transform.



Approximation of Derivatives
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Approximation of Derivatives

1

In the Laplace domain, multiplication by  is equivalent to
a time derivative.  The first backward difference in discrete time

1 1is equivalent to a multiplication by  in the  domain.
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Approximation of Derivatives
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Approximation of Derivatives 
Example
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Approximation of Derivatives 
Example
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Impulse and Step Invariant 
Design

Impulse invariant design makes the impulse response of the
digital filter be a sampled version of the impulse response of the 
analog filter.  Step invariant design makes the step response of
the digital filter be a sampled version of the step response of the
analog filter.



Impulse and Step Invariant 
Design
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Impulse Invariant Example
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Simulate H  using a sampling rate of 1 kHz.
400 2 10

The continuous-time impulse response is 
1               h cos 400 sin 400 u .
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The discrete-time impulse response is 
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Impulse Invariant Example
A comparison of frequency responses reveals that the impulse
invariant digital filter has a peak gain that is a factor of about 
1200 too large.  Also, the gain at zero frequency is not zero as
it is in the analog filter.  This is undesirable for a filter that is 
intended to be bandpass.  Also, the gain falls from the peak but 
does not go to zero at high frequencies as in the
analog case.  The peak gain can be 
easily compensated for but the 
non-zero, zero-frequency gain 
cannot.  The gain error near half 
the sampling rate will always be
wrong due to aliasing, therefore 
an increase in sampling rate will 
improve the design.



Step Invariant Example
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Simulate H  using a sampling rate of 1 kHz.
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Step Invariant Example
The peak gain is correct and the gain at zero frequency is zero
as it should be.  The aliasing effect near half the sampling rate
is there as in the impulse-invariant case and can only be minimized 
by increasing the sampling rate.



Direct Substitution and Matched 
z Transform

A popular approach to the design of digital filters is to find a
transformation from s to z which maps the s plane into the z plane,
converts the poles and zeros of the s-domain transfer function into 
appropriate corresponding locations in the z plane and converts 
stable s-domain systems into stable z-domain systems.  The most 
common techniques that use this idea are the “matched 
z transform”, “direct substitution” and the “bilinear transformation”. 



Direct Substitution and Matched 
z Transform

To directly transform -domain transfer functions into -domain
transfer functions we need a relationship between  and .  The
relation between discrete- and continuous-time frequencies is

.  If wes
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Direct Substitution and Matched 
z Transform

0

0Suppose we have a pole or zero at .  Its corresponding location
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Direct Substitution and Matched 
z Transform

There are two closely-related methods for mapping poles and 
zeros from the  to the  plane.  If there is a factor in the 
numerator or denominator of the transfer function of the form

,  we can repla
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                             Direct Substitution
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Matched z Transform Example
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Bilinear Transformation
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Bilinear Transformation
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Truncating the infinite-series after two terms yields 1
or 1 / .  For small  therefore high sampling rates  
this is a good approximation.  This is identical to approximating
a derivative with
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Bilinear Transformation
1 / 2 2 1This last approximation yields  or .
1 / 2 1

This is called the bilinear (not 
bilateral) transformation.  This
mapping has the favorable quality 
that the left half of the  plane 
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 into the interior of the unit 
circle in the  plane only one time 
and stable -domain filters are 
transformed into stable -domain 
filters.
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Bilinear Transformation
The bilinear transformation has a "warping" effect because of the
way the  axis is mapped into the unit circle in the  plane.
Letting  with  real determines the unit circle in the 
plane.  Th
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e corresponding contour in the  plane is 
2 1 2                             tan

1 2

or 2 tan / 2 .
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