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Sampling Rate Conversion
If a digital signal is formed by properly sampling an analog 
signal, it is possible in principle, to convert it back to analog
form and re-sample it at a new sampling rate.  But it would be
better to directly change from one sampling rate to another 
without going through the analog form.

   

If a signal x n  is formed by properly sampling x t( )  then

            x t( ) = 2 f
c

/ f
sx( ) x n sinc 2 f

c
t nT

sx( )( )
n=

where f
c
 is the corner frequency of a filter with impulse response

    h t( ) = 2 f
c
T

sx
sinc 2 f

c
t( ) F

H f( ) = T
sx

1  ,  0 < f < f
c

0  ,  otherwise
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Sampling Rate Conversion

  

             x t( ) = 2 f
c

/ f
sx( ) x nT

sx( )sinc 2 f
c

t nT
sx( )( )

n=

If we sample x t( )  at a rate f
sy

> f
s x

 to form y n  then

             y m = x mT
sy( ) = x nT

sx( )sinc f
sx

mT
sy

nT
sx( )( )

n=

In the special case in which T
sx

= T
sy

,

y m = x mT
sx( ) = x nT

sx( )sinc f
sx

m n( )Tsx( )
n=

= x n sinc m n( )
n=

which is a convolution sum x n sinc n( )  and since sinc n( )  = n

              y m = x n m n
n=

 = x m m = x m

as expected.
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Sampling Rate Conversion

  

In the general case T
sx

T
sy

,

        y m = x nT
sx( )sinc f

sx
mT

sy
nT

sx( )( )
n=

  ,  f
sy

> f
sx

or

          y m = x nT
sx( )sinc mT

sy
/ T

sx
n( )

n=

  ,  f
sy

> f
sx

Now let mT
sy

/ T
sx

= k
m

+
m

 where k
m

= mT
sy

/ T
sx

 

and 
m

= mT
sx

/ T
sy

k
m
.  Then

           y m = x nT
sx( )sinc k

m
+

m
n( )

n=

  ,  f
sy

> f
sx
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Sampling Rate Conversion

   

Letting k = k
m

n,

       y m = x k
m

k( )Tsx( )sinc k +
m( )

k=

  ,  f
sy

> f
sx

This general process for sampling-rate conversion is a 

time-variant  convolution sum.  If the conversion factor

is a ratio of integers (a rational number), the process can

be considerably simpler.
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Sampling Rate Conversion
Downsampling by a factor D

  

Sample a signal x n  by multiplying 

it by a periodic impulse

D
n = n mD

m=

 

to produce x
s

n = x n
D

n .

D = 4
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Sampling Rate Conversion

  

The discrete-time Fourier series harmonic function for 
D

n  is

D
k =

1

D
n mD

m=

e j2 kn/ D

n= D

           =
1

D
e j2 kn/ D n mD

m=n=0

D 1

= 1/ D

Therefore

                   
D

n =
D

k e j2 kn/ D

k=0

D 1

=
1

D
e j2 kn/ D

k=0

D 1

The z  transform of x
s

n = x n
D

n  is 

   X
s

z( ) = x n
D

n z n

n=

=
1

D
x n e j2 kn/ D

k=0

D 1

z n

n=



8

Sampling Rate Conversion

  

X
s

z( ) =
1

D
x n e j2 kn/ Dz n

n=

=
1

D
x n e j2 k / Dz 1( )

n

n=k=0

D 1

k=0

D 1

         =
1

D
X ze j2 k / D( )

k=0

D 1

X
s

e j( ) =
1

D
X e j e j2 k / D( )

k=0

D 1

=
1

D
X e

j 2 k / D( )( )
k=0

D 1
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Sampling Rate Conversion

  

To reduce the number of samples, decimate the sampled signal

to form x
d

n = x
s

Dn .  The z  transform of x
d

n  is

X
d

z( ) = x
d

n z n

n=

= x
s

Dn z n

n=

.  Let m = Dn.  

Then X
d

z( ) = x
s

m z m/ D

m=
m/ D  an
integer

= x
s

m z m/ D

m=

= X
s

z1/ D( )

because all values of x
s

m  for m / D not an integer are zero( )

Combining this result with X
s

z( ) =
1

D
X ze j2 k / D( )

k=0

D 1

 we get

                              X
d

z( ) =
1

D
X z1/ De j2 k / D( )

k=0

D 1
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Sampling Rate Conversion

  
X

d
e j( ) =

1

D
X e j / De j2 k / D( )

k=0

D 1

=
1

D
X e

j 2 k( )/ D( )
k=0

D 1
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Sampling Rate Conversion

  

The opposite of downsampling is upsampling.  If the original

signal is x n  the upsampled signal is

                x
s

n =
x n / I , n / I an integer

0     , otherwise
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Sampling Rate Conversion

  

A discrete-time expansion by a factor of I  corresponds to a 

discrete-time-frequency compression by the same factor.

                   X
s

z( ) = X z
I( ) X

s
e

j( ) = X e
jI( )
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Sampling Rate Conversion

  

An ideal lowpass filter with transfer function

H e j( ) = rect I 2 k( ) / 2( )
k=

=
1  ,  < / I

0  ,  / I < <

could be used to interpolate between sample values yielding

             X
i

e j( ) = X
s

e j( ) rect I 2 k( ) / 2( )
k=

which corresponds to x
i

n = x
s

n 1/ I( )sinc n / I( )  in the

time domain.
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Sampling Rate Conversion
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Polyphase Filters

   

The polyphase filter was developed for the efficient 

implementation of sampling rate conversion.  Any transfer 

function is of the form

              H z( ) = + h 0 + z
1 h 1 + + z

k h k +

which can be regrouped and written as

               H z( ) = + h 0            + z
M h M +

                           z
-1h 1            + z

M +1( )
h M +1 +

                                                         

                           z
- M -1( )

h M -1 + z
2 M 1( )

h 2M 1 +
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Polyphase Filters

   

H z( ) = + h 0             + z
M h M +

            z
-1 h 1           + z

M h M +1( ) +

                                            

            z
- M -1( )

h M -1 + z
M h 2M 1( ) +

                                             

This can be written compactly as

    H z( ) = z
1 P

i
z

M( )
i=0

M 1

  where P
i

z( ) = h nM + i( ) z
n

n=

This is called the “M-component polyphase decomposition” of H z( )
and the P

i
z( ) 's are the polyphase components of H z( ).
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Polyphase Filters
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The Noble Identities

  

The relationships between a signal and a decimated version of 

the signal was found to be X e j( ) = D X
d

e jD( )   ,  0 < < / D.

It then follows that, in the z  domain,

         X z( ) = D X
d

z D( )  and X
d

z( ) = 1/ D( )X z1/ D( )
for signals sampled according to the sampling theorem.

Consider a downsampler followed by a filter with input signal

x n  and output signal y n  and let the downsampler output

be y
1

n .
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The Noble Identities

  

Y
1

z( ) = 1/ D( )X z
1/ D( )  and Y z( ) = H z( )Y

1
z( )

Therefore Y z( ) = 1/ D( )H z( )X z
1/ D( ).

Now reverse the order of the downsampler and filter. 

Y
1

z( ) = H z( )X z( )  and Y z( ) = 1/ D( )Y
1

z
1/ D( )

Therefore Y z( ) = 1/ D( )H z
1/ D( )X z

1/ D( ).
The two output signals are not the same because the 

downsampler is not an LTI system.  But they would 

be the same if z z
D  in H z( )  in the second system.
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The Noble Identities
For decimators

For interpolators
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Cascaded Integrator Comb
Filters

  

In both decimation and interpolation a lowpass filter is 

needed.  The cascaded integrator comb filter is an efficient 

structure for lowpass filtering in decimation or interpolation.  

Its transfer function is

                          H z( ) = z
k

k=0

M 1

=
1 z

M

1 z
1
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Cascaded Integrator Comb
Filters

In decimation

In interpolation



23

Cascaded Integrator Comb
Filters

   

The transfer function of the cascaded integrator filter can be

written as

                H z( ) = z
k

k=0

M 1

= 1+ z
1
+ z

2
+ + z

M 1( )

For M = 4,  H z( ) = z
k

k=0

M 1

= 1+ z
1
+ z

2
+ z

3
= 1+ z

1( ) 1+ z
2( ).

For M = 8, H z( ) = 1+ z
1
+ z

2
+ z

3
+ z

4
+ z

5
+ z

6
+ z

7

          = 1+ z
1( ) 1+ z

2( ) 1+ z
4( )

For M = 2k ,  H z( ) = 1+ z
1( ) 1+ z

2( ) 1+ z
2

k 1( )

( )



24

Cascaded Integrator Comb
Filters

   
H z( ) = 1+ z

1( ) 1+ z
2( ) 1+ z

2
k 1( )

( )
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Polyphase Structures in
Decimation and Interpolation

The basic decimator model is a lowpass filter followed by
a downsampler.

One inefficiency is that the filtering computations are done
at the higher sampling rate but the results are only needed
at the lower sampling rate.  We can improve the efficiency
by using a polyphase structure.
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Polyphase Structures in
Decimation and Interpolation

 

Filter Decimate

Less Efficient  

Decimate Filter

More Efficient
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Polyphase Structures in
Decimation and Interpolation

This commutator structure
is a convenient way to 
implement a polyphase
decimator.
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Polyphase Structures in
Decimation and Interpolation

 

Interpolate Filter

Less Efficient  

Filter Interpolate

More Efficient
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Polyphase Structures in
Decimation and Interpolation

This commutator structure
is a convenient way to 
implement a polyphase
interpolator.
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Phase Shifter

  

Sometimes it is desired to delay a signal x n  by a fraction

of the time between samples T
sx

.  If that fraction is k / I  and

k  and I  are both integers, the delay can be acccomplished by

sample-rate conversion methods.
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Phase Shifter

The delay can also be 
accomplished efficiently 
by using an interpolating
polyphase commutator set 
at the kth delay.  Since we 
are only interested in the 
kth delay we only need 
the kth polyphase filter.
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Subband Coding
Because most of the power of speech signals is at the lower
frequencies it is efficient to use more bits on the low frequency
part of the spectrum.  Subband coding accomplishes that by
filtering and decimating multiple times.
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Subband Coding

The speech signal can be recovered by doing the opposite of
subband coding.



34

Digital Filter Banks

An important type of analysis

filter bank is the DFT filter

bank.  Let the lowpass filters

have impulse responses

h n[ ] = n m[ ]
m=0

N 1

 and

frequency response

H e j( ) = e j N 1( )/2 sin N / 2( )
sin / 2( )
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Digital Filter Banks

H e j( ) = e j N 1( )/2 sin N / 2( )
sin / 2( )
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Digital Filter Banks
The output signal from the kth filter would be

Yk e j( ) = X e j( ) 2 k / N( )( )e j N 1( )/2 sin N / 2( )
sin / 2( )

Yk e j( ) = X e j 2 k / N( )( )e j N 1( )/2 sin N / 2( )
sin / 2( )

or, in the time domain

yk n[ ] = x n[ ]e j2 kn / N( ) h n[ ] = x n m[ ]e j2 k n m( )/ N

m=n N 1( )

n

yk N 1[ ] = x q[ ]e j2 kq / N

q=0

N 1

 which, at any time n,  is X k[ ]  

the kth harmonic value in the DFT of the last N  values of n.
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Digital Filter Banks

Since the filters are lowpass, the output signals can be 

decimated by N .  Without decimation they are 

yk n[ ] = x n[ ]e j2 kn / N( ) h0 n[ ] = h0 n m[ ]x m[ ]e j2 km / N

m=n N 1( )

n

and with decimation they are 

Xk m[ ] = h0 mN n[ ]x n[ ]e j2 kn / N

n=m N 1( )

m

where m is the discrete time at the output which is not the

same as n the discrete time at the input.
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Digital Filter Banks

An analysis filter
bank with decimation.
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Quadrature Mirror Filters

The two-channel quadrature mirror structure
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Quadrature Mirror Filters
The Fourier transforms of the output signals from the analysis

section are

Xa0 e j( ) =
1

2
X e j /2( )H0 e j /2( ) + X e j 2( )/2( )H0 e j 2( )/2( )

and

Xa1 e j( ) =
1

2
X e j /2( )H1 e j /2( ) + X e j 2( )/2( )H1 e j 2( )/2( )

The Fourier transform of the output signal from the synthesis section is

          X̂ e j( ) = Xs0 e j2( )G0 e j( ) + Xs1 e j2( )G1 e j( )
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Quadrature Mirror Filters
If we connect the outputs from the analysis section to the

inputs of the synthesis section we get

X̂ e j( ) =
1

2
X e j( )H0 e j( ) + X e j( )( )H0 e j( )( ) G0 e j( )

               +
1

2
X e j( )H1 e j( ) + X e j( )( )H1 e j( )( ) G1 e j( )

which can be written as X̂ e j( ) = Q e j( )X e j( ) + A e j( )X e j( )( )
or in the z  domain as X̂ z( ) = Q z( )X z( ) + A z( )X z( )

where 

                   Q z( ) = 1 / 2( ) H0 z( )G0 z( ) + H1 z( )G1 z( )

                   A z( ) = 1 / 2( ) H0 z( )G0 z( ) + H1 z( )G1 z( )
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Quadrature Mirror Filters

The second term A z( )X z( )  is an undesirable alias.  If we

set A z( ) = 0 we get 

                   H0 z( )G0 z( ) + H1 z( )G1 z( ) = 0

            H0 e j( )( )G0 e j( ) = H1 e j( )( )G1 e j( )
Then if we set

        G0 e j( ) = H1 e j( )( )   and  G1 e j( ) = H0 e j( )( )
we get

           H0 e j( )( )H1 e j( )( ) = H1 e j( )( )H0 e j( )( )
and A z( ) = 0.
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Quadrature Mirror Filters
If H e j( )  is lowpass 

and we set 

H0 e j( ) = H e j( ) = H1 e j( )( )
then H1 e j( )  is highpass 

and is a "mirror image" 

of H0 e j( ).  The corresponding

impulse responses are

h0 n[ ] = h n[ ]   and  

h1 n[ ] = 1( )
n

h n[ ].  Then if

G0 z( ) = H z( ),  G1 z( ) = H z( )

for elimination of aliases.
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Quadrature Mirror Filters

In summary, for elimination of aliases

                    H0 z( ) = H z( )

                    H1 z( ) = H z( )

                    G0 z( ) = H z( )

                    G1 z( ) = H z( )
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Quadrature Mirror Filters
One frequent use of quadrature mirror filters is to break

a signal into multiple parts with the analysis section, 

analyze the parts and then reconstruct the signal in the 

synthesis section.  What is the requirement for perfect

reconstruction?  Since we know that

                     X̂ z( ) = Q z( )X z( ) + A z( )X z( )

and we want the synthesized signal to be a delayed version

of the original signal we want X̂ z( ) = z k X z( ).  If we

have already eliminated the aliases we have

                             z k X z( ) = Q z( )X z( )

         Q z( ) = 1 / 2( ) H0 z( )G0 z( ) + H1 z( )G1 z( ) = z k  
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Quadrature Mirror Filters
Combining 

                            z k X z( ) = Q z( )X z( )

         Q z( ) = 1 / 2( ) H0 z( )G0 z( ) + H1 z( )G1 z( ) = z k

with the elimination of aliases we get

               1 / 2( ) H z( )H z( ) H z( )H z( ) = z k

or

H2 z( ) H2 z( ) = 2z k H2 e j( ) H2 e j( )( ) = 2e jk

which implies that

                           H2 e j( ) H2 e j( )( ) = 2

for perfect reconstruction.
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Polyphase Quadrature Mirror
Filters

Let

            H0 z( ) = P0 z2( ) + z 1P1 z2( )
            H1 z( ) = P0 z2( ) z 1P1 z2( )
Then

            G0 z( ) = P0 z2( ) + z 1P1 z2( )

            G1 z( ) = P0 z2( ) z 1P1 z2( )
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If the analysis and synthesis sections are cascade connected and 
the noble identities are used to make the computations more efficient 
we get 

Polyphase Quadrature Mirror
Filters
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Perfect Reconstruction QMF

Perfect reconstruction of the input signal can be acheived by 

an FIR half-band filter of length 2N 1.  A half-band filter

is a zero-phase FIR filter whose impulse response b n[ ]  satisfies

                         b 2n[ ] =
constant  ,  n = 0

0             ,  n 0

If it is zero-phase then b n[ ] = b n[ ].  The frequency response

is B e j( ) = b n[ ]e j n

n= K

K

 where K  is odd.
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Perfect Reconstruction QMF

 

B e j( ) = b n[ ]e j n

n= K

K

= b 0[ ]+ 2 b n[ ]cos n( )
n=1
n  odd

K

B e j( ) = b 0[ ]+ 2 b 2n +1[ ]cos 2n +1( )( )
n=0

K 1( )/2

B e j( ) = b 0[ ]+ 2 b 1[ ]cos( ) + b 3[ ]cos 3( ) + + b K[ ]cos K( ){ }

B e j( )( ) = b 0[ ] 2 b 1[ ]cos( ) + b 3[ ]cos 3( ) + + b K[ ]cos K( ){ }

B e j( ) + B e j( )( ) = 2b 0[ ]  a constant for all .
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Perfect Reconstruction QMF

 

As an example let 

b n[ ] =

,0,0, 1 / 7,0,1 / 5,0, 1 / 3,0,1,

2
,1,0, 1 / 3,0,1 / 5,0, 1 / 7,0,0,

Then

B e j( ) =
2

+ 2 cos( ) + cos 3( ) / 3 + cos 5( ) / 5{ }
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Perfect Reconstruction QMF

 

The filter with impulse response b n[ ]  is non-causal.  It can be

made causal by delaying it by K  samples.  Also the frequency

response B e j( )  goes negative at some frequencies.  If we add

a term B  just large enough to make it non-negative at all

frequencies we get B+ e j( ) = B e j( ) + B .  Since it is non-negative

it is possible to write it in the form

                  B+ e j( ) = H e j( )
2

= H e j( )H e j( )

Since h n[ ] h n[ ] F H e j( )H e j( )  we can say that

the corresponding impulse response has a length N  if b n[ ]
has length 2N 1.
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Perfect Reconstruction QMF

 

Now delay the original impulse response by N 1 samples

to make it causal and redefine it as

     B+ e j( ) = H e j( )
2
e j N 1( )

= H e j( )H e j( )e j N 1( )

Using the fact that 

B e j( ) = b 0[ ]+ 2
b 1[ ]cos( ) + b 3[ ]cos 3( ) +

+ b K[ ]cos K( )

it follows that

B+ e j( ) = b 0[ ]+ 2
b 1[ ]cos( ) + b 3[ ]cos 3( ) +

+ b K[ ]cos K( )
+ B e j N 1( )
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Perfect Reconstruction QMF
After a few lines of algebraic simplification we can show that

B+ e j( ) + 1( )
N 1

B+ e j( )( )
      = B+ e j( ) B+ e j( )( ) = 2 b 0[ ]e j N 1( )

= e j N 1( )

where = 2b 0[ ]  a constant.  It then follows that

                      H z( )H z 1( ) + H z( )H z 1( ) =

Then combining the conditions for perfect reconstruction 

with the conditions for elimination of aliases,

H0 z( ) = H z( )

H1 z( ) = z N 1( ) H0 z 1( )

G0 z( ) = H1 z( ) = z( )
N 1( ) H0 z 1( ) = z N 1( ) H0 z 1( )

G1 z( ) = H0 z( ) = z N 1( ) H1 z 1( )
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Perfect Reconstruction QMF
As an example let H0 z( ) = 1 / 2( ) 1+ z 1( ).
Then the four filters in the perfect reconstruction QMF

analysis structure are

H0 z( ) = 1 / 2( ) 1+ z 1( )   H1 z( ) = 1 / 2( ) 1 z 1( )

G0 z( ) = 1 / 2( ) 1+ z 1( )   G1 z( ) = 1 / 2( ) 1 z 1( )
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Perfect Reconstruction QMF

The four impulse responses are 

h0 n[ ] = 1 / 2( ) n[ ]+ n 1[ ]( )

h1 n[ ] = 1 / 2( ) n[ ] n 1[ ]( )

g0 n[ ] = 1 / 2( ) n[ ]+ n 1[ ]( )

g1 n[ ] = 1 / 2( ) n[ ] n 1[ ]( )
and the response to a random 

excitation is a perfect reconstruction 

except delayed and multiplied by two.


