
Number Representations

Fixed Point Representations

1 2 3 2 1 0

1

0

Let the bits in an -bit binary number be designated
 , , , , ,
where is called the most significant bit (MSB) and

 is called the least significant bit (LSB). Let

N N N

N

N
b b b b b b

b
b

− − −

−

1 2 2 1 0
1 2 2 1 0

a number
 be represented by

2 2 2 2 2
For example, if 3 all the representable numbers would be
Decimal 0 1 2 3 4 5 6 7
Binary 000 001 010 011 100 101 110 111

This type of representa

N N
N N

M
M b b b b b

N
M

M

− −
− −= × + × + + × + × + ×

=

tion is called .unsigned binary

Fixed Point Representations
The biggest problem with unsigned binary is that it cannot
represent negative numbers. There are three common ways
of representing negative numbers,
1. Sign-magnitude representation
2. One’s complement representation
3. Two’s complement representation

In sign-magnitude representation the MSB indicates the sign
of the number and the remaining bits represent its magnitude.
Using an MSB of 1 for a negative sign with 3,
Decimal 0 1 2 3 0 1 2 3
Binary

N
M

M

=
− − −

000 001 010 011 100 101 110 111
Notice there are two zero representations 000 and 100.

Fixed Point Representations
In one's complement, negative numbers are formed by simply
complementing all the bits in the corresponding positive number.
Decimal 0 1 2 3 0 1 2 3
Binary 000 001 010 011 111 110 101 100

Again there are two z

M
M

− − −

ero representations 000 and 111.
In two's complement, negative numbers are formed by
complementing all the bits and then adding one.
Decimal 0 1 2 3 1 2 3 4
Binary 000 001 010 011 111 110 101 100

Now there is

M
M

− − − −

 only one zero representation 000. The addition is
modulo-2 so when an overflow occurs it is ignored.

Fixed Point Representations

1 2 1 0
1 2 1 0

binary
point

 So far we have only represented integers. We can represent
fractions by moving the "binary point" to the left. For integers
it is at the right end.

2 2 2 2

but w

N N
N NM b b b b− −
− − ↑

= × + × + + × + ×

3 4 0 1 2
1 2 2 1 0

binary
point

e can change it to, for example,
2 2 2 2 2

and now the two least significant bits have weights 1/2 and 1/4 and
can represent a fraction.

N N
N NM b b b b b− − − −
− − ↑

= × + × + + × + × + ×

Fixed Point Representations
It is common in digital signal processing to make all numbers
fractions lying between -1 and +1. For the 3-bit case
In sign-magnitude
Decimal 0 / 4 1/ 4 2 / 4 3/ 4 0 / 4 1/ 4 2 / 4 3/ 4
Binary 0.00 0.01 0.10 0.11 1.00 1.

M
M

− − −
01 1.10 1.11

In one's complement,
Decimal 0 / 4 1/ 4 2 / 4 3/ 4 0 / 4 1/ 4 2 / 4 3/ 4
Binary 0.00 0.01 0.10 0.11 1.11 1.10 1.01 1.00

In two's complement,
Decimal 0 / 4 1/ 4 2 / 4 3/ 4 1/ 4 2 / 4 3/ 4 4 / 4
Binary 0.00 0.01 0.10 0.11 1.11 1.10 1

M
M

M
M

− − −

− − − −
.01 1.00

Fixed Point Representations
The name "two's complement" comes from the fact that to form
the negative of a fraction we use its two's complement, meaning
that number subtracted from two. For example, 1/ 4 in 3-bit
unsigned binary is 0.01 and 1/ 4 is represented by 2 -1/ 4 7 / 4
which in 3-bit unsigned binary is 1.11.

The overwhelming majority of digital signal processing with fixed
point numbers uses two's complement and that is al

− =

l we will use.

Two’s Complement Arithmetic
Example

Find the sums and differences of these fractions using four-bit
two’s complement arithmetic.
 3/ 4 3/8 5/8 7 /8
The available numbers are
Decimal 0 1/8 2 /8 3/8 4 /8 5 /8 6 /8 7 /8
Binary 0.000 0.

− −

001 0.010 0.011 0.100 0.101 0.110 0.111
Decimal 1 7 /8 6 /8 5 /8 4 /8 3/8 2 /8 1/8
Binary 1.000 1.001 1.010 1.011 1.100 1.101 1.110 1.111

− − − − − − − −

Two’s Complement Arithmetic
Example

Two numbers add like unsigned integers (ignoring the binary
point). If there is an overflow, the carry is ignored making the
addition of the integers effectively modulo-16. Then the
binary point is re-introduced. The range of two’s complement
numbers can be conceived as circular. When a sum or
difference would exceed the allowed range , it overflows back
into the allowed range (at a
wrong anwer) by continuing to rotate in
the same direction. To form the sum,
1/2 + 1/2 (0.100 + 0.100), start at the
point 0.100 on the circle and move
four positions clockwise This puts us
at 1.000 which is -1 decimal, a wrong
answer because we overflowed the range.

Two’s Complement Arithmetic
Example

Notice that if we add -3/4 (1.010) and 7/8 (0.111), we start on the
circle at 1.010 and move 7 positions clockwise arriving at 0.001
which is decimal 1/8 which is correct even though the addition
of 1010 and 0111 overflows 16.

	Number Representations

