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Random Variables

and Stochastic Processes
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Randomness

• The word random effectively means

unpredictable

• In engineering practice we may treat some

signals as random to simplify the analysis

even though they may not actually be

random
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Random Variable Defined

 
X( )A random variable        is the assignment of numerical 

values to the outcomes    of experiments
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Random Variables
Examples of assignments of numbers to the outcomes of

experiments.
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Discrete-Value vs Continuous-

Value Random Variables
• A discrete-value (DV) random variable has a set of

distinct values separated by values that cannot

occur

• A random variable associated with the outcomes

of coin flips, card draws, dice tosses, etc... would

be DV random variable

• A continuous-value (CV) random variable may

take on any value in a continuum of values which

may be finite or infinite in size
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Distribution Functions

  
F

X
x( ) = P X x( )

The distribution function of a random variable X is the

probability that it is less than or equal to some value,

as a function of that value.

Since the distribution function is a probability it must satisfy

the requirements for a probability.

  
0 F

X
x( ) 1 , < x <

  
F

X
( ) = 0 and F

X
+( ) = 1

  
P x

1
< X x

2
( ) = F

X
x

2
( ) F

X
x

1
( )

    is a monotonic function and its derivative is never negative.
  
F

X
x( )
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Distribution Functions

The distribution function for tossing a single die

  

F
X

x( ) = 1/ 6( )
u x 1( ) + u x 2( ) + u x 3( )
+ u x 4( ) + u x 5( ) + u x 6( )
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Distribution Functions

A possible distribution function for a continuous random

variable
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Probability Density
The derivative of the distribution function is the probability 

density function (pdf).

  
f

X
x( )

d

dx
F

X
x( )( )

Probability density can also be defined by

  
f

X
x( )dx = P x < X x + dx( )

Properties

  
f

X
x( ) 0 , < x < +

  

f
X

x( )dx = 1

  

F
X

x( ) = f
X

( )d

x

  

P x
1
< X x

2
( ) = f

X
x( )dx

x
1

x
2

Proakis uses the notation p x( )  instead of fX x( )  for

probability density.
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The pdf for tossing a die

Probability Mass and Density
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Expectation and Moments

Imagine an experiment with M possible distinct outcomes

performed N times.  The average of those N outcomes is

  

X =
1

N
n

i
x

i

i=1

M

where      is the ith distinct value of X and      is the number of

times that value occurred.  Then

xi  
n

i

  

X =
1

N
n

i
x

i

i=1

M

=
n

i

N
x

i

i=1

M

= r
i
x

i

i=1

M

The expected value of X is

  

E X( ) = lim
N

n
i

N
x

i

i=1

M

= lim
N

r
i
x

i

i=1

M

= P X = x
i

( )x
i

i=1

M
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Expectation and Moments
The probability that X lies within some small range can be

approximated by

and the expected value is then approximated by
  

P x
i

x

2
< X x

i
+

x

2
f

X
x

i
( ) x

  

E X( ) = P x
i

x

2
< X x

i
+

x

2
x

i

i=1

M

x
i
f

X
x

i
( ) x

i=1

M

where M is now the number of 

subdivisions of width x 

of the range of the random 

variable.
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Expectation and Moments

In the limit as x approaches zero,

  

E X( ) = x f
X

x( )dx

Similarly

  

E g X( )( ) = g x( )f
X

x( )dx

The nth moment of a random variable is

  

E X
n( ) = x

n
f

X
x( )dx
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Expectation and Moments

The first moment of a random variable is its expected value

  

E X( ) = x f
X

x( )dx

The second moment of a random variable is its mean-squared

value (which is the mean of its square, not the square of its 

mean).

  

E X
2( ) = x

2
f

X
x( )dx
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Expectation and Moments

A central moment of a random variable is the moment of

that random variable after its expected value is subtracted.

  

E X E X( )
n

= x E X( )
n

f
X

x( )dx

The first central moment is always zero.  The second central

moment (for real-valued random variables) is the variance,

  
X

2
= E X E X( )

2

= x E X( )
2

f
X

x( )dx

The positive square root of the variance is the standard

deviation.
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Expectation and Moments

Properties of expectation

  

E a( ) = a , E aX( ) = a E X( ) , E X
n

n

= E X
n

( )
n

where a is a constant.  These properties can be use to prove

the handy relationship,

  X

2
= E X

2( ) E
2

X( )

The variance of a random variable is the mean of its square

minus the square of its mean.
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Expectation and Moments

For complex-valued random variables absolute moments are useful.  

The nth absolute moment of a random variable is defined by

  

E X
n( ) = x

n

f
X

x( )dx

and the nth absolute central moment is defined by 

  

E X E X( )
n

= x E X( )
n

f
X

x( )dx
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Joint Probability Density

Let X and Y be two random variables.  Their joint distribution

function is

  
F

XY
x, y( ) P X x Y y( )

  
0 F

XY
x, y( ) 1 , < x < , < y <

  
F

XY
,( ) = F

XY
x,( ) = F

XY
, y( ) = 0

  
F

XY
,( ) = 1

  
F

XY
, y( ) = F

Y
y( )  and F

XY
x,( ) = F

X
x( )

  
F

XY
x, y( )  does not decrease if either x or y increases or both increase
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Joint Probability Density
Joint distribution function for tossing two dice
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Joint Probability Density

  
f

XY
x, y( ) =

2

x y
F

XY
x, y( )( )

  
f

XY
x, y( ) 0 , < x < , < y <

  

f
XY

x, y( )dxdy = 1
  

F
XY

x, y( ) = f
XY

,( )d

x

d

y

  

f
X

x( ) = f
XY

x, y( )dy  and  f
Y

y( ) = f
XY

x, y( )dx

  

P x
1
< X x

2
, y

1
< Y y

2( ) = f
XY

x, y( )dx
x

1

x
2

dy
y

1

y
2

  

E g X ,Y( )( ) = g x, y( )f
XY

x, y( )dxdy

  

P X ,Y( ) R( ) = f
XY

x, y( )dxdy
R
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Independent Random Variables

If two random variables X and Y are independent then

  
f

XY
x, y( ) = f

X
x( )f

Y
y( )

  

E XY( ) = xy f
XY

x, y( )dxdy = y f
Y

y( )dy x f
X

x( )dx = E X( )E Y( )

and their correlation is the product of their expected values
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Covariance

  

XY
E X E X( ) Y E Y( )

*

= x E X( )( ) y*
E Y *( )( )f

XY
x, y( )dxdy

  XY
= E XY

*( ) E X( )E Y
*( )

If X and Y are independent,

  XY
= E X( )E Y

*( ) E X( )E Y
*( ) = 0

Independent Random Variables
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If two random variables are independent, their covariance is

zero.  

However, if two random variables have a zero covariance

that does not mean they are necessarily independent.

 
Zero Covariance Independence

 Independence Zero Covariance

Independent Random Variables



24

In the traditional jargon of random variable analysis, two

“uncorrelated” random variables have a covariance of zero.

Unfortunately, this does not also imply that their correlation is

zero.  If their correlation is zero they are said to be orthogonal.

  
X  and Y  are "Uncorrelated"

XY
= 0

  
X  and Y  are "Uncorrelated" E XY( ) = 0

Independent Random Variables



25

The variance of a sum of random variables X and Y is

  X +Y

2
=

X

2
+

Y

2
+ 2

XY
=

X

2
+

Y

2
+ 2

XY X Y

If Z is a linear combination of random variables  

  

Z = a
0

+ a
i
X

i

i=1

N

then

  

E Z( ) = a
0

+ a
i
E X

i
( )

i=1

N

  

Z

2
= a

i
a

j X
i
X

j
j=1

N

i=1

N

= a
i

2

X
i

2

i=1

N

+ a
i
a

j X
i
X

j
j=1

N

i=1

i j

N

 
X

i

Independent Random Variables
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If the X’s are all independent of each other, the variance of

the linear combination is a linear combination of the variances.

  
Z

2
= a

i

2

X
i

2

i=1

N

If Z is simply the sum of the X’s, and the X’s are all independent

of each other, then the variance of the sum is the sum of the

variances.

  
Z

2
=

X
i

2

i=1

N

Independent Random Variables
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The Central Limit Theorem

If N independent random variables are added to form a resultant 

random variable Z

  

Z = X
n

n=1

N

then

   
f

Z
z( ) = f

X
1

z( ) f
X

2

z( ) f
X

2

z( ) f
X

N

z( )

and it can be shown that, under very general conditions, the pdf

of a sum of a large number of independent random variables

with continuous pdf’s approaches a limiting shape called the

“Gaussian” pdf regardless of the shapes of the individual pdf’s.
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The Central Limit Theorem
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The Central Limit Theorem

The Gaussian pdf

  

f
X

x( ) =
1

X
2

e
x µ

X( )
2

/2
X

2

  

µ
X

= E X( )  and 
X

= E X E X( )
2
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The Central Limit Theorem
The Gaussian pdf

Its maximum value occurs at the mean value of its

argument

It is symmetrical about the mean value

The points of maximum absolute slope occur at one

standard deviation above and below the mean

Its maximum value is inversely proportional to its

standard deviation

The limit as the standard deviation approaches zero is a

unit impulse

  

x µ
x

( ) = lim
X

0

1

X
2

e
x µ

X( )
2

/2
X

2
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The Central Limit Theorem

The normal pdf is a Gaussian pdf with a mean of zero and

a variance of one.

  

f
X

x( ) =
1

2

e
x

2
/2

The central moments of the Gaussian pdf are

   

E X E X( )
n

=
0 , n  odd

1 3 5… n 1( )
X

n
, n  even
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Stochastic Processes

A random variable is a number          assigned to every outcome  

of an experiment. 
 
X( )

A stochastic process is the assignment of a function of t  

to each outcome  of an experiment. 
  
X t,( )

The set of functions                                                   corresponding 

to the N outcomes of an experiment is called an ensemble and each 

member              is called a sample function of the stochastic 

process. 

   
X t,

1( ),X t,
2( ), ,X t,

N
( ){ }

  
X t,

i
( )

A common convention in the notation describing stochastic 

processes is to write the sample functions as functions of t only 

and to indicate the stochastic process by          instead of  

and any particular sample function by          instead of             .
  
X t( )

  
X t,( )

  
X

i
t( )

  
X t,

i
( )
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Stochastic Processes

E
n
se

m
b
le

Sample

Function

The values of         at a particular time    define a random variable  

          or just      . 
  
X t( )   

t
1

  
X t

1
( )   

X
1
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Example of a Stochastic Process

Suppose we place a 

temperature sensor at 

every airport control 

tower in the world 

and record the 

temperature  at noon 

every day for a year.

Then we have a 

discrete-time, 

continuous-value 

(DTCV) stochastic 

process.
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Example of a Stochastic Process

Suppose there is a large number 

of people, each flipping a fair 

coin every minute.  If we assign 

the value 1 to a head and the 

value 0 to a tail we have a 

discrete-time, discrete-value

(DTDV) stochastic process 
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Continuous-Value vs. Discrete-Value

A continuous-value (CV) 

random process has a pdf 

with no impulses.  A discrete-

value (DV) random process 

has a pdf consisting only of 

impulses.  A mixed random 

process has a pdf with 

impulses, but not just 

impulses.
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Deterministic vs. Non-

Deterministic

A random process is deterministic if a sample function

can be described by a mathematical function such that its

future values can be computed.  The randomness is in the

ensemble, not in the time functions.  For example, let the

sample functions be of the form,

  
X t( ) = Acos 2 f

0
t +( )

and let the parameter   be random over the ensemble but

constant for any particular sample function.

All other random processes are non-deterministic.
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Stationarity

If all the mltivariate statistical descriptors of a random 

process are not functions of time, the random process is 

said to be strict-sense stationary (SSS).

A random process is wide-sense stationary (WSS) if

  
E X t

1
( )( )

  
E X t

1
( )X t

2
( )( )

is independent of the choice of 
  
t
1

depends only on the difference between    and 
  
t
1   

t
2

and
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Ergodicity

If all of the sample functions of a random process have the 

same statistical properties the random process is said to be 

ergodic.  The most important consequence of ergodicity is that 

ensemble moments can be replaced by time moments.

  

E X
n( ) = lim

T

1

T
X

n
t( )dt

T /2

T /2

Every ergodic random process is also stationary.
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The Correlation Function

If X(t) is a sample function of one stochastic CT process and Y(t) is 

a sample function from another stochastic CT process and

  
X

1
= X t

1
( ) and Y

2
= Y t

2
( )

then

  

R
XY

t
1
,t

2( ) = E X
1
Y

2

*( ) = X
1
Y

2

*
f

XY
x

1
, y

2
;t

1
,t

2( )dx
1
dy

2

is the correlation function relating X and Y.  For stationary stochastic

CT processes this can be simplified to

  
R

XY
( ) = E X t( )Y

*
t +( )( )

If the stochastic process is also ergodic then the time correlation 

function is

   

R
XY

( ) = lim
T

1

T
X t( )Y

*
t +( )dt

T /2

T /2

= X t( )Y
*

t +( ) = R
XY

( )
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Autocorrelation

If X and Y represent the same stochastic CT process then the

correlation function becomes the special case called 

autocorrelation.

  
R

X
( ) = E X t( )X

*
t +( )

For an ergodic stochastic process,

   

R
X

( ) = lim
T

1

T
X t( )X

*
t +( )dt

T /2

T /2

= X t( )X
*

t +( ) = R
X

( )

Proakis uses the notation xy ( )  for correlation.( )
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Autocorrelation

  
R

X
t,t( ) = E X

2
t( )( )

Mean-

squared

value of X

   

R
X

0( ) = E X
2

t( )( ) and R
X

0( ) = lim
T

1

T
X

2
t( )dt

T

2

T

2

= X
2

t( )

Mean-

squared

value of X

Average

Signal

Power of X

For WSS stochastic CT processes
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The Correlation Function

If           is a sample function of one stochastic DT process and 

is a sample function from another stochastic DT process and

  
X

1
= X n

1
and Y

2
= Y n

2

then

  

R
XY

n
1
,n

2
= E X

1
Y

2

*( ) = X
1
Y

2

*
f

XY
x

1
, y

2
;n

1
,n

2( )dx
1
dy

2

is the correlation function relating X and Y.  For stationary stochastic

DT processes this can be simplified to

  
R

XY
m = E X n Y

*
n + m( )

If the stochastic DT process is also ergodic then the time correlation 

function is

   

R
XY

m = lim
N

1

2N
X n Y

*
n + m

n= N

N 1

= X n Y
*

n + m = R
XY

m

  
X n

  
Y n
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Autocorrelation

If X and Y represent the same stochastic DT process then the

correlation function becomes the special case called 

autocorrelation.

  
R

X
m = E X n X

*
n + m( )

For an ergodic stochastic DT process,

   

R
X

m = lim
N

1

2N
X n X

*
n + m

n= N

N 1

= X n X
*

n + m = R
X

m
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Autocorrelation

  
R

X
n,n = E X

2
n( )

Mean-

squared

value of X

   

R
X

0 = E X
2

n( ) and R
X

0 = lim
N

1

2N
X

2
n

n= N

N 1

= X
2

n

Mean-

squared

value of X

Average

Signal

Power of X

For WSS stochastic DT processes



46

Properties of Autocorrelation

Autocorrelation is an even function

  
R

X
( ) = R

X
( )  or R

X
m = R

X
m

The magnitude of the autocorrelation value is never greater 

than at zero delay.

  
R

X
( ) R

X
0( )  or R

X
m R

X
0

If X has a non-zero expected value then                        

will also and it will be the square of the expected value of X.
  
R

X
( )  or R

X
m

If X has a periodic component then                                will 

also, with the same period.
  
R

X
( )  or R

X
m
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Properties of Autocorrelation

If             is ergodic with zero mean and no periodic components

then

  

limR
X

( ) = 0 or lim
m

R
X

m = 0

  
X t( ){ }

Only autocorrelation functions for which 

   
F R

X ( ){ } 0  for all f  or F R
X

m{ } 0  for all 

are possible

A time shift of a function does not affect its autocorrelation
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Autocovariance

  
C

X
( ) = R

X
( ) E

2
X( )  or C

X
m = R

X
m E

2
X( )

Autocovariance is similar to autocorrelation.  Autocovariance

is the autocorrelation of the time-varying part of a signal.
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Crosscorrelation
Properties

  
R

XY
( ) = R

YX
( )   or  R

XY
m = R

YX
m

  
R

XY
( ) R

X
0( )R

Y
0( )   or  R

XY
m R

X
0 R

Y
0

If two stochastic processes X and Y are statistically independent

  
R

XY
( ) = E X( )E Y

*( ) = R
YX

( )   or  R
XY

m = E X( )E Y
*( ) = R

YX
m

If X is stationary CT and      is its time derivative X

  
R

XX
( ) =

d

d
R

X
( )( )

  

R
X

( ) =
d

2

d
2

R
X

( )( )

If                                 and X and Y are independent and at least 

one of them has a zero mean
  
Z t( ) = X t( ) ± Y t( )

  
R

Z
( ) = R

X
( ) + R

Y
( )
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Power Spectral Density

In applying frequency-domain techniques to the analysis of

random signals the natural approach is to Fourier transform

the signals.

Unfortunately the Fourier transform of a stochastic process

does not, strictly speaking, exist because it has infinite 

signal energy.

But the Fourier transform of a truncated version of a

stochastic process does exist.
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Power Spectral Density

  

X
T

t( ) =
X t( ) , t T / 2

0 , t > T / 2
= X t( )rect t / T( )

The Fourier transform is

Using Parseval’s theorem,

Dividing through by T,

   

F X
T

t( )( ) = X
T

t( )e j2 ftdt , T <

   

X
T

t( )
2

dt
T /2

T /2

= F X
T

t( )( )
2

df

   

1

T
X

T

2 t( )dt
T /2

T /2

=
1

T
F X

T
t( )( )

2

df

For a CT stochastic process let
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Power Spectral Density

Average signal power 

over time, T

If we let T approach infinity, the left side becomes the average

power over all time.  On the right side, the Fourier transform

is not defined in that limit.  But it can be shown that even

though the Fourier transform does not exist, its expected value

does.  Then

   

E
1

T
X

T

2 t( )dt
T /2

T /2

= E
1

T
F X

T
t( )( )

2

df

   

1

T
X

T

2 t( )dt
T /2

T /2

=
1

T
F X

T
t( )( )

2

df
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Power Spectral Density

   

lim
T

1

T
E X

2( )dt
T /2

T /2

= lim
T

1

T
E F X

T
t( )( )

2

df

Taking the limit as T approaches infinity,

   

E X 2( ) = lim
T

E

F X
T

t( )( )
2

T
df

The integrand on the right side is identified as power spectral

density (PSD).

   

G
X

f( ) = lim
T

E

F X
T

t( )( )
2

T

Proakis uses the notation XX F( )  for power spectral density.( )
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Power Spectral Density

  

G
X

f( )df = mean squared value of X t( ){ }

  

G
X

f( )df = average power of X t( ){ }

PSD is a description of the variation of a signal’s power versus

frequency.

PSD can be (and often is) conceived as single-sided, in which

all the power is accounted for in positive frequency space.
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PSD Concept
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PSD of DT Stochastic Processes

   

G
X

F( ) = lim
N

E

F X
T

n( )
2

N

  
G

X
F( )dF

1
= mean squared value of X n{ }

  

1

2
G

X
( )d

2
= mean squared value of X n{ }

   
x n = F

1
X F( )( ) = X F( )e j2 FndF

1

F
X F( ) = F x n( ) = x n e j2 Fn

n=

   
x n = F

1
X( )( ) =

1

2
X( )e j nd

2

F
X( ) = F x n( ) = x n e j n

n=

where the Fourier transform is the discrete-time Fourier transform

(DTFT) defined by 

or
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PSD and Autocorrelation

It can be shown that PSD and autocorrelation form a Fourier 

transform pair.

   
G

X
f( ) = F R

X ( )( )  or G
X

F( ) = F R
X

m( )
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White Noise

White noise is a stochastic process whose PSD is constant.

  
G

X
f( ) = A  or G

X
F( ) = A

For CT signals, signal power is the integral of PSD over all 

frequency space.  Therefore the power of white noise is infinite.

  

E X 2( ) = Adf

No real physical process may have infinite signal power.

Therefore CT white noise cannot exist.  However, many real

and important CT stochastic processes have a PSD that is almost

constant over a very wide frequency range.
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White Noise

In many kinds of CT noise analysis, a type of random variable

known as bandlimited white noise is used.  Bandlimited

white noise is simply the response of an ideal lowpass filter

which is excited by white noise.

The PSD of bandlimited white noise is constant over a finite

frequency range and zero outside that range.

Bandlimited white noise has finite signal power.
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Cross Power Spectral Density

PSD is the Fourier transform of autocorrelation.

Cross power spectral density is the Fourier transform of 

cross correlation.

Properties:

  
G

XY
f( ) = G

YX

* f( )  or G
XY

F( ) = G
YX

* F( )

   
R

XY
t( ) F

G
XY

f( )  or R
XY

n
F

G
XY

F( )

  
Re G

XY
f( )( )   and  Re G

YX
f( )( )   are both even

  
Im G

XY
f( )( )   and  Im G

YX
f( )( )   are both odd
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Time-Domain Linear System

Analysis
For any linear, time-invariant (LTI) system, the response

y is the convolution of the excitation x with the 

impulse response h.

  
y t( ) = x t( ) h t( )  or y n = x n h n

In the case of non-deterministic random processes this

operation cannot be done because the signals are random

and cannot, therefore, be described mathematically.

If          excites a system and         is the response then the

convolution integral is

  

Y t( ) = X t( )h( )d

  
X t( )

  
Y t( )
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Time-Domain Linear System

Analysis

  

Y t( ) = X t( )h( )d

We cannot directly evaluate

but we can find the expected value.

  

E Y t( )( ) = E X t( )h( )d

If the random process is bounded and the system is stable

  

E Y t( )( ) = E X t( )( )h( )d
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Time-Domain Linear System

Analysis
If the random process X is stationary

  

E Y t( )( ) = E X t( )( )h( )d E Y( ) = E X( ) h( )d

Using

  

h t( )dt = H 0( ) E Y( ) = E X( )H 0( )

where H is the Fourier transform of h, we see that the

expected value of the response is the expected value of

the excitation multiplied by the zero-frequency response

of the system.  If the system is DT the corresponding 

result is

  

E Y( ) = E X( ) h n

n=
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Time-Domain Linear System

Analysis
It can be shown that the autocorrelation of the excitation and the 

autocorrelation of the response are related by

  
R

Y
( ) = R

X
( ) h( ) h( )  or R

Y
m = R

X
m h m h m

This result leads to a way of thinking about the analysis of

LTI systems with random excitation.
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Time-Domain Linear System

Analysis

It can be shown that the cross correlation between the excitation

and the response is

  
R

XY
( ) = R

X
( ) h( )  or R

XY
m = R

X
m h m

and

  
R

YX
( ) = R

X
( ) h( )  or R

YX
m = R

X
m h m
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Frequency-Domain Linear

System Analysis
The frequency-domain relationship between excitation and

response of an LTI system is the Fourier transform of the 

time-domain relationship.

   
R

Y ( ) = R
X ( ) h( ) h( ) F

G
Y

f( ) = G
X

f( )H f( )H
* f( ) = G

X
f( ) H f( )

2

The mean-squared value of the response is

  

E Y 2( ) = G
Y

f( )df = G
X

f( ) H f( )
2

df

   
R

Y
m = R

X
m h m h m

F
G

Y
F( ) = G

X
F( )H F( )H

*
F( ) = G

X
F( ) H F( )

2

  
E Y

2( ) = G
Y

F( )dF
1

= G
X

F( ) H F( )
2

dF
1
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Frequency-Domain Linear

System Analysis
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Consider an LTI filter excited by white noise w n[ ]  with response x n[ ].

The autocorrelation of the response is 

 R xx m[ ] = Rww m[ ] h m[ ] h m[ ].

If the excitation is white noise its 

autocorrelation is 

 R xx m[ ] = w
2 m[ ] h m[ ] h m[ ]  .

The power spectral density of the response is

Gxx F( ) = Gww F( ) H F( )
2

= Gww F( )H F( )H* F( )

If the inverse 1 / H z( )  exists and that system is excited by x n[ ]

the response is w n[ ].

White Noise Excitation of  LTI

Filters
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White Noise Excitation of  LTI

Filters

 

If the transfer function is the most common form, a ratio of

polynomials in z, the power spectral density of the response is

                         Gxx F( ) = w
2 B F( )B* F( )

A F( )A* F( )

where bkw n k[ ]
k=0

q
F B F( )  and 1+ ak x n k[ ]

k=1

p
F A F( )

and where the excitation and response are related by the difference

equation x n[ ]+ ak x n k[ ]
k=1

p

= bkw n k[ ]
k=0

q

.
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White Noise Excitation of  LTI

Filters

1.  If b0 = 1 and bk = 0 , k > 0 the frequency response of the system

     is H F( ) = 1 / A F( ), it has no finite zeros and it is called an 

     autoregressive (AR) system.

2.  If ak = 0 , k > 0 the frequency response of the system is 

    H F( ) = B F( )  it has no finite poles and it is called a moving

     average (MA) system.

3.  In the general case of both finite poles and finite zeros the

     system is called an autoregressive moving average (ARMA)

     system.
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White Noise Excitation of  LTI

Filters

If we multiply both sides of x n[ ]+ ak x n k[ ]
k=1

p

= bkw n k[ ]
k=0

q

by x* n + m[ ]  and then take the expectation of both sides we get

             R xx m[ ] = ak R xx m + k[ ]
k=1

p

+ bk Rwx m + k[ ]
k=0

q

.

Using x n[ ] = h n[ ] w n[ ] = h q[ ]w n q[ ]
q=

 we can show that

Rwx m[ ] = h m[ ] Rww m[ ]  and, if w n[ ]  is white noise 

Rwx m[ ] = h m[ ] w
2 m[ ] = w

2 h m[ ].
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White Noise Excitation of  LTI

Filters
Combining R xx m[ ] = ak R xx m + k[ ]

k=1

p

+ bk Rwx m + k[ ]
k=0

q

with Rwx m[ ] = w
2 h m[ ]  we get

              R xx m[ ] = ak R xx m k[ ]
k=1

p

+ bk w
2 h k m[ ]

k=0

q

For AR systems,

                 R xx m[ ] = ak R xx m k[ ]
k=1

p

+ w
2 h m[ ]

For MA systems,

                         R xx m[ ] = w
2 bk h k + m[ ]

k=0

q

(These correspond to Eqs. 12.2.18, 12.2.19 and 12.2.21 in Proakis.)
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White Noise Excitation of  LTI

Filters
An AR system with frequency response H F( ) =

1

1 0.2e j2 F

is excited by white noise with Rww m[ ] = w
2 m[ ].  Find the

impulse response and autocorrelation of the output signal.

H z( ) =
1

1 0.2e j2 F h n[ ] = 0.2n u n[ ]

Gxx F( ) = w
2 H F( )H* F( ) = w

2 1

1 0.2e j2 F

1

1 0.2e j2 F

Gxx F( ) = w
2

1 0.4cos 2 F( ) + 0.04
R xx m[ ] = 1.042 w

2 0.2( )
m

Example
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White Noise Excitation of  LTI

FiltersExample

R xx m[ ]
R xx m 1[ ]

=
1.042 w

2 0.2( )
m

1.042 w
2 0.2( )

m 1 =
0.2( )

m

0.2( )
m 1 = 0.2  ,  m > 0

Using the result for MA systems 

R xx m[ ] = ak R xx m k[ ]
k=1

p

+ w
2 h m[ ]

R xx m[ ] = ak R xx m k[ ]
k=1

p

  ,  m > 0

R xx m[ ] = 0.2R xx m 1[ ]
R xx m[ ]

R xx m 1[ ]
= 0.2  ,  m > 0  Check.
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White Noise Excitation of  LTI

FiltersExample

R xx m[ ] = ak R xx m k[ ]
k=1

p

+ w
2 h m[ ]

R xx 0[ ] = ak R xx k[ ]
k=1

p

+ w
2   ,  m = 0

R xx 0[ ] = 0.2R xx 1[ ]+ w
2

1.042 w
2

= 0.2( )1.042 w
2 0.2( ) + w

2
= 1.042 w

2   Check
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White Noise Excitation of  LTI

FiltersExample

R xx m[ ] = ak R xx m k[ ]
k=1

p

+ w
2 h m[ ]   ,  m < 0

1.042 w
2 0.2( )

m
= 0.2 1.042 w

2 0.2( )
m 1

+ w
2 0.2( )

m
u m[ ]

1.042 w
2 0.2( )

m
= 0.2 1.042 w

2 0.2( )
1 m

+ w
2 0.2( )

m

1.042 = 0.2 1.042 0.2 +1 = 1.042  Check
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White Noise Excitation of  LTI

FiltersExample

An MA system with frequency response H F( ) = 1+ 0.8e j2 F

is excited by white noise with autocorrelation w
2 n[ ].  Find

its impulse response and the autocorrelation of the output signal.

H F( ) = 1+ 0.8e j2 F h n[ ] = n[ ]+ 0.8 n 1[ ]

R xx m[ ] = w
2 m[ ] h m[ ] h m[ ]

           = w
2 1.64 m[ ]+ 0.8 m 1[ ]+ 0.8 m +1[ ]( )

Using the result R xx m[ ] = w
2 bkbk+m

k=0

q

  ,  0 k + m q

for MA systems,

R xx m[ ] = w
2 bkbk+m

k=0

1

  ,  0 k + m 1
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White Noise Excitation of  LTI

FiltersExample

R xx 0[ ] = w
2 b0b0 + b1b1( ) = w

2 1+ 0.82( ) = 1.64 w
2

R xx 1[ ] = w
2 b0b1( ) = 0.8 w

2

R xx 1[ ] = w
2 b1b0( ) = 0.8 w

2

Check.
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Forward and Backward Linear

Prediction

 

Forward linear prediction is estimating a signal value at time n

from a linear combination of signal values at previous times

n 1, n 2, ,n p.  The estimate is x̂ n[ ] = a p k[ ]x n k[ ]
k=1

p

where the "hat" on x means "an estimate of x".  The difference

between x n[ ]  and x̂ n[ ]  is called the forward prediction error

               fp n[ ] = x n[ ] x̂ n[ ] = x n[ ]+ a p k[ ]x n k[ ]
k=1

p
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Forward and Backward Linear

Prediction

A one-step forward linear predictor
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Forward and Backward Linear

Prediction

A p-step prediction-error filter
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Forward and Backward Linear

Prediction
A forward linear predictor can be realized as a lattice.

 

                      f0 n[ ] = g0 n[ ] = x n[ ]

fm n[ ] = fm 1 n[ ]+ Km gm 1 n 1[ ]   ,  m = 0,1,2, , p

gm n[ ] = Km
* fm 1 n[ ]+ gm 1 n 1[ ]   ,  m = 0,1,2, , p

(Notice that the reflection coefficients are no longer identical in 

a single stage but are instead complex conjugates.  This is done 

to handle the case of complex-valued signals.)  
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Forward and Backward Linear

Prediction

From chapter 9

                                 0 z( ) = 0 z( ) = 1

                      m z( ) = m 1 z( ) + Kmz 1
m 1 z( )

                                m z( ) = z m
m 1 / z( )

                          m 1 z( ) = m z( ) Km m z( )
1 Km

2

                                      Km = m m[ ]
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Forward and Backward Linear

Prediction
The mean-squared forward prediction error is

  E fp n[ ]
2

( ) = E a p k[ ]x n k[ ]
k=0

p

E a p
* q[ ]x* n q[ ]

q=0

p

where it is understood that a p 0[ ] = 1.  This can be reduced to

               E fp n[ ]
2

( ) = a p k[ ]a p
* q[ ]R xx k q[ ]

q=0

p

k=0

p

which can also be written (after considerable algebra) as

E fp n[ ]
2

( ) = R xx 0[ ]+ 2Re a p k[ ]R xx k[ ]
k=1

p

                    + a p k[ ]
2
R xx 0[ ]

k=1

p

+ 2Re a p k[ ]a p
* q[ ]R xx k q[ ]

q=1

p

k=q+1

p
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Forward and Backward Linear

Prediction

 

It can be shown that minimizing the mean-squared error leads

a set of linear equations

                R xx l[ ] = a p k[ ]R xx l k[ ]
k=1

p

  ,  l = 1,2, , p

known as the normal equations.  If the autocorrelation is known

the "a" coefficients can be found from this set of equations.  

The minimum mean-sqared error is

             min E fp n[ ]
2

( ){ } = Ep
f

= R xx 0[ ]+ a p k[ ]R xx k[ ]
k=1

p
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Forward and Backward Linear

Prediction

 

We can also "predict" in the backward direction.  We can estimate

x n p[ ]  from the values of x n[ ]  , x n 1[ ]  , ,x n p +1[ ].

The estimate is 

                           x̂ n p[ ] = bp k[ ]x n k[ ]
k=0

p 1

and the backward "prediction" error is 

                      gp n[ ] = x n p[ ]+ bp k[ ]x n k[ ]
k=0

p 1

 .

The minimum mean-squared error is the same as in the forward

prediction case

                             min E gp n[ ]
2

( )( ) = Ep
g

= Ep
f
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Optimal Reflection Coefficients
The forward prediction error in a lattice filter is

                     fm n[ ] = fm 1 n[ ]+ Km gm 1 n 1[ ]
Its mean-squared value is

E fm n[ ]
2( ) = E fm 1 n[ ]+ Km gm 1 n 1[ ]( ) fm 1 n[ ]+ Km gm 1 n 1[ ]( ){ }

It can be shown that the optimal reflection coefficient to minimize the

mean-squared error is 

                      Km =
E fm 1 n[ ]gm 1 n 1[ ]( )

Em 1
f Em 1

b

This is the negative of the correlation coefficient between the

forward and backward errors.  Then the prediction errors can 

be recursively computed by Em
f

= 1 Km
2( )Em 1

f .



88

AR Processes and Linear

Prediction

There is a one-to-one correspondence between the parameters in 

an AR process and the predictor-coefficients of a p-th order 

predictor.  If the process is actually AR and pth order, they are the 

same.  If the output signal from an AR process excited by white

 noise is applied to the corresponding predictor, the output signal 

from the predictor will be white noise.  So the prediction filter is 

often called a “whitening” filter.
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Properties of Linear Prediction-

Error Filters

It can be shown that if the reflection coefficients in a lattice-type

linear prediction-error filter are all less than one in magnitude, that

the zeros of A(z) all lie inside the unit circle.  This makes A(z) 

minimum-phase.  All the zeros of B(z) lie outside the unit circle

making it maximum-phase.



90

Wiener Filters
Below is a general system model for an optimal linear filter

called a Wiener filter.  It makes the best estimate of d n[ ]based

on x n[ ], which contains a signal s n[ ]  plus noise w n[ ],  and

the autocorrelation functions for s n[ ]  and w n[ ].  The estimation 

error is e n[ ].

If d n[ ] = s n[ ],  the estimation problem is called filtering.

If d n[ ] = s n + n0[ ]   ,  n0 > 0,  it is called prediction.

If d n[ ] = s n n0[ ]   ,  n0 > 0, it is called smoothing.



91

Wiener Filters

 

The filter is optimized by minimizing the mean-squared 

estimation error

               E e n[ ]
2( ) = E d n[ ] h m[ ]x n m[ ]

m=0

M 1 2

.

A set of equations called the Wiener - Hopf  equations 

             h m[ ]R xx l m[ ]
m=0

M 1

= Rdx l[ ]   ,  l = 0,1, ,M 1

is used to find the impulse response of the optimal linear filter.

In Proakis' notation, h k( ) xx l k( )
k=0

M 1

= dx l( ).  The sign

difference on the right is caused by using a different definition

of autocorrelation.  But both sets of equations yield an optimal

impulse response.
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Wiener Filters

 

The Wiener-Hopf equations can be compactly written in

matrix form as RM hM = rd ,  where RM  is an M M  matrix

with elements R xx l m[ ]  and rd  is an M 1 matrix with

elements Rdx l[ ].  The solution is hM = RM
1rd  and the

minimum mean-squared error achieved is 

                          E e n[ ]
2( )

min
= d

2 rd
T RM

1rd

If d n[ ] = s n[ ]  and if s n[ ]  and w n[ ]  are independent the 

Wiener-Hopf equations reduce to

h m[ ] Rss l m[ ]+ Rww l m[ ]( )
m=0

M 1

= Rss l[ ]   ,  l = 0,1, , M 1
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Wiener Filters

The Wiener-Hopf equations for IIR filters are similar to those

for FIR filters except that the impulse response

                   h k[ ]R xx l m[ ]
m=0

= Rdx l[ ]   ,  l 0

has an infinite duration and the minimum mean-squared error is

                  MMSE = d
2 hopt m[ ]Rdx

* m[ ]
m=0
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Wiener Filters

A stationary random process x n[ ]  with autocorrelation R xx m[ ]

 and power spectral density Gxx F( )  can be represented by an

equivalent innovations process i n[ ]  by passing x n[ ] through

a whitening filter with transfer function 1 / Gmin z( )  where Gmin z( )

 is the minimum-phase part from spectral factorization of Gxx F( )

       Gxx F( ) = i
2 Gmin F( )Gmax F( ) = i

2 Gmin F( )Gmin F( )
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Wiener Filters

It can be shown that the optimal IIR causal Wiener filter has the

frequency response 

                   Hopt F( ) =
1

i
2 Gmin F( )

Gdx
* F( )

Gmin F( )
+

where Gdx F( )  is the cross power spectral density between d n[ ]  

and x n[ ]  and the subscript "+" on the square brackets means "the

causal part".
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Wiener Filters
IIR Wiener Filter Example (An extension of Example 12.7.2 in Proakis)

Let x n[ ] = s n[ ]+ w n[ ]  where s n[ ]  is an AR process that

satisfies the equation s n[ ] = 0.6s n 1[ ]+ v n[ ]  where v n[ ]

is a white noise sequence with variance v
2

= 0.64 and w n[ ]

is a white noise sequency with variance w
2

= 1.  Design a

Wiener filter to optimally estimate the signal s n[ ]  and delayed

versions of the signal s n n0[ ].

     The system impulse response is h n[ ] = 0.6( )
n

u n[ ]  and the

transfer function is H z( ) =
1

1 0.6z 1 =
z

z 0.6
.
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Wiener Filters
IIR Wiener Filter Example (An extension of Example 12.7.2 in Proakis)

The power spectral density of s n[ ]  is 

                 Gss z( ) = Gvv z( ) H z( )
2

= v
2 H z( )

2

                            = 0.64
1

1 0.6z 1

1

1 0.6z
=

0.64

1.36 0.6 z 1
+ z( )

The power spectral density of x n[ ]  is

Gxx z( ) = Gss z( ) + Gww z( ) =
0.64

1.36 0.6 z 1
+ z( )

+1 =
2 0.6 z 1

+ z( )
1.36 0.6 z 1

+ z( )
This can be spectrally factored into the form

                             Gxx z( ) =
a bz 1( ) a bz( )

1 0.6z 1( ) 1 0.6z( )
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Wiener Filters
IIR Wiener Filter Example (An extension of Example 12.7.2 in Proakis)

After spectral factorization

                 Gxx z( ) = 1.8
1 1 / 3( )z 1( ) 1 1 / 3( )z( )

1 0.6z 1( ) 1 0.6z( )

Therefore, if Gxx z( ) = i
2 Gmin z( )Gmin z 1( ), i

2
= 1.8 and

                     Gmin z( ) =
1 1 / 3( )z 1

1 0.6z 1 =
z 1 / 3

z 0.6
The cross correlation between d n[ ]  and x n[ ]  is the same as the

cross correlation between s n[ ]  and x n[ ]  because we are doing

filtering and d n[ ] = s n[ ].
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Wiener Filters
IIR Wiener Filter Example (An extension of Example 12.7.2 in Proakis)

 

Rdx m[ ] = Rsx m[ ] = E s n[ ]x n + m[ ]( ) = E s n[ ] s n + m[ ]+ w n + m[ ]( )( )
Rdx m[ ] = E s n[ ]s n + m[ ]( ) + E s n[ ]w n + m[ ]( ) = Rss m[ ]+ Rsw m[ ]

=0

= Rss m[ ]

Therefore Gdx z( ) = Gss z( ) =
0.64

1.36 0.6 z 1
+ z( )

=
0.64

1 0.6z 1( ) 1 0.6z( )

and 
Gdx z 1( )
Gmin z 1( )

+

=

0.64

1 0.6z( ) 1 0.6z 1( )
1 1 / 3( )z

1 0.6z
+

=
0.64

1 1 / 3( )z( ) 1 0.6z 1( )
+
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Wiener Filters
IIR Wiener Filter Example (An extension of Example 12.7.2 in Proakis)

We want to split this into the causal and anti-causal parts and retain only 

the causal part.  The causal part has the poles inside the unit circle.  So we 

want a partial-fraction expansion of the form

            
0.64

1 1 / 3( )z( ) 1 0.6z 1( )
=

K1z

1 1 / 3( )z
+

K2

1 0.6z 1

Solving, K1 = 0.8 / 3,  K2 = 0.8 and the causal part is

                                 
Gdx z 1( )
Gmin z 1( )

+

=
0.8

1 0.6z 1

Hopt z( ) =
1

i
2 1 1 / 3( )z 1

1 0.6z 1

0.8

1 0.6z 1 =
1

1.8

0.8

1 1 / 3( )z 1 =
4 / 9

1 1 / 3( )z 1

                                hopt n[ ] = 4 / 9( ) 1 / 3( )
n

u n[ ]
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Wiener Filters
IIR Wiener Filter Example (An extension of Example 12.7.2 in Proakis)

 

Next consider the case in which we are not filtering but instead smoothing.  

Now the cross correlation between d n[ ]  and x n[ ]  is not the same as the

cross correlation between d n[ ]  and x n[ ].  Let d n[ ] = s n n0[ ].  Then

Rdx m[ ] = E s n n0[ ]x n + m[ ]( ) = E s n n0[ ] s n + m[ ]+ w n + m[ ]( )( )
Rdx m[ ] = E s n n0[ ]s n + m[ ]( ) + E s n n0[ ]w n + m[ ]( )
            = Rss m + n0[ ]+ Rsw m + n0[ ]

=0

= Rss m + n0[ ]
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Wiener Filters
IIR Wiener Filter Example (An extension of Example 12.7.2 in Proakis)

Therefore Gdx z( ) = Gss z( )zn0 =
0.64zn0

1.36 0.6 z 1
+ z( )

=
0.64zn0

1 0.6z 1( ) 1 0.6z( )

and 
Gdx z 1( )
Gmin z 1( )

+

=

0.64z n0

1 0.6z( ) 1 0.6z 1( )
1 1 / 3( )z

1 0.6z
+

=
0.64z n0

1 1 / 3( )z( ) 1 0.6z 1( )
+

Expanding in partial fractions as before

                 
0.64z n0

1 1 / 3( )z( ) 1 0.6z 1( )
= z n0

0.8z

z 3
+

0.8z

z 0.6
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Wiener Filters
IIR Wiener Filter Example (An extension of Example 12.7.2 in Proakis)

 

              0.8 3( )
n

u n +1( ) + 0.8 0.6( )
n

u n[ ] Z 0.8z

z 3
+

0.8z

z 0.6

      0.8 3( )
n n0 u n n0 +1( ) + 0.8 0.6( )

n n0 u n n0[ ] Z z n0
0.8z

z 3
+

0.8z

z 0.6
The causal part of the inverse transform is

          0.8 3( )
n n0 u n n0 +1( ) + 0.8 0.6( )

n n0 u n n0[ ]{ }u n[ ]

which can be written as 

                      0.8 3( )
n n0 u n[ ] u n n0[ ]( ) + 0.8 0.6( )

n n0 u n n0[ ]
Its z  transform is

                                0.8
1

3

3( )
n0 z n0

1 / 3( ) z 1 +
z n0

1 0.6z 1
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Wiener Filters
IIR Wiener Filter Example (An extension of Example 12.7.2 in Proakis)

Gdx z 1( )
Gmin z 1( )

+

= 0.8 / 3( )
1 / 3( )

n0 z n0

1 / 3 z 1 +
0.8z n0

1 0.6z 1

Hopt z( ) =
1

i
2 1 1 / 3( )z 1

1 0.6z 1

0.8 / 3( )
1 / 3( )

n0 z n0

1 / 3( ) z 1 +
0.8z n0

1 0.6z 1

which can be written as

Hopt z( ) =
5

9
z n0 1( ) 0.8 / 3( ) 1 / 3( )

n0 1 z 0.6

z 1 / 3

zn0 3( )
n0

z 3
+

0.8

z 1 / 3
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Wiener Filters
IIR Wiener Filter Example (An extension of Example 12.7.2 in Proakis)

The impulse response of the filter is the inverse transform of this transfer 

function.  Finding a general expression for it is very tedious.  But we can 

see its form by finding the frequency response

Hopt e j( ) =
5

9
e j n0 1( ) 0.8 / 3( ) 1 / 3( )

n0 1 e j 0.6

e j 1 / 3

e j n0 3( )
n0

e j 3
+

0.8

e j 1 / 3

and then computing the impulse response numerically, using the fast Fourier 

transform. 
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Wiener Filters
IIR Wiener Filter Example (An extension of Example 12.7.2 in Proakis)
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Now consider the case in which we use a non-causal filter.  

Then

           Hopt z( ) =
Gdx z 1( )
Gxx z 1( )

=

0.64

1 0.6z 1( ) 1 0.6z( )

1.8
1 1 / 3( )z 1( ) 1 1 / 3( )z( )

1 0.6z 1( ) 1 0.6z( )

Hopt z( ) =
0.3555

1 0.333z 1( ) 1 0.333z( )
= 1.067

1 / 8

z 1 / 3( )
+

9 / 8

z 3

                hopt n[ ] = 1.067 3 / 8( ) 1 / 3( )
n

= 0.4 1 / 3( )
n

This impulse response is virtually identical to the n0 = 9 impulse response

for the smoothing case except that it is centered at n = 0 instead of n = 9.


