
Quantization Effects in Digital 
Filters



In two's complement representation an exact number would have 
infinitely many bits (in general).  When we limit the number of bits
to some finite value we have truncated all the lower-order bits.
Suppose the number is 23/64.  In two's complement binary this
is 0.0101110000...  If we now limit the number of digits to 5 we
get 0.0101 which represents exactly 20/64 or 5/16.  The truncation
error is 5 /16 - 2

( )

3/ 64 3/ 64.  If the exact number is 15 / 64,
this is 1.110001000... in two's complement.  Truncating to 5 bits
yields 1.1100 which exactly represents 1/ 4.  The error is 1/ 4

15/ 64 1/ 64.  This illustra
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− − = − tes that in two's complement 
truncation the error is always negative.
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Distribution of Truncation Errors

In analysis of truncation errors we make the following assumptions.

1. The distribution of the errors is uniform over a range 
equivalent to the value of one LSB.

2. The error is a white noise process.  That means that 
one error is not correlated with the next error or any 
other error.

3. The truncation error and the signal whose values are 
being truncated are not correlated.



Quantization of Filter 
Coefficients
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Let a digital filter's ideal transfer function be

                              H
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If the 's and 's are quantized, the poles and zeros move, creating
a new transfer function
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Quantization of Filter 
Coefficients
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The denominator can be factored into the form

                          D 1 1

and, with quantization,
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he errors in the pole locations are related 
to the errors in the coefficients by
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Quantization of Filter 
Coefficients
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The partial derivatives can be found from
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Quantization of Filter 
Coefficients
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The derivative of the qth factor is
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and the overall derivative is
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Quantization of Filter 
Coefficients
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In the  summation , for any k other than i, 

the iterated product  has a factor 0.  Therefore 

the only term in the k summation that survives is the   term and
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Coefficients
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Quantization of Filter 
Coefficients
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The error in a pole location caused by errors in the coefficients is strongly 

affected by the denominator factor  which is a product of 

differences between pole locations.  So if the pole
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s are closely spaced, the 
distances are small and the error in the pole location is large.  Therefore 
systems with widely-spaced poles are less sensitive to errors in the 
coefficients.   



Quantization of Pole Locations
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Consider a 2nd order system with transfer function
1                             H

1
and quantize  and  with 5 bits.  If we quantize  in the range

1 1 and 2 2 we get a finite s
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Quantization of Pole Locations
If we look at only pole locations for stable systems,

Obviously the pole locations
are non-uniformly distributed.



Quantization of Pole Locations
Consider this alternative 2nd order system design.

H z( )= dz−1

1− c + jd( )z−1( )1− c − jd( )z−1( )

Pole locations are uniformly
distributed.
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Let y  be the response at node  to an input signal

x  and let h  be the impulse response at node .

y h x h x

Let the upper bound on x  be .
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If we want y  to lie in the range -1,1  then
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guarantees that oveflow will not occur.
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Scaling to Prevent Overflow



Scaling to Prevent Overflow
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The condition
1                                  
h

may be too severe in some cases.  Another type of scaling
that may be more appropriate in some cases is
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Scaling to Prevent Overflow



Scaling Example
Assume that the input signal x is white noise bounded between -1 
and +1 and that all additions and multiplications are done using
8-bit two’s complement arithmetic.  Also let all numbers (signals 
and coefficients) be in the range -1 to 1.
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Scaling Example
[ ]
[ ]

[ ]

1

2

0

1

Quantize the 's to 8 bits.
              0.2353 0.2344 (0.0011110)

              0.15 0.1562 (1.1101100)
Scale and quantize the 's.
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Scaling Example

Scaling the v’s scales the output signal but the input signal may
still need scaling to prevent overflow.
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1The exact transfer function is H  where 

1 0.2 0.15 .  The actual ,  after quantizing the

's is 1 0.1978 0.1562 .  1, 
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Scaling Example
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The maximum magnitude of  H  in this example is 2.882 and

the maximum magnitude of H  is 1.5455.  So the scaling factor 

should be 1/ 2.882 0.347.  The simplest scaling is by shifting right.  
In thi
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s case that would require a shift of two bits to the right to scale by 

0.25.  This is significanly less that 0.347 so a more complicated scaling 
might be preferred.  We could instead scale by 0.25 0.0+ 625 0.03125

0.34375 by shifting two bits, then four bits and then 5 bits and adding 
the results.
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Statistical Analysis of 
Quantization Effects

The exact estimation of quantization effects requires numerical
simulation and is not amenable to exact analytical methods.  But
an approach that has proven useful is to treat the quantization 
noise effects as a random process problem.  In doing this we get
an approximate analytical estimate instead of an exact numerical
simulation.  We do this by treating quantization noise as an added
noise signal in the system everywhere quantization occurs.
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Statistical Analysis of 
Quantization Effects
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The probability density function for quantization noise using 
two's complement representation is

1  ,  LSB 01                  f  .
0  ,  otherwise LSB
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The variance of the quantization noise is LSB /12.  Therefore

the mean-squared quantization noise is 
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Statistical Analysis of 
Quantization Effects
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The power spectral density function for quantization noise using 
two's complement representation is G . It has an impulse of

strength LSB / 4 at 0 and is otherwise flat with a value  in
the range 1/

Q F

F K=
−

( ) ( ) ( ) ( )

( ) ( ) ( )

1/ 2 1/ 2
2 2

1/ 2 1/ 2
2 2

2

2 2

2 1/ 2.  It repeats periodically outside this range.
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Statistical Analysis of 
Quantization Effects

( ) ( ) ( )2 2G LSB /12 LSB / 4  is the power spectral

density of both quantization noise sources.  The power spectral density
of the quantization noise effect on the output signal is
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Statistical Analysis of 
Quantization Effects

The two quantization noise sources have the same power spectral
density and they are independent so the output quantization noise
is just twice what would be produced by one of them acting alone.
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Statistical Analysis of 
Quantization Effects
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LSB 1  is the effect of the expected value of the input 
2 1

quantization noise and
LSB 1  is the effect of the variance of the input quantization noise.
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quantization noise.
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