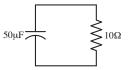
Solution of EECS 300 Test 6 F08

1. A current i(t) = (3t + 4) A is flowing through a 10 mF capacitor and a 2H inductor in series. The voltage $V_c(t)$ across the capacitor at time t = 0 is 1200 V. Find the numerical values of the capacitor voltage and the inductor voltage at time t = 5 s.

$$\begin{array}{c|c}
 & i(t) & 10 \text{ mF} \\
+ & \downarrow & \\
 & V_C(t) & + V_L(t)
\end{array}$$

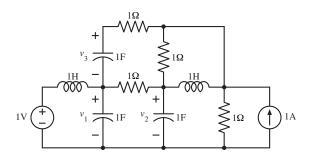
$$v_{c}(t) = 1200V + \frac{1}{C} \int_{0}^{t} i_{c}(\tau) d\tau = \left(1200 + 100 \int_{0}^{t} (3\tau + 4) d\tau\right) V$$

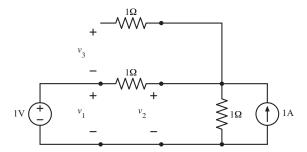

$$v_{c}(t) = \left(1200 + 100 \left[3\tau^{2} / 2 + 4\tau\right]_{0}^{t}\right) V$$

$$v_{c}(t) = \left(1200 + 300t^{2} / 2 + 400t\right) V$$

$$v_{c}(5) = \left(1200 + 300(25) / 2 + 400(5)\right) V = 6950V$$

$$v_{L}(t) = L \frac{di}{dt} = (2H)(3 \text{ A/s}) = 6V \Rightarrow v_{L}(5) = 6V$$


2. In the circuit below, the initial capacitor voltage at time t = 0 is 24V. The energy decays toward zero as time passes. How much energy will be dissipated in the resistor over the time range $0 < t < \infty$?


All the initial energy in the capacitor must be dissipated in the resistor. The initial energy stored in the capacitor is

$$E_C = (1/2)Cv^2 = (1/2)50\mu\text{F}(24\text{V})^2 = 14.4\text{mJ}$$

3. The voltage source in the circuit below is a constant 1V and the current source is a constant 1A. Find the numerical values of the voltages V_1 , V_2 and V_3 .

We can simplify the circuit for this problem by replacing all capacitors by open circuits and all inductors by short circuits. Also the upper-right hand resistor is shorted out and can be removed without changing any voltages or currents.

Due to the 1V source acting alone:

Current source is open-circuited. Current flows through the middle resistor path and down through the right hand resistor. Half of the 1V source voltage appears across each of the two resistors in that path. $v_1 = 1V$, $v_2 = 0.5 \text{ V}$ and $v_3 = -0.5 \text{ V}$

Due to the 1A source acting alone:

Voltage source is short-circuited. The source current splits between the right-hand resistor and the middle resistor, 1/2A going each way. V_1 is zero because it is across a short circuit. V_2 is 0.5 V and V_3 is 0.5 V.

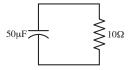
Including both sources: $V_1 = 1V$, $V_2 = 1 V$ and $V_3 = 0$

Solution of EECS 300 Test 6 F08

1. A current i(t) = (5t + 2) A is flowing through a 10 mF capacitor and a 2H inductor in series. The voltage $v_c(t)$ across the capacitor at time t = 0 is 1000 V. Find the numerical values of the capacitor voltage and the inductor voltage at time t = 5 s.

$$\begin{array}{c|c} i(t) & 10 \text{ mF} \\ \hline + & \begin{pmatrix} & 2H \\ & & -+ \end{pmatrix} \\ v_{\underline{C}}(t) & & v_{\underline{L}}(t) \\ \end{array}$$

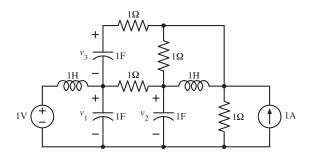
$$V_{c}(t) = 1000 \text{V} + \frac{1}{C} \int_{0}^{t} i_{c}(\tau) d\tau = \left(1000 + 100 \int_{0}^{t} (5\tau + 2) d\tau\right) \text{V}$$

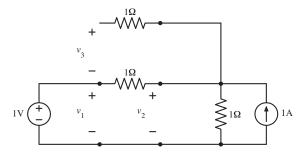

$$V_{c}(t) = \left(1000 + 100 \left[5\tau^{2} / 2 + 2\tau\right]_{0}^{t}\right) \text{V}$$

$$V_{c}(t) = \left(1000 + 500t^{2} / 2 + 200t\right) \text{V}$$

$$V_{c}(5) = \left(1000 + 500(25) / 2 + 200(5)\right) \text{V} = 8250 \text{V}$$

$$V_{L}(t) = L \frac{di}{dt} = (2H)(5 \text{ A/s}) = 10 \text{V} \Rightarrow V_{L}(5) = 10 \text{V}$$


2. In the circuit below, the initial capacitor voltage at time t = 0 is 16V. The energy decays toward zero as time passes. How much energy will be dissipated in the resistor over the time range $0 < t < \infty$?


All the initial energy in the capacitor must be dissipated in the resistor. The initial energy stored in the capacitor is

$$E_C = (1/2)Cv^2 = (1/2)50\mu F (16V)^2 = 6.4 \text{mJ}$$

3. The voltage source in the circuit below is a constant 1V and the current source is a constant 1A. Find the numerical values of the voltages v_1, v_2 and v_3 .

We can simplify the circuit for this problem by replacing all capacitors by open circuits and all inductors by short circuits. Also the upper-right hand resistor is shorted out and can be removed without changing any voltages or currents.

Due to the 1V source acting alone:

Current source is open-circuited. Current flows through the middle resistor path and down through the right hand resistor. Half of the 1V source voltage appears across each of the two resistors in that path. $v_1 = 1V$, $v_2 = 0.5 \text{ V}$ and $v_3 = -0.5 \text{ V}$

Due to the 1A source acting alone:

Voltage source is short-circuited. The source current splits between the right-hand resistor and the middle resistor, 1/2A going each way. V_1 is zero because it is across a short circuit. V_2 is 0.5 V and V_3 is 0.5 V.

Including both sources: $V_1 = 1V$, $V_2 = 1 V$ and $V_3 = 0$